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Rason Model Components for 
Optimization or Simulation 

Introduction 
This section introduces each of the nine different components or sections which make up a RASON model:  

"variables", "uncertain variables", "data", "dataSources", "engineSettings", "formulas",  "modelSettings", 

"objective", "constraints", "indexSets" and "objective".   This chapter explains how each component of your 

model should be defined.  Some optimization models will consist of just 3 sections: variables (where the 

decision variables will be defined), constraints (where the constraints will be defined) and objective 

(where the objective will be defined)) where other larger and more complex models might contain several 

additional segments such as:   engineSettings (where the engine is chosen and an engine options are 

specified), data (where any arrays used in the calculation of the constraints or objective are defined), 

formula (where any intermediate calculations are performed) and/or  dataSources (where any data is 

imported from an outside source such as a CSV file).  Most simulation models will be comprised of two 

components:  uncertainVariables (where the uncertain variables are defined) and 

uncertainFunctions (where the uncertain functions are defined).  However, a simulation model could 

also contain additional segments such as:  engineSettings, data, formula, and/or datasources.   

Note:  The RASON modeling language supports all but a few of Excel's functions1 which means that you can 

write a formula easily using functions such as SUM, SUMPRODUCT, etc. along with operators such as  + and 

*. You can define arrays and use Excel functions that return vector and matrix results and access your data from 

within an Excel worksheet or a database.     

Box Functions 
Custom defined functions are supported in RASON Decision Services.  These custom functions are defined 

within the boxFunction section of the RASON model but can be reused within any section.  

Note:  For a list of supported FEEL expressions, see the Decision Tables section that appears later in the guide.   

Example:   

boxFunctions: { 

  funPMT: { 

    inputs: ['p', 'r', 'n'],  

    inputTypes: ['number', 'number', 'number']"}, 

    language:  "FEEL",  

    resultType: "number", 

    body: { 

      payment: {formula: "(p * r/12)/(1-(1+r/12)**-n)"}, 

 

1 Note: Excel functions not supported by the Rason modeling language are: Call(), Cell(), CubeX(), EuroConvert(), 

GetPivotData(), HyperLink(), Indirect(), Info(), Offset(), RegisterID(), PivotDim(), PivotCube(), FormulaText(), 

Dollar(), Fixed(), Replace(), Search(), Text() and SqlRequest(). 

 . 



      fee: {formula: "0.01 * payment"} 

  } 

  result:  {formula: "payment + fee"} 

} 

Notice the use of the prefix "fun" in the name of the box function, funPMT.  It is good practice to use this 

prefix when defining a box function in RASON in order to prohibit a naming conflict error. For example, if this 

function were instead named "PMT", rather than "funPMT", each time this function was used in the RASON 

model, the Excel Financial PMT function would be called rather than this defined function.   

• inputs (required):  Defines the input parameters 

• inputTypes (Required if Formula Language = FEEL, otherwise optional):  Defines the type for all 

input parameters.   

o Supported types are: 

Formula Language = Excel 

Array:  Any Excel cell reference, i.e. A1:C1.  

Note:  This can be used for a Box function that, say, computes the SUMPRODUCT(A1:A3, B1:B3) where A1:A3 is 

a range for the first input parameter and B1:B3 is a range for the second input parameter. 

Boolean:  The entered words TRUE and FALSE are interpreted as Boolean reserved words, 

not strings.  

Empty:  Select "empty" if Formula Language = EXCEL and no Data Type is being specified.     

Error:  Any Excel error such as #N/A, #Number, etc. 

Number:   May be an integer or fraction.   

String or Text:  Any string 

 

Language = FEEL 

Boolean:  The entered words TRUE and FALSE are interpreted as Boolean reserved words, 

not strings.  

Date:  Any valid date, such as 05-05-1964 

Duration:  There are two formats for duration, one measuring periods in months and another 

measuring periods in seconds. For example, P1DT1H2M3S denotes: 

• P for "period"  

• 1D for 1 day 

• T for "time" 

• 1H for 1 hour 

• 2M for 2 minutes and 

• 3S for 3 seconds.         

• language (required):  Defines the language:  FEEL or EXCEL.   

• resultType (Required if Formula Language = FEEL, otherwise optional):  Defines the type of result 

returned by the function.  The returned value type is specified below the formula language.  Custom 

functions return only one output.   

o Supported types are: 

Formula Language = Excel 

Array:  Any Excel cell reference, i.e. A1:C1.  
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Note:  This can be used for a Box function that, say, computes the SUMPRODUCT(A1:A3, B1:B3) where A1:A3 is 

a range for the first input parameter and B1:B3 is a range for the second input parameter. 

Boolean:  The entered words TRUE and FALSE are interpreted as Boolean reserved words, 
not strings.  

Empty:  Select "empty" if Formula Language = EXCEL and no Data Type is being specified.     

Error:  Any Excel error such as #N/A, #Number, etc. 

Number:   May be an integer or fraction.   

String or Text:  Any string 

 

Language = FEEL 

Boolean:  The entered words TRUE and FALSE are interpreted as Boolean reserved words, 
not strings.  

Date:  Any valid date, such as 05-05-1964 

Duration:  There are two formats for duration, one measuring periods in months and another 

measuring periods in seconds. For example, P1DT1H2M3S denotes: 

• P for "period"  

• 1D for 1 day 

• T for "time" 

• 1H for 1 hour 

• 2M for 2 minutes and 

• 3S for 3 seconds.         

• body (optional):  Defines the intermediary formulas used to to calculate the result.  In this example, 

"payment" is calculated as (p * r/12)/(1-(1+r/12)**-n) and "fee" is calculated as 0.01 * payment.  Note 

that "payment" and "fee" are user defined names. 

• result (required):  Defines the calculation returned by the function.   In this example the result adds the 

payment and fee as defined within the body. 

Invocation of Custom Functions 

Custom functions are invoked in RASON models as a standard function by name and values passed for 

parameters in brackets.  For example: 

MonthlyPayment: {formula: "funPMT(amount, rate, term)" finalValue:[]} 

Notes:   

• Variables amount, rate and term are global in scope.   

• Custom functions in RASON are polymorphic and multithreaded.   

For more information on using custom functions in RASON, see the Using Custom Functions chapter within 

the RASON User Guide and example models using custom functions under Rason Examples – Decision – 

Custom Functions.   

FEEL Expressions 

Variables and constants can be combined through operations called literal expressions.  Literal expressions in S-
FEEL are similar to formulas in Excel and in the RASON modeling language.  For a list of supported FEEL 

expressions, see the Decision Tables section that appears later in the guide.   

 



LAMBDA Function 

The LAMBDA function, introduced in Microsoft Excel, can also be used to create custom, reusable functions 

which can be invoked using a custom name. For example, a user could use the LAMBDA function to define a 

new function that calculates a common formula within a RASON model.  Using the new function in the cell to 

calculate the formula, rather than the actual formula, reduces the chance of introducing an error into the model.   

Example 

boxFunctions: { 

    "MyLmd": {result: "LAMBDA(y,LET(x,y+1,LET(z,6, z+x*y)))"} 

} 

Notes: 

• The number of supported parameters is 253. 

• Periods (.) are not supported in LAMBDA function names and parameters.   

Notes on the LAMBDA and LET Functions 

• Scope of variables within a LAMBDA function 

When a LAMBDA expression is calculated, RASON Decision Services will first search the local 

scope of the expression for the definition of a variable.  If not found, RASON will proceed to search 

the parent scope and then will move to the global scope (cell/range names).   

Assume a variable with the defined name "z" and the custom Lambda function below exist within the 
same RASON model. 

=LAMBDA (x, y, LET (z, x+1, y * z + b1)) 

In this instance, the local scope is the LET function, the parent scope is the LAMBDA function 

enclosing the LET function, and the global scope is all cell/range names in the RASON model.  The 

variable z =x+1 despite the existence of z in the global scope.  The variable z inside LET and the z 

variable are considered to be different variables.   

• Nesting LAMBDA/LET functions 

RASON Decision Services supports only nested LET functions.  Nexted LAMBDA functions are not 

supported.   

• Properties of LAMBDA/LET in RASON Decision Services 

The following list contains important properties of both the LAMBDA and LET functions. 

1. Reusability – LET definitions are not reusable while LAMBDA definitions, even ones containing 

LET functions, are resuable.   

2. Nesting – LET definitions can be nested while LAMBDA definitions cannot. 

3. Recursion – Although the LAMBDA function is recursive in Excel, RASON Decision Services 

does not support recursion with this function. 

4. Threads – Both LET and LAMBDA functions running in multiple threads. 

5. Polymorphic Evaluation –  The calculation of derivates, intervals, etc inside of a LAMBDA and 

LET function.  

6. Model Conversion:  Both LET and LAMBDA functions are supported in model conversion from 

Excel to RASON (Create App – RASON).   

• A LET function within an Excel model will appear within the formulas property within the 

RASON model, after conversion is complete.   

uncertainFunctions: { 
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  "c5": { formula: "LET(x, 1+1, LET (y, 2, A5 + x = y))", 

mean: [] 

} 

• The LAMBDA function within an Excel model will appear within a new section, 

"boxFunctions" within the RASON model, after the model conversion is complete.   

boxFunctions: { 

  "MyLmd" : { 

       result: "LAMBDA(y, LET(x, y+1, LET(z, A13, z+x*7)))" 

} 

For more examples see the RASON User Guide's Using Custom Functions chapter.  For example models using 

the Lambda function, see RASON Examples – Decisions – Custom Functions. 

Constraints 
This optional section is used for defining normal, recourse or chance constraints in optimization, stochastic 
optimization or simulation optimization models.  There are 10 constraint input properties:  comment, name, 

dimensions, type, formula, lowerBound, upperBound, equal, chanceType, and chanceProbability.  In return you 

may ask for the constraint's final value, dual value, dual upper value, dual lower value, slack value intial value 

and index value.  In the example code below, five constraints are defined by a matrix multiplication of the 

parts and products arrays.  The upper bound of each constraint is contained in the upper array.  In return, 

the dual value and upper and lower bounds for the dual value for each constraint will appear in the Result 

(dualValue: [], dualUpper:[], dualLower:[]).   
 

constraints: { 

cons: { 

   formula: "mmult(parts, transpose(products))", upper: [450, 250, 800,  

   450, 600], dualValue: [], dualUpper: [], dualLower: [] } 

}, 

We also could have created the cons block of constraints by using an alternate syntax, shown below.  

However, if a parameter is defined in this way, it would not be possible to pass (say) new right hand side values 

outside of the RASON model environment (via a direct call to the RASON REST API).   
 

constraints :  

    { name: "cons",  

formula: "mmult(parts, transpose(products))", 

      upper: [450, 250, 800, 450, 600], 

      dualValue: [], dualUpper: [], dualLower: [] } 

}, 

Please see the table below for all input properties available in constraints.   

 

Input Property Example Definition 

aliasName aliasName: 

“num_parts_inventory” 

This property is automatically inserted into 

the converted RASON model when an 

Excel model is deployed through Analytic 

Solver’s Deploy Model button, if a block of 

cells containing constraint left hand sides is 
assigned a defined name in the Excel 

Solver model. 



comment comment: "number of 

parts used must be less 

than inventory" 

Enter a comment here to describe the 

constraint or block of constraints.  

(Optional) 

name name: "constraints" Enter a name for a constraint or block of 

constraints. (Optional) 

dimensions 1. dimensions: [3,1]               

2. dimensions: [3] 

3. dimensions: [1,3]  

4. dimensions: [3,2] 

1. Defines a 2 – dimensional horizontal 

array with 3 rows and 1 column.  

2. Defines a 1-dimensional vertical array 

with 3 elements.   

3. Defines a 2 – dimensional vertical 

array with 3 elements. 

4. Defines a 2 – dimensional array with 3 

rows and 2 columns. 

All arrays are 1 – based.  (Optional.)  If 

missing, constraint array shape will be 

implicitly defined by the shape of the 
lower, upper, equal or value properties, 

however, for readability of the code, the 

use of the dimensions property is 

recommended.   

type 1. type: "cone" 

2. type: "rotatedCone" 

 

1. Defines the constraint or constraint 

block as belonging to a cone.  

2. Defines the constraint or constraint 

block as belonging to a rotated cone.    

If chancetype and type arrays are 

missing, the constraint or block of 

constraints is assumed to be normal.   

See below for information on cone and 

rotated cone constraints see the Using Cone 

Constraints topic below.   

formula formula: "mmult(parts, 

transpose(products))", 

 

Calculates the constraint.  (Required.) 

lower* lower: 0 

lower: [1, 2, 3] 

lower: "availInvent" 

where availInvent is an array of 

constants.   

Specifies the lower bound of the constraint 

or constraint block.  If an array is passed 

and dimensions, upper, equal or 

value properties are missing, the shape 

of the constraint array will be determined 

by the shape of the lower property.  

However, it is recommended that the 

dimensions property be used for 

readability purposes.  If missing, the lower 

bound is defined as "unbounded".   
(Optional) 

Note:  Only constant values are supported 

for this property.  If a formula is provided 

to lower: [], the error:  "Can not be parsed" 

will be returned.  If the right hand side of 
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your constraint must contain a formula, 

then simply subtract the RHS from the left 

hand side of the constraint, for example:  

x1 + x2 = x3 +x4 can be rearranged to:  x1 

+ x2 – (x3 + x4) = 0. 

upper* upper: 0 

upper: [1, 2, 3] 

upper: "availInvent" 

where availInvent is an array of 

constants.   

Specifies the upper bound of the constraint 

or constraint block.  If an array is passed 

and dimensions, lower, equal or 

value properties are missing, the shape of 

the constraint array will be determined by 

the shape of the upper property.  

However, it is recommended that the 

dimensions property be used for 

readability purposes.  If missing, the upper 

bound is defined as "unbounded".  

(Optional) 

Note:  Only constant values are supported 

for this property.  If a formula is provided 
to upper: [], the error:  "Can not be parsed" 

will be returned.  If the right hand side of 

your constraint must contain a formula, 

then simply subtract the RHS from the left 

hand side of the constraint, for example:  

x1 + x2 = x3 +x4 can be rearranged to:  x1 

+ x2 – (x3 + x4) = 0. 

equal* equal: 0 

equal: [1, 2, 3] 

equal: "availInvent" 

where availInvent is an array of 

constants.   

Defines an equality constraint.  If an array 

is passed and dimensions, upper, 

lower or value properties are missing, 

the shape of the constraint array will be 

determined by the shape of the equal 

property.  However, it is recommended that 

the dimensions property be used for 

readability purposes.  If missing, either 

upper or lower must exist. (Optional)  

chanceType chanceType: “VaR” 

chanceType: “CVaR” 

chanceType: “USet” 

Defines the constraint or constrant block as 

a chance constraint(s).  Constraint or 
constraint block must  contain 

uncertainties.  The property 

chanceProbability property must 

exist if chanceType exists.    

Value at Risk (VaR) – Specifies that the 

chanceProbability percentile of the 

realizations of the constraint left hand side 

must be less than or equal to the constraint 

right hand side; realizations beyond the 

chanceProbability percentile may be 

greater than the right hand side by any 
amount. 

Conditional Value at Risk – Specifies that 

the expected value of all the realizations of 

the constraint right hand side up to the 

chanceProbability percentile must 



be less than or equal to the constraint left 

hand side.   

Uncertainty Set – Applicable only to linear 

constraints where some or all of the 

coefficients may depend on the 

uncertainties.  Specifies that the constraint 
right hand side must be satisfied for all 

variations from the nominal variable values 

and do not exceed a bound, measured by a 

norm.   

For more information on these types of 

constraints, see the topics below.     

chanceProbability chanceProbability: 0.95 Defines the percentile for use with VaR, 

CVaR, and USet constraints.   

For more information on chance 

constraints, see the topics below.     

*The RASON Server currently ONLY supports constant values (i.e. 3, 8.54, etc.) or an array containing 
constant values for the lower, upper and equal properties.   

An output property must be specified within the constraint definition as an empty array.   

Output Property Example Definition 

dualLower dualLower: [] Creates an empty array to hold the Allowable Decrease for 

the constraint or constraint block.   See the topic, 

Interpreting Reduced Costs below for more information on 

this property.   

dualUpper dualUpper: [] Creates an empty array to hold the Allowable Increase for the 

constraint or constraint block.  See the topic, Interpreting 

Reduced Costs below for more information on each of these 

properties.   

dualValue dualValue: [] Creates an empty array to hold the shadow price for the 
constraint or constraint block.  The shadow price for a 

constraint is nonzero only when the constraint is binding.  

See the topic, Interpreting Reduced Costs below for more 

information on each of these properties.    

slackValue slackValue: [] 
Creates an empty array to hold the slack value for each 

constraint.   The slackValue holds the constraint's slack 

which is nonzero only when the constraint is NOT equal to 

its bound.   For example, take the constraint x1 + x2 = 3.  If 

x1 = 0 and x2 = 2, slackValue = 1. 

finalValue finalValue: [] Creates an empty array to hold the final constraint value for 

the constraint or constraint block.   

initialValue initialValue: [] Creates an empty array to hold the initial value of the 

constraint. 

indexValue indexValue: [] Creates an empty array to hold the index value for each 

constraint in the block of constraints.   
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Using Cone Constraints 
A simple kind of cone constraint is a non-negativity constraint on a variable or block of variables.  These types 

of constraints specify that the variables must lie within a simple kind of cone, called the non-negative orthant. 

This first order cone places a bound on the L1-norm of the vector of decision variables.  A second order cone 

(also called a Lorentz cone or "ice cream cone") is a convex set that looks like this: 

 

 
 
This cone places a bound on the L2-norm of the vector of decision variables. If x1, x2, and x3 are variables that 

lie within this cone, then x1 >= SQRT(SUMSQ(x2, x3)) must hold. A problem with a linear objective andlinear 

or second order cone (SOC) constraints is called a second order cone programming (SOCP) problem; it is 

always a convex optimization problem.  Second order cone programming is the natural generalization of linear 

programming.  It offers the same advantages of convexity and scalability to large  problems offered by linear 

programming – but for a broader class of models.  For history buffs, Premium Solver Platform V6.0 was the 

first commercial software product to offer broad support for second order cone programming.  

Please see the two examples below (RGFirehouseLocation.json and  RGFirehouseLocationConic.json) which 

illustrate how to setup the same model in two different ways: the first (RGFirehouseLocation.json) without cone 

constraints and the second (RGFirehouseLocationConic) with cone constraints.  The goal of both models is to 

find a location, given by x and y coordinates, of a proposed firehouse that minimizes the maximum distance 
between the firehouse and six cities in the region.   

 

In the first example, there are three decision variables x, y, and z.  The x and y variables will hold the final x 

and y coordinates of the proposed firehouse location.  The third variable, z, will be minimized in the objective 

function. 

 
{ 

    comment: "NLP Example, individual constraints", 

    engineSettings : { engine : "GRG Nonlinear" }, 

    variables : { 

       x: { value: 1.0, finalValue: [] }, 

       y: { value: 1.0, finalValue: [] }, 

       z: { value: 1.0, finalValue: [] } 

    }, 

    constraints : { 

       c1: { formula: "sqrt((x - 1)^2 + (y - 4)^2) - z", upper: 0 }, 

       c2: { formula: "sqrt((x - 0.5)^2 + (y - 3)^2) - z", upper: 0 }, 

       c3: { formula: "sqrt((x - 2)^2 + (y - 4)^2) - z", upper: 0 }, 

       c4: { formula: "sqrt((x - 2)^2 + (y - 2)^2) - z", upper: 0 }, 

       c5: { formula: "sqrt((x - 2)^2 + (y - 5)^2) - z", upper: 0 }, 

       c6: { formula: "sqrt((x - 0.5)^2 + (y - 6)^2) - z", upper: 0 } 

    }, 

    objective : { 

       obj: { formula: "z", type: "minimize", finalValue: [] } 

    } 

} 

 

The constraints calculate the distance between the proposed firehouse location and each of the six cities using 

the the Pythagorean Theorem (SQRT ((Xc – X )^2 + (Yc – Y) ^2)), which is a nonlinear function of the 



variables.  The objective function minimizes the z variable to find the smallest possible distance between the 

firehouse and each city.  This model may be solved with the Nonlinear GRG engine. 

 

In the next example, 6 conic constraints (one for each city) is used to calculate the distance between the 

proposed firehouse location and each city, rather than the Pythagorean Theorem.   
 
{ 

    engineSettings : { engine: "SOCP Barrier" }, 

    variables : { 

         x: { value: 1.0, finalValue: [] }, 

    y: { value: 1.0, finalValue: [] }, 

    z: { value: 1.0, finalValue: [] }, 

    f: { dimensions: [6], value: 1.0 }, 

    g: { dimensions: [6], value: 1.0 }, 

    h: { dimensions: [6], value: 1.0 } 

    }, 

    data: { 

    corx: { dimensions: [6], value: [1, 0.5, 2, 2, 2, 0.5] }, 

    cory: { dimensions: [6], value: [4, 3, 4, 2, 5, 6] } 

    }, 

    constraints : { 

    dx: { dimensions: [6], formula: "corx - x - g", equal: 0 }, 

    dy: { dimensions: [6], formula: "cory - y - h", equal: 0 }, 

         dz: { dimensions: [6], formula: "f - z", upper: 0 }, 

    cone1: { value: "f[1], g[1], h[1]", type : "cone" }, 

    cone2: { value: "f[2], g[2], h[2]", type : "cone" }, 

    cone3: { value: "f[3], g[3], h[3]", type : "cone" }, 

    cone4: { value: "f[4], g[4], h[4]", type : "cone" }, 

    cone5: { value: "f[5], g[5], h[5]", type : "cone" }, 

    cone6: { value: "f[6], g[6], h[6]", type : "cone" } 

    }, 

    objective : { 

    obj: { formula: "z", type: "minimize", finalValue: [] } 

    } 

} 

 

The x and y coordinates of each city to be served by the firehouse are given in the corx and cory arrays, 

respectively. The x and y variables will hold the final x and y coordinates of the proposed firehouse.  The f 

block of variables will be forced by the dx block of constraints to equal the difference between the x coordinate 

of the proposed firehouse and the x coordinate of each city.  The g block of variables will be forced by the dy 

block of constraints to equal the distance between the y coordinate of the proposed firehouse and the y 

coordinate of each city.  The h block of variables will be driven by the dz block of constraints to be less than or 

equal to z, the variable to be minimized in the objective function.  Each member of the f, g, and h variable 

blocks must (for example f[1], g[1], and h[1]) belong to a second order cone constraint  which can be 

rewritten as f[1] > = SQRT (SUMSQ(g[1]; h[1]).  Minimizing the z variable in the objective function 

will push the maximum distance between the proposed firehouse location and each city to the lowest possible 

value guaranteeing that the firehouse is as close as possible to each of the six cities.  This model may be solved 

with the SOCP Engine.   

Note:  In RASON, you can solve any type of model containing conic constraints.  There is no need to select a 

specific engine within engineSettings. If no engine is specified, the model is considered to be nonlinear 

and an appropriate nonlinear engine will be selected to solve the model.  If the model type of SOCP is known, 

and an engine supporting conic constraints is specified, the model will be solved as an SOCP.  Currently, the 

three engines that support conic constraints are:  "SOCP Barrier" (as shown in the above example), "Gurobi 

Solver" and "Mosek Solver".   
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Interpreting Reduced Costs 
 

The Shadow Price for a constraint is nonzero only when the constraint is equal to its bound. This is called a 

binding constraint, and its value was driven to the bound during the optimization process. Moving the constraint 

left hand side’s value away from the bound will worsen the objective function’s value; conversely, “loosening” 

the bound will improve the objective. The Shadow Price measures the increase in the objective function’s value 

per unit increase in the constraint’s bound. In the case of linear problems, the Shadow Price remains constant 
over the range of Allowable Increases and Decreases in the variables’ objective coefficients and the constraints’ 

right hand sides, respectively.  For each constraint, dualLower and dualUpper will report the constraint 

right hand will report the amount by which the RHS could be increased or decreased without changing the dual 

value. 

Constraints: Normal, Chance, Recourse 
Constraints are relations such as f(x1 , x2 …, ,xn) <= b, where x1 , x2 …, ,xn are decision variables. A constraint is 

satisfied when the relation it specifies is true within a small tolerance. When your model includes uncertainty, 

we must examine how each constraint depends on the uncertainties and the decision variables: 

 

• If a constraint depends only on certain parameters and normal decision variables, it is ‘deterministic’ and is 

handled in the usual way by the Solver. We call this a normal constraint.  (See above for an example.) 

• If a constraint depends on uncertain variables and normal decision variables, we must specify what it 

means for the constraint to be satisfied.  There are many possible realizations for the uncertain variables, 

but only single values for the decision variables. The Solver must find values for the decision variables that 
cause the constraint to be satisfied for all, or perhaps most but not all, realizations of the uncertainties. We 

call this a chance constraint. For example, we might specify that the constraint must be satisfied 95% or 

99% of the time; it can be violated 5% or 1% of the time. For 95%, we denote such a constraint as VaR 0.95 

A1 <= B1. But this form may not be your best choice – alternatives called CVaR and USet are discussed in 

the section “More on Chance Constraints.” 

• If a constraint depends on uncertain variables and recourse decision variables, then the Solver will find an 

array of values for each of the recourse variables, corresponding to the realizations of the uncertain vs. 

Recourse decisions give the Solver flexibility to satisfy constraints that involve uncertainty; but in effect, 

each such constraint has many realizations – one for each realization of the uncertainties. We call this a 

recourse constraint.  

• A constraint may also depend on recourse decision variables, and possibly normal decision variables, but 
not depend on any uncertain variables. This is also a recourse constraint, with many realizations. The 

Solver must find values for the recourse variables that satisfy all the constraints where they appear – some 

with uncertainties, and some without. 

Multiple Uncertainties May Offset Each Other 

What happens when a constraint depends on several different uncertainties? Is such a constraint harder or easier 

to satisfy than a constraint that depends on just one uncertainty?  In the simplest case, suppose we have a linear 

constraint, with coefficients ai and decision variables xi: a1x1 + a2x2 + ... + anxn  b.  Suppose that each coefficient 

ai is uncertain (and independent of all the others), with sample values drawn randomly from PsiUniform (ai – 0.5, 

ai + 0.5).  The average or nominal value of each coefficient is ai. The ‘worst’ that can happen is that a sample is 

drawn where every coefficient is ai + 0.5 – this makes the left hand side (LHS) as large as possible, so it is very 

likely to violate the condition LHS  b. But this case is very unlikely to occur.  In most realizations of the 

uncertainties, some coefficients (randomly drawn from the range ai – 0.5 to ai + 0.5) will be less than ai, and 

some will be greater than ai. The more uncertainties are involved, the greater the chance that some of them will 

draw samples less than ai. If we use a chance constraint to specify that the relation must be satisfied (say) 95% 

or 99% of the time, we actually have a better chance of satisfying this constraint when it depends on many 

uncertainties than when it depends on just one – as long as the uncertainties are independent, or at least not 
highly correlated with each other. 

More on Chance Constraints 



As explained above, if a constraint depends on uncertain variables and normal decision variables, we can seek 

solution values for the variables that cause the constraints to be satisfied for all, or perhaps most but not all, 

realizations of the uncertainties. If we insist that the constraints are satisfied for all realizations, we may not be 

able to find values for the decision variables that meet this requirement – and if we do, we will very likely ‘pay 

for this’ via worse values for the objective function. 

Instead, we can seek solution values for the variables that cause the constraints to be satisfied for most, but not 

necessarily all, realizations of the uncertainties. We might specify that the constraint must be satisfied (it must 

not exceed a given limit) 95% or 99% of the time; it can be violated 5% or 1% of the time. This is depicted in 

the chart below, where 95% of the area under the curve is to the left of the bar (i.e. the constraint right hand side 

value), and 5% is to its right. This is one form of a chance constraint; the criterion that it must be satisfied for 

all realizations of the uncertainties up to a given percentile (say 95%) makes it a VaR (Value at Risk) constraint. 

We write this constraint as VaR 0.95 A1 <= B1. 

The RASON modeling languague supports two other criteria besides VaR that may be better choices for many 

models. A chance constraint includes: 

• A left hand side that depends on decision variables and uncertainties. 

• A relation that must be either <= or >=. (A chance constraint can’t be an equality. Note however that a 

recourse constraint can be an equality.) 

•  A type that may be VaR (Value at Risk), CVaR (Conditional Value at Risk), or USet (Uncertainty Set). These 

criteria are discussed below. 

• A measure that may be a percentile 0.01 – 0.99 for VaR or CVaR, or a ‘budget of uncertainty’ (any positive 
value) for USet. 

Value at Risk Measure 

Chance constraints defined by a percentile or VaR (Value at Risk) measure have been used since the early 

1960s. Such constraints offer a good deal of modeling flexibility, and they are easy to understand in terms of the 

probability that the constraint will be satisfied. Value at Risk is used in the banking and securities industries, 

and its use is mandated by the international Basel II accords. But chance constraints in this form have several 

drawbacks: 

• A VaR constraint with probability 95% requires only that the constraint be satisfied – not violated – 95% of 

the time; it says nothing about the magnitude of the violation that may occur the other 5% of the time. For 

example, a portfolio of securities that is VaR-constrained to lose no more than $100,000 95% of the time could 

still lose $1 million+ at other times. 

• As a measure of risk, the VaR criterion is not subadditive, a property expected of any ‘coherent risk 

measure.’ For example, if two portfolios A and B are VaR-constrained to not lose money 95% of the time, it is 
reasonable to expect that a combined portfolio A+B should have a 95% or better chance of not losing money – 

but this is not guaranteed by the two portfolio VaR constraints.  

• A VaR constraint is not necessarily convex; hence, using such a constraint in an otherwise convex model (for 

example, any linear programming or convex quadratic model) will radically affect its ‘solvability’ – it means 

that a globally optimal solution cannot be guaranteed, and solution time may rise exponentially with model size. 

Further, when robust optimization methods automatically transform a model with VaR constraints into a larger 

but deterministic ‘robust counterpart’ model, it first approximates the non-convex VaR constraint with a convex 

CVaR constraint, and then transforms the CVaR constraint. Since CVaR is always more conservative than 

VaR as a risk measure, the robust counterpart solution will ‘pay a price’ in conservativeness, with a worse 

objective value. Users are often better off using CVaR directly. 

Conditional Value at Risk Measure 

To deal with the problems of Value at Risk cited above, an alternative risk measure called Conditional Value at 

Risk or CVaR (also called Expected Tail Loss or ETL) was developed in the late 1990s. VaR 0.95 A1 <= B1 
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specifies that the 95th percentile of the realizations of A1 must be less than or equal to B1; realizations beyond 

the 95th percentile may be greater than B1 by any amount. In contrast, CVaR 0.95 A1 <= B1 specifies that the 

expected value of all the realizations of A1 up to the 95th percentile must be less than or equal to B1. Below is a 

chart that compares VaR and CVaR. VaR is the value (10,000) that lies at the 5th percentile of the realizations of 

the constraint left hand side; 95% of the realizations are greater than 10,000 and lie in the graph to the right of 
this point. CVaR (8,000) is the expected value (i.e. the mean or average value) of all the realizations that lie in 

the ‘tail’ to the right of the VaR ( Note that, if CVaR 0.05 A1 <= B1 is satisfied for some B1, then VaR 0.05 A1 

<= B1 is also (more than) satisfied. As a risk measure, Conditional Value at Risk has several advantages over 

VaR: 

• Unlike VaR, a CVaR constraint at 95% places a bound on the average magnitude of the violations that may 

occur 95% of the time. 

• CVaR is a ‘coherent risk measure.’ It is subadditive, so if two portfolios A and B are CVaR-constrained to 

not lose money 95% of the time, then a combined portfolio A+B has the same or better chance of not losing 

money. 

• A CVaR constraint is always convex. Models consisting of all convex functions can be solved to global 

optimality, and solved to very large size using modern interior point optimization methods. 

Uncertainty Set Measure 

The RASON modeling language supports a third criterion for uncertainty in a chance constraint, which reflects 

the approach taken in most of the literature on robust optimization methods. This criterion, called USet (for 
uncertainty set), is applicable only to linear constraints, with coefficients ai and variables xi: 

a1x1 + a2x2 + ... + anxn  b 

where some or all of the coefficients ai may depend on the uncertainties. It is useful to think of the vector [a1 a2 ... 

an] as having a nominal or expected value, and a variation from this value for each realization of the 

uncertainties. A constraint of the form USetΩ A1 <= B1, where a1x1 + a2x2 + ... + anxn is in A1, and b is in B1, 

specifies that A1 <= B1 must be satisfied for all variations from the nominal value of [a1 a2 ... an] that do not 

exceed a bound Ω, measured by a norm. The bound Ω is often called the budget of uncertainty for the 

constraint. A very large Ω says that the constraint must be satisfied for practically all variations of the 

coefficients from nominal; a Ω of 0 effectively ignores uncertainty, requiring only that A1 <= B1 for the 

nominal value of [a1 a2 ... an], and saying nothing about departures from this value.  The RASON modeling 

language allows you to choose among four different norms to measure variation from the nominal value: The 

L1, L2, L-Infinity and D norms – as described in “Uncertainty Sets and Norms” that appears earlier in this 
guide. 

Contexts 
Use the "contexts" section of a RASON model to define a context:  a single object that determines both the type  

structure of the object and also the value of the object.  Components of a context must include two arguments: 

typeRef which assigns the type and formula to calculate the value.  Note that constant values are allowed. 

Relation to Custom Types 

Context objects resemble component custom types, which are defined below.  Component custom types are 

defined as custom types with components such as names names, types and, optionally, allowed values (i.e. 

domain). If a component type is attached to a variable, then that variable defines values in its array structure 

according to the component type description. The variable may be referenced component-wise using the ‘.’ 

operator. For example, 

typeDefs: { 

    tPmt: { 

components: { 



      payment:  { typeRef: 'number' }, 

      fee:  { typeRef: 'number' }, 

      total:  { typeRef: 'number' } 

} 

    } 

} 

data: { 

 loan: { type: 'tPmt', value: [600000, 1000, 601000], binding: 'get' 

} 

} 

Now  loan.payment, loan.fee, and/or loan.total may be referenced in subsequet formulas within the RASON 

model. The restriction here is that the variable must define only constant values.  These constant values may be 

obtained using the binding: ‘get’ mechanism or by fetching a record from an external table or even simply 

including them inline, as shown in the example code above. Regardless of how they are obtained, these values 

could not be computed.  That is, until now.  In the latest version of RASON Decision Services, the concept of 
variables with components has been extended to the next level, context:  where components may include 

formulas.       

The Context Definition 

A context is a single object which determines the type of the structure and, at the same time, defines the values. 

Recall that with component types we have two objects – the type and the variable to which we attach the type. 

This results in an abstract type definition that many different variables may be attached to.  However, context is 

a single object encompassing both the type and the variable. 

Contexts are defined within the special section contexts: {  }. Each object has a unique name in the global 

scope. The context object, "language", defines the formula language using the syntax "language": "Excel" or 

"language": "FEEL".  (Currently, only FEEL and Excel are supported formula types.) 

Components are defined by a unique name in the local scope and through component properties.  

The typeRef/type property must be a supported type in Excel or FEEL; custom types are not allowed. Each 

component must have either a value or formula property to define the value attached to it. These two properties 

plus the holding mechanism, makes the context type variables distinguishable from the component type 

variables. See the example below. 

contexts: { 

    cPmt: { 

        language: "FEEL", 

        components: { 

     payment: {  

            typeRef: 'number',  

            formula: "(loan.principal*loan.rate/12)  

            / (1 - (1 + loan.rate/12)**-loan.termMonths)"  

          }, 

     fee: {  

            typeRef: 'number',  

            value: 10  

          }, 

     total: {  

            typeRef: 'number',  

            formula: "payment + fee"  

          } 

        } 

    } 

} 
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The components “payment”, “fee”, and “total” are in the local scope of the context variable cPmt. Outside that 

context, the same names can be used either in the global scope or another local scope and they will be 

distinguishable. Notice that the formulas in the context can reference variables from both local and global 

scopes. 

Defined in this way, the context object is a variable itself and can be used in formulas as a whole – it will be 
treated as a vertical array with all component values. The context object may also be used component-wise 

through the ‘.’ operator. For example, cPmt.total will return only the total component. 

The component property typeRef comes from the DMN syntax, but the Excel property type is also supported. 

Since the basic component types depend on the language, users must pay attention to the assigned type values. 

For example, if a context uses language:  Excel, then the FEEL type "duration" may not be assigned to a 

component.  Frontline encourages the usage of typeRef with language: "FEEL" and type with language: "Excel". 

Notice that the context object resembles box functions without arguments. The difference between the two is 

that box functions have one more result formula and that is the only value they are able to compute in return. 

Box functions reference box function components as results. Since contexts have no result or default 

components, when used without the ‘.’ operator, contexts return all component values in a vertical array. 

There are two functions which can be used optionally with Context objects when the language is set to FEEL, 

i.e "language": "FEEL". RASON Decision Services has  implemented them in order to obtain compliance for 

the DMN specification. 

• getValue(contextObject, componentName) is equivalent to contextObject.componentName 

• getEntries(contextObject) is equivalent to simply referencing the contextObject 

Custom Types 
In past versions of RASON, type definitions were not required as optimization and simulation models dealt 

exclusively with numeric values.  However, with the recent introduction of decision tables and custom 

functions, RASON Decision Services is now supporting custom type definitions. With this new service, 

RASON Decision Services now conforms to DMN Specification Level 2. Custom Type definitions can be 
applied to all sorts of RASON model problem types including optimization, simulation and stochastic models 

along with decision tables and custom functions.    Note:  Custom Type definitions are not supported in RASON 

data mining models.   

For more information on Custom Types or to read through a few example models using custom types, please 

see the Custom Types Definitions chapter within the RASON User Guide.   

Data-source Binding 

One key benefit to using a custom type definition is the ability to bind a single variable-structure, containing 

multiple named components, to the entire record.   

In the past, the following data source declaration would require three different variables in order to bind to each 

value column.   

"datasources": { 

  "dsc_loan": { 

    "type": "csv",  

    "connection": "loan_data.txt",  

    "selection": "loanID=?",  

    "parameters":  { 

      "ID": { 

        "binding": "get",  

        "value": "L1" 

      } 

    },  

    "indexCols": ["loanID"],  



    "valueCols": ["principal", "rate", "termMonths"] 

  } 

} 

However, once a custom type definition has been defined… 

"typeDefs": { 

"tLoan": { 

    "language": "FEEL",  

    "components": {    

      "principal": {"typeRef": "number", "allowedValues": [">0"]}, 

      "rate": {"typeRef": "number", "allowedValues": ["0..1"]}, 

      "termMonths": {"typeRef": "number", "allowedValues": ["0>"]} 

 } 

  }  

} 

…then a new variable can be introduced with "type" set to the custom type definition (in this example "loan") 

and that variable can be bound to the data-source (in this example "dsc_loan) as shown in the code below. 

"data": { 

  "loan": { 

    "type": "tLoan", 

    "binding": "dsc_loan" 

   } 

} 

The binding property feeds the components of the variable, loan, with the values in the data-source record.  

Later in formulas, the components may be referenced through the "." operator, for example:   

 

"formulas": { 

  "payment": "(loan.principal * loan.rate/12)/(1-(1+loan.rate/12)^- 

   loan.termMonths)",  

  "finalValue":[] 

} 

Note:  The variable "loan" of this custom type definition can be alternatively initialized inline or through the 

existing binding "get".   

 
"data" 

  "loan": { 

    "type":  "tLoan",  

    "value": [100000, 0.0375, 360], 

    "binding": "get" 

  } 

} 

  

Custom Types in RASON 

Custom Type is a major feature in the DMN/FEEL specification (Conformance Level 2) utilized heavily in the 

development of Decision Trees and Custom Functions.  However, this feature may be used in RASON Decision 

services beyond these two applications.  

There are two different structures for custom types:  custom types with constraints on values and custom types 

with components. 

• Custom types with constraints on values 
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In this structure, all members of tEmploymentStatus and tAge are of the same typeRef, either "string" for 

tEmployementStatus or "number" for tAge. 

Custom Type with Constraints Example 

"typeDefs": { 

  "tEmploymentStatus": { 

    "type": "string", 

    "allowedValues": ["UNEMPLOYED", "EMPLOYED", "SELF-EMPLOYED",  

    "STUDENT"] 

  }, 

  "tAge": { 
    "language": "FEEL", 
    "typeRef": "number", 
    "allowedValues": ["[18..21]", ">65"] 

  } 
 

}, 

• Custom types with components 

This custom type uses the components property to define a list of components for the custom type structure.  

Notice that this structure allows different types to be passed to each component in the type definition.    

 

Custom Type with Components Example 

"typeDefs": { 

  "tLoan": { 

    "language": "FEEL",  

    "components": {    

      "principal": {"typeRef": "number", "allowedValues": [">0"]}, 

      "rate": {"typeRef": "number", "allowedValues": ["0..1"]}, 

      "termMonths": {"typeRef": "number", "allowedValues": ["0>"]} 

  } 

} 

Custom Type Specifications 

A custom type must be defined within the "typeDefs": {} section of the RASON model.   

The components of a custom type definition are:   

• "language":  Select the syntax (Excel or FEEL) by using "language": "FEEL" or "language": 

"Excel".  The supported type is determined by the language setting.   If missing, the default is "Excel".  

Type definitions within the same RASON model can be different.  In other words, two type definitions 

within the same RASON model using two different language settings may exist.      

• "isCollection":  Use the "isCollection" property to allow multiple records to be passed to the variable 

with the given "type".  See the Advanced Features section below for more information on this property. 

• "typeRef" or "type":  Assigns a variable to a given type. 

• "language":  FEEL or Excel 

• If "language": "FEEL", use the "typeRef" property. 

"typeDefs": { 

  "tEmploymentStatus": { 

    "language": "FEEL", 

    "typeRef": "string", 



    "allowedValues": ["UNEMPLOYED", "EMPLOYED", "SELF-EMPLOYED",  

    "STUDENT"] 

  } 

} 

• If "language": "Excel", use the "type" property rather than "typeRef". 

"typeDefs": { 

  "tEmploymentStatus": { 

    "language": "Excel", 

    "type": "string", 

    "allowedValues": ["UNEMPLOYED", "EMPLOYED","SELF-EMPLOYED",    

     "STUDENT"] 

  } 

   } 

Supported Types when Formula Language = Excel 

Boolean:  The entered words TRUE and FALSE are interpreted as Boolean reserved words, not strings.  

Number:   May be an integer or fraction.   

String or Text:  Any string 

 

Support Types when Language = FEEL 

Boolean:  The entered words TRUE and FALSE are interpreted as Boolean reserved words, not strings.  

Date:  Any valid date, such as 05-05-1964 

Duration:  There are two formats for duration, one measuring periods in months and another measuring 
periods in seconds. For example, P1DT1H2M3S denotes: 

• P for "period"  

• 1D for 1 day 

• T for "time" 

• 1H for 1 hour 

• 2M for 2 minutes and 3S for 3 seconds.         

Note:  Since the basic component types depend on the "language" (Excel or FEEL) used, it is 

important for users to note the assigned type values. For example, if "language": "Excel", "typeRef" 
may not be set to "duration" since this type reference is not supported for this language. 

• "components":  Use this property to list the members in the type definition.  This example contains 3 

components:  principal, rate, and termMonths.  Each of these components is of type "number".   

"typeDefs": { 

  "tLoan": { 

    "language": "FEEL",     

    "components": {    

      "principal": {"typeRef": "number", "allowedValues": [">0"]}, 

      "rate": {"typeRef": "number", "allowedValues": ["0..1"]}, 

      "termMonths": {"typeRef": "number", "allowedValues": ["0>"]} 

    } 

  } 

}, 

• "allowedValues":  Use this property to specify the exact values that a type definition can take on, for 

example, a value greater than 0.   In this example,  
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"typeDefs": { 

  "tLoan": { 

    "language": "FEEL", 

    "components": {    

      "principal": {"typeRef": "number", "allowedValues": [">0"]}, 

      "rate": {"typeRef": "number", "allowedValues": ["0..1"]}, 

      "termMonths": {"typeRef": "number", "allowedValues": ["0>"]} 

    } 

  }, 

Data 
Data arrays may be defined and calculated in this optional section to be used later when defining constraints,  

the objective in an optimization model, or an uncertain function in a simulation model.  If you are pulling data 
from an external source, use this section to "bind" the data to an array or table.   

In the example code below, data from the qty column from the parts_data data source is assigned to the 

parts table.  Note:  A table is created here, rather than an array, by the use of the valueCol property.     
 

data: { 

        parts: { 

            binding: "parts_data", valueCol: 'qty' 

        },  

} 

Scalars, arrays or tables containing scalars maybe be defined in the data section to be used in a constraint, 

objective or uncertain function definition.   

The following is an example of a scalar constant, which is neither an array nor a table.   

time: { value: 10 }  

In the example below, the array profit with size equal to 3 contains the values, 75, 50, and 35.  In this 

instance, the binding property allows write access to the profit array outside of the model environment.   
 

data: {                    

profit: { 

                   dimensions: [3], value: [75, 50, 35], binding: "get" }, 

}, 

 

The following is an example of a scalar constant, which is neither an array nor a table.   
time: { value: 10 }  

To change the array elements in profit to 100, 75, 50; you can pass new data directly in the REST API call, via 

standard HTTP GET parameters, for example:   

$.get(https://rason.net/api/optimize?profit=100,75,50... 

To change only one element, say the middle element from 50 to 60, your call to the REST API, via standard 
HTTP GET parameters would change to: 

$.get(https://rason.net/api/optimize?profit[2]=... 

We also could have created the profit array by using an alternate syntax, shown below.  However, when a 
parameter is defined in this way, you will not be able to pass new values to the array outside of the RASON 

model environment (as shown above).   
"data" : [ 

  { name: "profit", value: [75, 50, 35], binding: "get", finalValue: [] } 

 ],  

https://rason.net/api/optimize?profit%5b2


All properties available for data, can be found in the table below.   

 

Data Property Type Explanation 

aliasName aliasName: 

“num_parts_inventory” 

This property is automatically inserted into the 

converted RASON model when an Excel model is 

deployed through Analytic Solver’s Deploy Model 

button, if a block of cells containing data is assigned 

a defined name in the Excel Solver model. 

binding  binding: "get"  

profit: { binding: 

"profit_data" }  

Allows data to be edited outside of the model from a 

URL or when calling the RASONTM interpreter to 

solve an optimization or simulation model.   

Used to bind imported table from the 

profit_data datasource to a new table named 

profit.   

comment comment: "partsReq" array holds 
the number of parts required to 

produce each product 

Enter a comment here to describe the data.  

name name: "parts" Use this property to define the table, array or scalar 

name. 

type p: { type: ‘number’, 

value: 1, binding: 

‘get’ } 

Use the type property to ensure that the correct data 

type is passed with the binding ‘get’. 

Valid standard types are: 

"boolean", "number", "string", "array", 

"array/boolean", "array/number", "array/string"  

“array” -  array of any data 

“array/number” -  array of numbers only or a scalar 

number 

Data Mining types: "dataset", "fittedModel" 

value value: [1, 1, 1] 

value: [[1, 1, 1], 

            [2, 2, 2], 

            [3, 3, 3]] 

 

Sets the values of the array. 

Sets the values of a table. 

If dimensions property is missing, the shape of the 

variable array will be determined by the shape of the 

value property.  However, it is recommended that the 

dimensions property be used for readability 

purposes.   

valuecol valueCol: ['initials'] Used with binding property to bind imported 

values from a readable data source.  If omitted, the 
RASON interpreter assumes the last column in the 

table as the input to valueCol.   

Data Sources 
External data sources may be defined in this optional section.  Data from these sources is imported into 

parametric tables or arrays to be used in 1.  formula calculations or 2. as initial starting points for decision 

variables in a nonlinear optimization model.    Currently the RASON modeling language supports ten different 
data sources:  "excel" (Microsoft Excel), "access" or "msaccess" (Microsoft Access), "odbc" (ODBC database), 
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"odata" (OData database), "mssql" (Microsoft Sequel), "oracle" (Oracle database), CSV (Comma Separated 

Value), "json" (JSON file), or "xml" (XML file).  Data sources such as "Access", "ODBC", "CSV", etc, contain 

data in tables with records described by index and value columns.  Binding to these data sources results in table 

objects.  Data source types such as Excel and CSV may contain data in 2-dimensional arrays without any 

descriptions.  Binding to these data sources results in array objects.  Objects are bound to data sources within 

the data section.  However, if exporting the results of a solve, we must bind to objects within the variables, 

constraints, objective, uncertainVariables, and uncertainFunctions sections.   

Importing 

In the example below, data from three columns, "parts", "products" and "qty", within the ProductMixParts.txt 

CSV file is imported to the data source parts_data. (To open ProductMixParts.txt, browse to (typically) 

C:\Program Files\Frontline Systems\Solver SDK Platform\Examples\RASON.) 

The first property, type, specifies the type of file where the data is contained. In this example, the file is a CSV 

(Comma Separated Values) file as shown in the screenshot.   The second property, connection, specifies the 

file name within quotes ("ProductMixParts.txt; header").  The term header appears after the file 

name because the CSV file contains column headings.  If your CSV file does not contain column headings, this 

term should be omitted.  (See Note below.)  The term direction stipulates whether the contents of the file 

are being imported or exported.  If importing, then direction should be import, the default setting for 

"direction".     

The 3rd property indexes the data first by the parts column and secondly by the prods column using 

indexCols.  The 4th property defines the value column (column containing values rather than text), qty, 

using valueCols.  The property indexCols must appear before valueCols.  The order of columns listed 

by indexCols should be the same as the order in the datasource selection.   

Note:  The properties indexCols and valueCols describe a RASON Table while colIndex and rowIndex describe 

a dataframe.  These properties should be be mixed.   

Note:  Specifying that your CSV file contains column headings in the selection property is specific to CSV 

files, this is not needed when using an Access or ODBC database or when your data is contained in an Excel 

file.   

 

 
    datasources: { 
        parts_data: { 

            type: "csv", 

            connection: "ProductMixParts.txt; header", 

            indexCols: ["parts", "prods"], 

            valueCols: ["qty"], 

            direction: "import" 



        } 

}, 

In the screenshot below, we have entered the same data as in the CSV file above into a spreadsheet in Excel.   

 

In this example, the first property, type, specifies that the data is contained in an Excel file.  The second 

property, connection, specifies the name of the file, "ProductMixExcel.xlsx".    The 3rd 

property,selection: "Parts_Table", is a defined name given to the Excel range G2:I12.  

Alternatively, we could also pass selection: "Sheet1!G2:I12". The 4th property, indexCols, 

indexes the data first by the "parts" column then by the prods column.  The 5th  property, valueCols, 

defines the value column (column containing values rather than text), qty. The 6th property, direction, 

specifies that the contents of the data source are being imported, the default setting.    
 

datasources : 

    {  

 parts_data:  {  

type: "excel",  

connection: "ProductMixExcel.xlsx",  

selection: "parts_table", 

  indexCols: ["parts", "prods"],   

valueCols: ["qty"],  

sortIndexCols: true, 

direction: "import"  

} 

            } 

If we were to add more data to parts_table, then at a minimum we would need to update the selection 

property.  Here's the same data but this time the data is "raw", in other words, all the columns contain values.  In 
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this instance we can create an indexed set and define column and row headings using the properties colIndex 

and rowIndex.  Now, if a new product or part is added, this section of our model will not require any changes.   

 

As in the example above, the first property, type, specifies that the data is contained in an Excel worksheet, 

"excel"; the second property, connection, passes the name of the Excel file, 

"ProductMixExcel.xlsx"; and the third property, selection, passes the Excel cell range that contains 

the data, in this instance, "Sheet1!B2:D6".   

However in this example, a dataframe is created for the parts_data datasource using the two properties colIndex 

and rowIndex. When a parameter is binding to such a datasource, the object is a dataframe or a 2D 
array.  

A dataframe, the workhorse of the Rason Server, is a collection of data organized into named columns of equal 

length and homogeneous type. Rason uses DataFrames to deliver input data to an algorithm and to deliver the 

results of the algorithm back to the user. DataFrames hold heterogeneous data across columns (variables):  

numeric, categorical, or textual.  When solving a decision flow containing optimization or simulation models, 

the columns that are indexed over the same dimensions and that belong to the same entity are reported in a 

single dataframe with multiple columns rather than multiple dataframes, i.e. final, dual, initial, etc for 

optimization results and statistics for uncertain variables or functions in simulation models.  RASON can still 

bind to the individual results such as optModel.x.finalValue but will also consider the possibility of the last 

segment being a dataframe column rather than a separate dataframe.  As a result, JSON responses are concise 

which greatly simplifies OData representation and querying.   

The 4th property, colIndex, binds the index name prods to the columns and the 5th property, rowIndex, 

binds the index name #parts to the rows.  The property colIndex binds a set of integers from 1 to the 

number of columns and the property rowIndex binds a set of integers from 1 to the number of rows to the 2-

dimensional array parts_data.         
 

datasources : 

    { 

parts_data:  {  

type: "excel",  

connection: "ProductMixExcel.xlsx",  

selection: "Sheet1!B2:D6", 

    colIndex: "prods",  



rowIndex: "parts", 

direction: "import"  

}, 

} 

In this example, if a new product or new part is added, there will be no changes required to this section of the 

model.  It is completely scalable.   

This next example illustrates how to import data from an SQL database residing on an Azure server in the 

Cloud using an ODBC connection string.  (See the example RGProductMixSQL11.json on www.RASON.com.) 

 

 

The RASON modeling language allows readable and writeable access to outside data sources, such as an SQL 

database residing on a an Azure server in the Cloud using an ODBC connection string. Note that within the 

datasources section, data is matched by name using the indexcols and valuecols properties rather than 

by position, i.e. see selection within parts_data, in the example code below   (See the example 

RGProductMixSQL11.json on www.RASON.com.)   

The first property, type,  specifies the type of file containing the data, in this case the file is a SQL database.  

The second property, connection, passes the connection string as obtained from the server.  (See below for 

information on creating a Named Data Connection.) The third property, selection, imports three fields from 

the Parts table, Parts, Products and Qty ordered according to the ID field.  The 4th property, 

indexCols, indexes the data first by parts and secondly by prods while the 5th property, valueCols,  

holds the actual data from the qty field. The 6th property stipulates the "direction" of the file as "import".     

datasources : 

    

parts_data:  { 

   type: "odbc",  

   connection: "Driver={SQL Server Native Client 

11.0};Server=tcp:solver.database.windows.net,1433;Database=Rason;Uid

=rasonread;Pwd=Rason1234;Encrypt=yes;TrustServerCertificate=no;Conne

ction Timeout=30;",  

   selection: "SELECT Parts as parts, Products as prods, Qty as 

qty FROM Parts ORDER BY ID", 

   indexCols: ['parts', 'prods'],  
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   valueCols: ['qty'], 

        direction: "import"  

}, 

We also could have created the parts_data data source by using an alternate syntax, shown below.  

However, when a variable is defined in this way, it will not be available outside of the model environment.   
   

datasources : { 

    { name: "parts_data",  

connection: "Driver={SQL Server Native Client 

11.0};Server=tcp:solver.database.windows.net,1433;Database=Rason;Uid

=rasonread;Pwd=Rason1234;Encrypt=yes;TrustServerCertificate=no;Conne

ction Timeout=30;",  

selection: "SELECT Parts as parts, Products as prods, Qty as qty 

FROM Parts ORDER BY ID",       

indexCols: ["parts", "prods"], 

      valueCols: ["qty"], 

      direction: "import" 

     } 

},  

Our final example illustrates how to import data from an OData data source.  This model is also completely 
scalable.  For more information on OData, see <a ref="http://www.odata.org" 

target="_blank">www.odata.org</a>.   Note:  OData data sources are not currently writeable due to limitations 

in the commonly OData specification.   

A screenshot of the OData data source can be found below.  (To open this example, browse to (typically) 

C:\Program Files\Frontline Systems\Solver SDK Platform\Examples\RASON and open the file 

ProductMixOData1.json.)   

 

The dataSources section contains the following code: 

datasources : { 

parts_data:  { type: "odata", connection: 

"http://localhost:60865/MyWcfDataService.svc/", selection: 

"ProductParts?$format=json&columns=Part,Product,QTY",          

indexCols: ['parts', 'prods'], valueCols: ['qty'], direction: "import" }, 

http://www.odata.org/


 

invent_data: { type: "odata", connection: 

"http://localhost:60865/MyWcfDataService.svc/", selection: 

"Inventory?$format=json&columns=Part,Inventory", 

indexCols: ['parts'], valueCols: ['inventory'], direction: "import" }, 

 

profit_data: { type: "odata", connection: 

"http://localhost:60865/MyWcfDataService.svc/", selection: 

"Profits?$format=json&columns=Product,Profit", 

indexCols: ['prods'], valueCols: ['profit'], direction: "import" } 

}, 

Let's look at the parts_data data source first. 

The first property for parts_data, type,  specifies the type of file containing the data. In this case, the type 

is an OData data source.  The second property, connection, specifies the location of the OData data source 

on the internet or distributed server.  (See below for information on creating a Named Data Connection.) The 

The third property, "ProductParts?$format=json&columns=Part,Product,QTY",imports three 

fields from the ProductParts table, Part, Inventory and QTY.   In this example, 

$format=json is passed within the selection property to stipulate which OData format (JSON or XML) the 

table should be returned.  This is an optional argument.  If passed, the OData service will return the data in the 

format specified, $format=json for JSON or $format=atom for XML.  If omitted, the OData service will return 

the data in preferred format:  JSON, XML.  The RASON server will automatically recognize the format if not 

specified.  The 4th property, indexCols, indexes the data first by parts and secondly by products, while 

the 5th property, valueCols,  imports the actual data from the qty field.  The ID column within the 

ProductParts table is not used.  The 6th property, direction, indicates that the data will be "imported".   

The properties for the invent_data and profit data data sources are similar.  The first property, type, 

specifies the type of file, the second property connection specifies the location of the OData data source on 

the internet or server, while the third property, selection, specifies the columns to be imported and in what 

format they should be imported, in both cases, JSON.  In invent_data, the Part and Inventory fields 

are imported from the Inventory table and in profit_data, the Product and Profit fields are 

imported from the Profits table.  The fourth property, indexCols, indexes the data by parts in 

invent_data and prods in profit_data.  The last property, valueCols, imports the actual data 

from within the inventory (in the invent_data source file) and profit (in the profit_data source 

file) fields.   

Using a Named Data Connection 

In previous versions of RASON, models that accessed external databases required actual credentials to be 

passed, such as database URLs, port numbers, usernames, and passwords, in the text of the RASON model, in a 

dataSource declaration, as shown above and in the example code below.   

Previous versions of RASON 

 "parts_data": { 

      "type": "odbc", 

      "connection": "Driver={SQL Server Native Client 

11.0};Server=tcp:solver.database.windows.net,1433;Database=Rason;Uid=ra

sonread;Pwd=Rason1234;Encrypt=yes;TrustServerCertificate=no;Connection 

Timeout=30;", 

      "selection": "SELECT Parts as parts, Products as prods, Qty as qty 

FROM Parts ORDER BY ID", 

      "indexCols": [ "parts", "prods" ], 

      "valueCols": [ "qty" ], 

      "direction": "import" 

    }, 
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RASON 2020 offers an alternative to tackle this security risk by substituting 

"connection": "Driver={SQL Server Native Client 

11.0};Server=tcp:solver.database.windows.net,1433;Database=Rason;Uid=ra

sonread;Pwd=Rason1234;Encrypt=yes;TrustServerCertificate=no;Connection 

Timeout=30;", 

with three options:  a file containing the contents of "connection" as in (1) below, a named Data Connection as 
shown in (2) or a URL pointing to Microsoft Common Data Service as shown in (3).  

1. "connection":  "File = filename", 

RASON 2020 will interpret this as (i) get the text contents of filename, which must be attached to the 

current model instance and (ii) substitute this text for the string "File=filename".  Therefore, if 

filename contains the text "Driver={SQLServerNativeClient…Timeout=30;", the effect 

will be the same as in previous versions of RASON. 

2.  "connection": "Name=myname", where myname is the name given to the Data Connection.  See 

below for instructions on how to create a named Data Connection.   

3. "connection": "secret=uri", where uri is the Microsoft Common Data Service URL 

"connection": "xxxx.crm.dynamics.com" where the actual Microsoft Common Data Service 

URL is passed directly to "connection".   

If using a with "secret=url" in the dataSources section of your RASON model, enter a URI of the 

form https://subdomain.crm.dynamics.com.  , i.e. 
"https://www.cdatacloud.net/solver/api.rsc/GoogleSheets1_ODataSourceExa

mple_Sheet1", 

RASON 2020 will interpret this as (i) get the text contents of the "secret" represented by the URL and (ii) 

substitute this text for the string "Secret=url". So if the "secret" contains the text 

"Driver={SQLNativeClient…Timeout=30;", the effect will be the same as in previous versions of RASON.  

Similarly, if using CData Cloud Hub with "connection": "xxxx.crm.dynamics.com", enter a 

URI of the form https://subdomain.crm.dynamics.com.   

RASON 2020 will interpret this as (i) get the text contents of the connection represented by the URL and 

(ii) substitute this text for the string "connection".   

Currently, RASON 2020 supports "secrets" maintained, only, in an Azure Key Vault.  Enterprise customers 

can provision their own Key Vault and arrange to authenticate the RASON Server to this Key Vault if so 

desired.   

For more information on how to setup and maintain a named Data Connection, see the RASON Services WEB 

IDE chapter within the RASON User Guide.   

Parametric Selection Feature 

The example model DT Loan Strategy Model2.json, demonstrates how to import this same data from an 
external data file using a parametric selection criteria.  A Parametric Selection allows a single record to be 

selected from an external datasource file as an input. Parametric selection in data-sources is universal, but it is 

critical to decision tables, which expect a single record for their inputs.  All supported data types may be used 

with this feature.   

Much of the customer and loan data is imported from the two datasources:  loan_data and cust_data.  The 

datasources section creates two datasources, cust_data and loan_data.  The datasource, cust_data, binds to the 

customers.txt csv file.  This file contains five input parameters, age, maritalStatus, employmentStatus, 

creditScore and bankrupt.  A screenshot of this file is shown below.  

http://xxxx.crm.dynamics.com/
https://subdomain.crm.dynamics.com/
https://www.cdatacloud.net/solver/api.rsc/GoogleSheets1_ODataSourceExample_Sheet1
https://www.cdatacloud.net/solver/api.rsc/GoogleSheets1_ODataSourceExample_Sheet1
http://xxxx.crm.dynamics.com/
https://subdomain.crm.dynamics.com/


 

The loan_data datasource binds to the loans.txt csv file.  This file contains three input parameters:  type, rate, 

and turn.   

 

 
{ modelName: "loanStrategy", 

  datasources :{ 

cust_data:  {  

   type: "csv",  

   connection: "customers.txt",  

   selection: "custID = ?",  

   parameters: { 

            cuID: {  

   binding: 'get',  

   value: 'c1'  

} 

       }, 

indexCols: ['cust ID'],  

valueCols: ['age', 'maritalStatus', 'employmentStatus', 

'creditScore', 'bankrupt'], 

direction: "import"  

      }, 

Inside of the cust_data datasource, we see the connection argument passing the CSV file, connection: 

"Customers.txt" (screenshot above). The selection argument selects the "CustID" column , from the 

Customers.txt file, and replaces "custID = ?" with "custID = cuID"; the parameters argument binds "cuID" to 

"c1".   In addition, indexCols is set to "cust ID" and valueCols are set to 'age', 'maritalStatus', 

'employmentStatus', 'creditScore', and 'bankrupt'.  This means that cust ID is the index column and 'age', 

'maritalStatus', 'employmentStatus', 'creditScore', and 'bankrupt' are the value columns.   

loan_data:  {  

   type: "csv",  

   connection: "loans.txt",  

   selection: "loanID = ?", 

         parameters: { 

            loID: {  

               binding: 'get',  

               value: 'l1' } 

         }, 

         indexCols: ['loanID'],  

         valueCols: ['type', 'rate', 'term'], 

         direction: "import" } 

      }, 

Inside of the loan_data datasource, we see the connection argument passing the CSV file, connection: 

"loans.txt" (screenshot above). The selection argument selects the "loanID" column , from the 
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loans.txt file, and replaces "custID = ?" with "custID = loID"; the parameters argument binds "loID" to "l1".   In 

addition, indexCols is set to "loanID" and valueCols are set to 'type', 'rate' and 'term'.  This means that 

loanID is the index column and 'type', 'rate and 'term' are the value columns.   

If we wanted to use multiple selection criteria, such as cust ID and maritalStatus, we would change the code to 

the following: 

cust_data:  { type: "csv",  

  connection: "customers.txt",  

  selection: "custID = ? and maritalStatus=?", 

    parameters: { 

                 cuID: { binding: 'get', value: 'c1' }, 

                 marryStat: {binding: 'get', value: 'c2'} 

              }, 

    indexCols: ['custID'],  

valueCols: ['age', 'maritalStatus', 'employmentStatus',       

'creditScore', 'bankrupt'], 

direction: "import"  

       }, 

The RASON Server will map "custID=?" with "custID = c1" and "maritalStatus=?" with "maritalStatus = m" 

using the order found in the selection and parameters arguments, i.e. custID precedes 

maritalStatus in selection thus cuID must precede marryStat in parameters.  A query can 

return any number of rows that satisfy the filtering condition, from 0 to infinity.  Note that parameter names 

must not be the same as parameter names in the selection query, i.e. "cuID" could not be renamed to "custID".   

To make this same query outside of the RASON model, use: 

$.get(https://rason.net/api/decision?cuID=c1&marryStat=s..... 

Or in general:  

$.get(https://rason.net/api/decision?par1=val1&par2=val2..... 

Note:  In this instance, quotes are not needed around the value arguments (in this case c1 and s). Quotes would 

only be needed if a string with spaces were being passed as a value.  

It's also possible to match the name defined in the RASON model to the SQL parameter name.  In this example, 

the syntax would be 

cust_data:  { type: "csv",  

  connection: "customers.txt",  

  selection: "custID = $cuID", 

    parameters: { 

                 cuID: { binding: 'get', value: 'c1' }, 

     marryStat: {binding: 'get', value: 'c2'} 

              }, 

Or, with multiple selections… 

cust_data:  { type: "csv",  

  connection: "customers.txt",  

    selection: "custID = $cuID and maritalStatus=$marryStat", 

    parameters: { 

                 cuID: { binding: 'get', value: 'c1' }, 

       marryStat: {binding: 'get', value: 'c2'} 

              }, 

The remaining data is passed in the data section.  The input data custExist is passed as a constant within the 

RASON model.   

data: { 

    comment: "use binding to feed dif. values", 

https://rason.net/api/decision?cuID=c1&marryStat=s
https://rason.net/api/decision?par1=val1&par2=val2


    custExist: { value: false }, 

    custAge: { value: 40,  binding: 'cust_data', valueCol: 'age' }, 

   

maritalStatus: { value: 's', binding: 'cust_data', valueCol:          

'maritalStatus' }, 

 

employmentStatus: { value: 'selfEmployed', binding: 'cust_data',     

valueCol: 'employmentStatus' }, 

  creditScore: { value: 610,   binding: 'cust_data', valueCol:    

  'creditScore' }, 

    bankrupt:{ value: false, binding: 'cust_data', valueCol: 'bankrupt' }, 

    monthIncome:   { value: 2500, binding: 'get' }, 

    monthExpenses: { value: 1000, binding: 'get' }, 

    loanType: { value: 'standard', binding: 'loan_data', valueCol: 'type'  

    }, 

    loanRate: { value: 5.0, binding: 'loan_data', valueCol: 'rate' }, 

    loanTerm: { value: 30,  binding: 'loan_data', valueCol: 'term' }, 

    loanAmnt: { value: 100000.0, binding: 'get' } 

}, 

The decision table results return the recommended loan strategy for customer 1.   

 {   "loanstrategy": { 

      "status" : { "code" : 0, "codeText" : "Solver has       

      completed the calculation." }, 

      "observations" : { 

         "strategy" : { "value" : "bureau" }, 

         "routing" : { "value" : "accept" } 

      } 

   } 

} 

Changing Table Components Outside of the RASON Model 

Input data monthIncome, monthExpenses, and loanAmnt are passed within the RASON model as "get" 

only.  This property allows write access to the data outside of the model environment  using the keyword "get".  

For example, let's say we wanted to increase the value for monthIncome but we did not want to do so within the 

RASON model.  Rather we could pass this new parameter in the call to the "decision" endpoint. 

$.get(https://rason.net/api/decision?monthIncome=3000... 

 Note:  Changing a decision table component outside of the RASON model is not supported. 

See the Loan Strategy Example within the RASON User Guide for a complete walkthough of this example.    

Exporting 

In the example below, initial variable values are first imported from the CSV file ResultVarsInit.txt and, after 

the model is solved, the final variable values are saved back to that same CSV file.  The final constraint values 

are saved to ResultFcns.txt and the final objective value is saved to ResultObj.txt. (To open and view the 
complete example file, RGProductMixCsv1.json, and the three files containing the results, ResultVarsInit.txt, 

ResultFcns.txt, and ResultObj.txt, browse to (typically) C:\Program Files\Frontline Systems\Solver SDK 

Platform\Examples\RASON.)    A screenshot for the file ResultVarsInit.txt is shown below.  This file contains 

the prods dimension and the initial variable values.   Both ResultFcns.txt and ResultObj.txt will be created 

once the model is solved.   

https://rason.net/api/decision?monthIncome=3000...
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Note:   It is currently not possible to import the initial variable values from one datasourse and export the final 

variable values to a different data source.  In addition, each variable/uncertainVariable block or 

constraint/uncertainFunction/objective block must be saved to a unique data source.   

{     datasources : { 
 … 

 vars_data:   { type: "csv", connection: "ResultVarsInit.txt",         

indexCols: ['prods'], valueCols: ['initials'], 

direction: "import/export" }, 

 

fcns_data:   { type: "csv", connection: "ResultFcns.txt", direction:  

              "export"  }, 

 

 obj_data:    { type: "csv", connection: "ResultObj.txt", direction:  

                   "export"  } 

    }, 

… 

 variables : { 

      x: { binding: "vars_data", valueCol: 'initials', lower: 0,  

      finalValue: [] } 

   }, 

   constraints: { 

      c: {dimensions: ['parts'], binding: "fcns_data", formula:  

      "MMULT(piv_parts, x)", upper: 'invent', finalValue: [] } 

    }, 

   objective : { 

    total: { binding: "obj_data", formula: "sumproduct(x, profit)",  

      type: "maximize", finalValue: [] } 

   } 

Let's start with the fcns_data and obj_data data sources.  The fcns_data datasource exports the final 

constraint values to the TXT file, ResultFcns.txt.  The first property, type, specifies the type of file where the 

data is being imported/exported. In this example, the file is a CSV file.   The second property, connection, 

specifies the file name within quotes ("ResultFcns.txt") while the third property assigns the direction of 

the file as "export".  The binding property within the c constraint definition "binds" the constraint block to 

the fcns_data data source.  The user must specify which results he/she would like exported.  In this example, 

only one output property is passed, finalValue:[].  For a complete list of results that may be written to a 

writeable data source, see the constraints section discussion.   

Similarly, the obj_data datasource exports the final objective value to the TXT file, ResultObj.txt.  Again the 

first property, type, specifies the file type ("CSV")while the second property, connection, specifies the 

file name ("ResultObj.txt")and the third, direction, specifies that the file will be exported. Within 

objective, the total objective function is bound to the obj_data data source.  The only output property 

passed within the objective definition is finalValue:[].  As a result, only the final objective function 

value will be exported to ResultObj.txt.   For a complete list of results that may be written to a writeable data 

source, see the objective section discussion.   



The vars_data data source performs a dual function by first importing the decision variable initial values 

from the CSV file ResultVarsInit.txt and then saving the final variable values back to that same file.  As 

discussed above, the first property, type, specifies the type of file where the data is being imported/exported 

("csv") while the second property, connection, specifies the file name within quotes 

("ResultVarsInit.txt").  The third and fourth properties (indexCols and valueCols) are required for 

importing the initial variable values.    The third property, indexCols specifies the dimension(s) (or 

column(s)) to be imported and the fourth property, valueCols, specifies the values to be imported.  Within 

variables, a block of decision variables x is bound to the vars_data data source using the binding 

property.  Since  only one output property is passed within the x definition, finalValue:[], a single 

column containing the final values of the decision variables will be appended to ResultVarsInit.txt.  The last 

property, direction: "import/export", stipulates that the contents of the file will be "imported" (for 

initial variable values) and then the final variable values will be "exported", hence the setting "import/export".   

For a complete list of results that may be written to a writeable data source, see the variables section 

discussion.   

The export results are shown in the three screenshots below starting with ResultVarsInit.txt.  Notice that a new 

column has been appended, finalValue.  (This is the result of the finalValue output property within the 

x array definition.)   

 

 

 

 Screenshots of the newly created files ResultFcns.txt and ResultObj.txt are shown below.   

 

 

To perform the same steps when importing/exporting to an Excel file, you need to specify the cell address 
containing the dimensions to be imported and/or the cells to which the results should be exported.  In this 

second export example (below), the vars_data data source is again importing initial decision variable values 

and then exporting the final decision variable values to the same Excel workbook.  A screenshot of 
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ProductMixExcel.xls is shown below.  (To open this file, log on to www.RASON.com, then click the Editor tab 

and RASON Examples – Example models discussed in RASON Reference Guide.)   

 

  
datasources: { 

   vars_data:   { type: "excel", connection: "ProductMixExcel.xlsx",  

   selection: "Sheet1!Q2:R4", indexCols: ['prods'], valueCols:  

   ['initials'], direction: "import/export"}, 

   fcns_data:   { type: "excel", connection: "ProductMixExcel.xlsx",  

   selection: "Sheet1!U2:U6", indexCols: ['parts'], direction: "export" }, 

   obj_data: {type: "excel", connection: "ProductMixExcel.xlsx",  

   selection: "Sheet1!X1", direction: "export"} 

}, 

variables : {  

   x: { dimensions: ['prods'], binding: "vars_data", valueCol: 'initials',  

   lower: 0, finalValue: []},   

constraints : { 

   c: { dimensions: ['parts'], binding: "fcns_data", formula:  

   "MMULT(piv_parts, x) - invent", upper: 0, finalValue: []} 

}, 

objective : { 

   total: { formula: "sumproduct(x, profit)", type: "maximize", binding:  

   "obj_data", finalValue: [] } 

} 

Again, let's start with the fcns_data and obj_data data sources.   The fcns_data datasource exports the 

final constraint values to the Excel file, ProductMixExcel.xlsx.  The first property, type: "Excel", 

specifies the type of file where the data is being imported/exported, in this instance an Excel file.  The second 

property, connection, specifies the file name within quotes ("ProductMixExce.xlsx").  The 3rd 

property, selection: "Sheet1!U2:U6", gives the location, within the ProductMixExcel.xlsx 

workbook, where the final constraint values will be saved.  Alternatively, we could pass a defined name here.  

The 4th property, indexCols, indexes the data by the "prods" column (or dimension).   The binding 

property within the c constraint definition "binds" the constraint block c to the fcns_data datasource.  One 

http://www.rason.com/


output property (finalValue:[]) is included in the c definition.  The RASON interpreter will append the 

final constraint values to the original selection.  The last property, "direction", indicates that the file will be 

exported. (The default setting for the direction property is "import".)  For a complete list of results that may 

be written to a writeable data source, see the constraints section discussion.    

Similarly, the obj_data datasource exports the final objective value to ProductMixExcel.xlsx.  Again the first 

property, type, specifies the file type ("Excel"), the second property, connection, specifies the file name 

("ResultObj.txt") and the third property, selection, specifies where the final objective value will be 

written ("Sheet1!X1").  The binding property within the total objective definition "binds" the objective 

definition to the obj_data data source.  Since only the finalValue result property is present within the 

objective definition, only the final value of the objective function (a single value) will be saved to 

ProductMixExcel!X2.  The last property, "direction", indicates that the file will be exported.  For a complete list 

of results that may be written to a writeable data source, see the objective section discussion.     

As in the example above, the vars_data data source performs a dual function by first importing the decision 

variable initial values from the Excel file ProductMixExcel.xlsx and then saving the final variable values back 

to that same file.  The first property, type, specifies the type of file where the data is being imported/exported 

("Excel"),  the second property, connection, specifies the file name within quotes 

("ResultVarsInit.txt") and the third property, selection, specifies where the final variable values 

will be appended ("Sheet1!Q2:R4").  We could pass a defined name here rather than a cell address.   The 

fourth and fifth properties (indexCols and valueCols) are required for importing the initial variable 

values.    The property, indexCols specifies the dimension(s) (or column(s)) to be imported and the property, 

valueCols, specifies the value column to be imported.  Within variables, the x array definition uses the 

valueCol property to pass the initial variable values and the binding property to "bind" to the 

vars_data data source.   Since only one output property (finalValue:[]) is present within the x array 

definition, only the final variable values will be appended to the original cell address, Q2:R4.  The last property, 

"direction", indicates that the file will be both imported and exported hence the setting "import/export". 

The export results are shown in the screenshot below.   

 

Note:  If the "initials" column heading in Excel is replaced with  "finalValue". RASON will both read the initial 

variable values from cells R2:R4 and overwrite these values with the final variable values after the model is 
solved.   

The next example illustrates how to import and export data from an odbc database, specifically a  

Microsoft Access database. The screenshot below shows the Profits table containing the "initials" field 

containing the starting values of the decision variables.    

See the Named Data Connections section above for more information on how to create a named data connection 

where you can maintain your data access credentials in a secure Azure "vault" rather than passing them in the 

connection property.   
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datasources : {  

...  

vars_data: { type: "msaccess", connection: 

"ProductMixAccess.accdb",  

selection: "SELECT Products, initials FROM Profits ORDER BY 

ID", indexCols: ['prods'], valueCols: ['initials'], 

direction: "import/export"  

},  

fcns_data: { type: "msaccess", connection: 

"ProductMixAccess.accdb",  

selection: "ResultFcns", direction:"export"  

},  

obj_data: { type: "msaccess", connection: 

"ProductMixAccess.accdb",  

selection: "ResultObj" , direction: "export" 

}  

},  

...  

variables : {  

x: { dimensions: ['prods'], binding: "profit_data",  

valuecol:'initials', lower: 0, finalValue: [] }  

},  

constraints : {  

c: { dimensions: ['parts'], binding: "fcns_data", formula:  

"MMULT(piv_parts, x)", upper: 'invent', finalValue: [] }  

},  

objective : {  

total: { binding: "obj_data", formula: "sumproduct(x, 

profit)", type: "maximize", finalValue: []  

}  

}  

Once again, let's start with the fcns_data and obj_data data sources. The fcns_data 

datasource, exports the final constraint values to the Access data base file, ProductMixAccess.accdb. The first 

property, type: "msaccess", specifies the type of file where the data is being imported/exported. 



Alternatively, "access" or "odbc" could have been passed instead of "msaccess". The second 

property, connection, specifies the file name within quotes ("ProductMixAcess.accdb"). The 3rd 

property, selection: "ResultFcns", creates a table within the Access database, where the final 

constraint values will be saved. The direction property ensures that the file is "exported".  Within the c 

constraint definition, the constraint block is bound to the fcns_data data source by the binding property. 

The output property, finalValue:[], will export the final constraint values to the ResultsFcns table within 

the file, ProductMixAccess.accdb.  

Note:  See the Named Data Connections section above for more information on how to create a named data 

connection where you can maintain your data access credentials in a secure Azure "vault" rather than passing 

them in the connection property.   

Similarly, the obj_data datasource exports the final objective value to ProductMixAccess.accdb. Again the  

first property, type, specifies the file type ("msaccess"), the second property, connection, specifies the  

file name ("ProductMixAccess.accdb") and the third property, selection, specifies the table where  

the final objective value will be written ("ResultObj").  The direction property ensures that the file is 

"exported".  The binding property within the total objective definition "binds" the objective to the 

obj_data source. The output property, finalValue:[], exports the final objective function value to the 

ResultObj table within the file ProductMixAccess.accdb.  

As in the two previous examples, the vars_data data source performs a dual function by first importing the 

decision variable initial values from the Access database and then saving the final variable values back to that  

same file. The first property, type, specifies the type of file where the data is being imported/exported  

("msaccess"), the second property, connection, specifies the file name within quotes 

("ProductMixAccess.accdb") and the third property, selection, imports two fields from the Profits  

table in order by ID ("SELECT Products, Initials FROM Profits ORDER BY ID"). The 4th 

property, indexCols, indexes the data by the prods dimension while the 5th property, valueCols,  

imports the actual numerical data.  The direction property ensures that the initial variable values are 

imported and the final variable values are exported using direction: "import/export.   Within 

variables, the x array definition uses the valueCol property to pass the initial variable values and the 

binding property to "bind" to the vars_data data source. The final variable values (requested using the 

output property finalValues:[] within the x array definition) will be appended to the Profits table. 

The results of the export are shown in the screenshots below. The first screenshot displays the Profits table. 

Notice the appended finalValue field. The 2nd and 3rd screenshots display the ResultFcns and ResultObj tables,  

respectively.  
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Note:  See the Rason User Guide to see an example of how to import and export to/from an SQL Database 
running on an Azure server running in the Cloud using an ODBC connection string. 

 All properties available for dataSources, can be found in the table below.   

 

Data Source 

Property 

Example Explanation 

Type type: "Excel" 

type: "odbc" 

type: "csv" 

Use this property to pass the file type: 

"excel" (Microsoft Excel), "access" or 

"msaccess" (Microsoft Access), 

"odbc" (ODBC database), "odata" 
(OData database), "mssql" (Microsoft 

Sequel), "oracle" (Oracle database), 

CSV (Comma Separated Value), 

"json" (JSON file), or "xml" (XML 

file).     

connection connection:  "ProductMix.xlsx" 

connection: "ProductMixCSV.txt;header"  

Note:  See the Named Data Connections section above for 

more information on how to create a named data connection 

where you can maintain your data access credentials in a 

secure Azure "vault" rather than passing them in the 

connection property.   

  

Use this property to pass the filename 

of the data source.   

If using a CSV file with column 

headings, you must also pass "header", 

i.e.: 

   

selection 1a. selection: "Sheet1!B2:D6" 

1b. selection: "Parts_Table" 

2.  Selection: "SELECT Parts,  

    Products, Qty FROM Parts ORDER BY ID" 

 

Use this property to select the 

columns/fields to import.   

1. If data source is an Excel file, 

pass A.  the Excel Range or B. an 
Excel defined name.  

2. If data source is an odbc database 

use:  SELECT + desired fields 

separated by commas + FROM + 



name of table containing desired 

field(s) + ORDER BY + field 

name containing order index 

 

indexCols indexCols: ["parts", "prods"] 

Note: The properties indexCols and valueCols create a 

RASON table and should not be used with colIndex or 
rowIndex which create a dataframe.       

Used in conjunction with 

valueCols. Use this property to 

index by dimension(s).   

valueCols valueCols: ["qty"] 

Note: The properties indexCols and valueCols create a 
RASON table and should not be used with colIndex or 

rowIndex which create a dataframe.       

Used in conjunction with 

indexCols.  Use this property to 

import columns/fields containing 

values 

colIndex colIndex: "prods" 

Note: The properties colIndex and rowIndex create a 

dataframe and should not be used with indexCols or valueCols 

which create a RASON table.     

Use this property to create an implicit 

index set consisting of integer 

numbers from 1 to the number of 

columns.    This property should be 

used when importing data not 

organized as a table, and thus not 

having index columns or value 

columns.   

rowIndex rowIndex: "parts"  

Note: The properties colIndex and rowIndex create a 

dataframe and should not be used with indexCols or valueCols 

which create a RASON table.     

Use this property to create an implicit 

index set consisting of integer 
numbers from 1 to the number of 

rows.  This property should be used 

when importing data not organized as 

a table, and thus not having index 

columns or value columns.   

sortIndexCols 

sort 

sortIndexCols: True Use this property to sort the columns 

alphabetically.     

direction direction: "import" 

direction: "export" 

direction: "import/export" 

Use this property to specify if the 

contents of the data source are being 

imported ("import" – the default), 

exported ("export") or both 

("import/export") 

Decision Tables 
A decision table contains a set of rules which specify actions to perform based on specific conditions.  Decision 

tables should be used when there is a consistent number of rules, or conditions, to be evaluated followed by a 

specific set of actions to be performed once a rule, or condition, is met.   

A decision table is created in RASON using the newly introduced decisionTables RASON section as 

shown in the example code below, however additional sections such as data, formulas, or dataSource will also 

be called into play to pass the calculation parameters, get results, and import data respectively.  A RASON 

model creating and invoking a decision table is below.  This example code uses decisionTables, data 

and formulas components to pass the data to the decision table, create the decision table and finally calculate 

the decision table.   

The modeling language used internally for Rason's Decision Table functionality is S-FEEL extended to 

standard conversion functions in FEEL.  For more information on Decision Tables, we invite you to reference 
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the following:  DMN Method and Style by Bruce Silver (Cody Cassidy Press, September 28, 20180 and DMN 

Cookbook by Bruce Silver & Edson Tirelli (Cody-Cassidy Press, April 4, 2018).    

Below, you will find a graphical representation of a decision table and the matching RASON code.  See the 

chart for explanations on each decision table component.  See the RASON User Guide for a complete walk 

through of several decision table examples. 

 

 

 

O 
age service holidays 

number  number  27,5,3,2 

1 - - age - service 

2 >=60 - 3 

3 - >=30 3 

4 <18 - 5 

5 >=60 - 5 

6 - >=30 5 

7 [18..60] [15..30] 2 

8 [45..60] <30 2 

 

{ comment: "'O' output order policy example", 

  decisionTables: { 

     tblHolidays: { 

   hitPolicy: 'outputOrder', 

   inputs: ['age', 'service'], 

   outputs: ['holidays'], 

   refTypes: [‘number’, ‘number’, ‘text’], 

   outputValues: [27, 5, 3, 2] 

   rules: [ 

   ['-', '-', 22], 

   ['>=60', '-', 3], 

   ['-', '>=30', 3], 

   ['<18', '-', 5], 

   ['>=60','-', 5], 

   ['-', '>=30', 5], 

['[18..60]','[15..30]', 2], 

['[45..60]','<30', 2] 

], 

   default: [1] 

   } 

      }, 

hitPolicy 

inputValues 

Rules 

inputs 

outputs 

outputValues 

Rules 



 data: { 

               age: { value: 58 }, 

               service: { value: 31 } 

            }, 

            formulas: { 

               result: { formula: "tblHolidays(,,age, service)", finalValue: [] 

} 

             } 

           } 

         } 

decisionTables 

In RASON, tables are defined as objects in the newly introduced section decisionTables: { }. Each table 

component is defined as component with a scalar or array value assigned to it.  See the RASON User Guide for 

a complete walk through of how to create and calculate a decision table.    See the table below for all 

components associated with decisionTables.   

 

Data Source 

Property 

Example Explanation 

default default: [1] 

 

There are two ways to return a default value for a decision 

table.  

1. Simply use "-" for all unary tests.   

2. Use the default component as shown in the 

example above.     

hitPolicy hitPolicy: 'outputOrder' Specifies how the table will be evaluated when multiple 

rules are applicable and multiple output values are returned.  

The Hit Policy value identifies the supported policies by a 

capital letter and an operator, when applicable. The 1st letter 

of the policy or the whole word may be passed to the 

hitPolicy component.  The currently supported Hit 

policies and their meanings are:   

Unique (U):  A unique rule must be successful, or "hit", 

evaluating to a unique result.  If multiple rules are "hit", an 

error will be returned.     

Any (A):  If rules overlap, but point to the same result, that 
unique result is returned.   

Priority(P):  If multiple rules are "hit" and multiple results 

collected, the result with the highest priority is returned.  

Priorities are defined by the order in the outputValues 

component.     

First (F):  Returns only 1 result.  Once a rule is evaluated 

successfully, or a hit occurs, the search stops.   

Rule Order (R) - If multiple rules are hit, the collection of 

results is returned according to the rule order, as specified 

in outputValues.   
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Output Order (O)  If multiple rules are hit, return the 

collection of results in the priority order as listed for 

outputValues.   

Collect (C) – The same as (R). However, we may make 

this policy more specific by adding an operator to it in order 

to allow aggregation.  

Note:  If aggregating a date, a scalar is returned.  If using an 

operator, output must not be a string, but only a numerical 

value.   

     C+ - totals the matched output values 

     C< - returns the min of the matched output values 

     C> - returns the max of the matched output values 

     C# - returns the number of matched output values 

 

inputs inputs: ['age', 'service']   The input parameters, or the inputs to the decision table.    

inputValues inputValues: [ Describes the domain covered by all input entries in the 

decision table rules.  Each input value must relate to a given 

input parameter. Input Values may be a list of values 

separated by commas (i.e. 27, 5, 3, 2) or a list of unary tests 

(i.e. <10, >=20, [18..20]). Both refValues and 

inputValues/outputValues may exist within the 

same RASON model but inputValues will override the 

refValues component.  Use refValues when 

stipulating the value type accepted by the column and 

input/outputValues when stipulating the domain of 

the column.   

When testing a value against a list of values or unary tests, 

the OR operator is used.  A list of values is evaluated as 27 

OR 5 OR 3 OR 2.  Likewise, the list of unary tests is 
evaluated as <10 OR >=20.  It's possible to negate a list as 

well.  For example, NOT(27, 5, 3, 2) would result in a 

selection of a record that does not includes 27 OR 5 OR 3 

OR 2.  Similarly, NOT(<10, >=20) would equate to neither 

<10 OR >=20 being selected.   

All input entries in the relevant input column should cover 

the entered domain, otherwise, an error will be generated 

indicating that the table is not complete.  If an input value 

does not exist, the completeness test is not performed.   

outputs outputs: ['holidays'] After calculation, a decision table returns a few selected or 

all output parameter values in the form of an array.  If a 
decision table has a single output or a single output has 

been selected, the result will be a scalar value.  These input 

parameters belong to the local scope of this table. 

outputValues outputValues: [27, 5, 3, 

2] 

An outputValue can be a list of values separated by 

commas (i.e. 27, 5, 3, 2) listing the priority of returned 

results.  Ia value appears in the table that does not match the 

output value, an error will be returned.   



In this example, the list "27, 5,3,2" is entered as an output 

for "holidays".  The output values list (27, 5, 3, 2)  specifies 

the priority when returning the results.  In other words, the 

results are to be returned largest to smallest.   

Both refValues and outputValues may exist within 

the same RASON model but outputValues will 

override the refValues component.  Use refValues 

when stipulating the value type accepted by the column and 

input/outputValues when stipulating the domain of 

the column.   

All output entries in the relevant output column should 

cover the entered domain, otherwise, an error will be 

generated indicating that the table is not complete.  If an 

output value does not exist, the completeness test is not 

performed. 

refTypes refTypes: [‘number’, 

‘number’, ‘text’], 

Describes the data type for each input.  When defining 

refTypes, all input and output columns must be included.  
Enter empty strings or null for any input or output column.      

The output parameter's domain is defined using the 

outputValues component (see below).  May coexist 

with inputValues/outputValues. 

Data Types 

Boolean:  The entered words TRUE and FALSE are 

interpreted as Boolean reserved words, not strings.  

Number:   May be an integer or fraction.   

Text:  Any string 

Date:  Any valid date, such as 05-05-1964   

Time:  Any valid time 

Duration:  There are two formats for duration, one 

measuring periods in months and another measuring 

periods in seconds. For example, P1DT1H2M3S represents 

1 hour, 2 minutes, and 3 seconds using:   

• P for "period"  

• 1D for 1 day 

• T for "time" 

• 1H for 1 hour 

• 2M for 2 minutes and 

• 3S for 3 seconds.       

rules rules: [ 

   ['-', '-', 22], 

   ['>=60', '-', 3], 

   ['-', '>=30', 3], 

   ['<18', '-', 5], 

   ['>=60','-', 5], 

Rules consists of Input Entries and Output Entries.  These 

entries consist of unary tests which return information (true 

or false) about the rule. Supported unary tests may have one 

of the following syntax forms: value(Boolean, number, text, 

date, time, duration),  < value, > value,  <= value, >= value, 

[value..value], (value..value], [value..value), (value..value), 

"-".  Note:  Currently, rules may only be entered as rows.  
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   ['-', '>=30', 5], 

   ['[18..60]','[15..30]',2], 

   ['[45..60]','<30', 2] 

], 

 

The first test examines whether the value being tested is 

equal to the value inside the parenthesis.  For example, if 

the Unary test consists of the single value 'medium', the 

resulting test would ensure that the variable being tested 

was equal to 'medium'.  The forms, [value..value], 

(value..value], [value..value) and (value..value), are interval 
tests.  The [ ] operators denote a closed interval while the ( ) 

operators denote an open interval.  The last test, "-" returns 

TRUE against any value.   

  

Supplying Data To and Calculating the Decision Table   

Use the data section to pass the parameters required to evaluate, or calculate, the decision table.  Note:  Decision 

tables only accept scalar (constant) arguments as inputs.   

data: { 

input1: { value: XX }, 

input2: { value: YY } 

       }, 

Data may be passed directly in the RASON code or from an external data source.  See the dataSource 

section in this guide for more information on external data sources.  See the "Using an External Data Source" 

example in the RASON User Guide for a walkthrough of an example where the data is contained within a CSV 

file.  Note:  No components of a decision table can be bound to an external database or file.   

Use the formulas section to obtain the final results from a decision table given the input data.  The complete 
signature of the decision table function is: 

formulas: { 

result: { formula: "tblDecTable([string ret_output], [bool ret_header], 

input1, input2, … inputN)", finalValue: [] } 

} 

  } 

where:   

• The first argument [string ret_output] is an optional argument that, when passed, returns only the 

desired columns in the output.  Note this argument must be surrounded by single quotes, 

'Header_Name'.   

• The second argument [strong ret_header] is an optional Boolean argument that, when True, returns the 

column headings in the output. 

• The third and remaining arguments pass the input parameters to the decision table.   

   The number of arguments given to the decision table must be equal to the number of Input Parameters.  The 

finalValue[] argument returns the final collection of results.      

Optional Arguments  

Two optional arguments may be passed to a decision table:  output and ret_header.   

To return the result for a given output only, pass the output heading in quotes. For example, to only receive the 

number of holidays, rather than both holidays and the rule, add "holidays" as as the second argument to the 

existing formula:  



{ 

result: { formula: "tblHolidays('holidays',,age, service")", finalValue: 

[] } 

} 

In this instance, only the result collection for "holidays" will be returned, 27, 5, 3.   

You can pass as many output arguments as needed.   

A 2nd optional argument, ret_header, is a Boolean argument, that, if True, returns a header for the result 

collection.   

{ 

result: { formula: "tblHolidays('holidays', True, age, service)", 

finalValue: [] } 

} 

In this instance, the result collection will include only the "holidays" output parameter with the header 

"holidays" as the first element in the collection:  "holidays", 27, 4, 3.  

To only include the optional ret_header argument instead of both optional arguments, use:   

{ 

result: { formula: "tblHolidays(,True, age, service)", finalValue: [] } 

} 

See the Merging Decision Table Results section in the RASON User Guide for an example in practice.   

FEEL Expressions 

Variables and constants can be combined through operations called literal expressions.  Literal expressions in S-

FEEL are similar to formulas in Excel and in the RASON modeling language. 

The following operators are supported in combination with decision table rules: addition (+), subtraction (-), 

multiplication (*), division (/) and exponentiation (**).  Variables and constants can be combined using only 

these supported operators and parentheses.  An example of an expression is:  2 * age – service where two 

variables, age and service, and a constant, 2, are linked by two arithmetic operations (* and -). Note that an 

expression is a FEEL expression, NOT an Excel formula.  In this example, the expression "age – service" 

appears in the first rule where "age" and "service" refer to cells H7 and I7.  This expression does not refer to any 

appearances of "age" or "service" outside of the scope of this table.  For more information on supported 
conversion expressions, please see the list below.  

Supported conversion functions 

date(string date) returns a date serial number, the same as Excel DATEVALUE 

date(number y, number m, number d) 

time(string time) returns a time serial number, the same as Excel TIMEVALUE 

time(number h, number m, number s[, number offset]) the optional offset is duration in seconds, which can be 

used to model UTC 

duration(string dur) returns duration in months or seconds depending on format 

yearsAndMonthsDuration(string from_date, string to_date) return difference between two dates as a duration in 

months 

number(string num, string group_sep, string dec_sep) returns a number from a string 

string(float num) returns a float number as a string 

Supported numeric functions are: 
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ceiling(number num, [scale]) rounds up a number 

• A number in FEEL is represented as a pair of integers (a,b) where a is a signed 34 digit integer and 

s is the scale of the number. To specify a numeric value for the ceiling function using the optional 

scale argument, use ceiling(a,b).  Examples:  ceiling(1.5) = 2, ceiling(-1.56,1) = -1.5. 2 

decimal(number num, number decimals) rounds a number to the given number of decimals 

floor(number num, [scale]) rounds down a number 

• A number in FEEL is represented as a pair of integers (a,b) where a is a signed 34 digit integer and 

s is the scale of the number. To specify a numeric value for the floor function using the optional 

scale argument, use floor(a,b).  Examples:  floor(1.5) = 1, floor(-1.56,1) = -1.6. 3 

Supported string functions: 

substring(string str, number pos, number num_chars) 

stringLength(string str) 

upperCase(string str) 

lowerCase(string str) 

substringBefore(string str, string match) 

substringAfter(string str, string match) 

contains(string str, string match) 

startsWith(string str, string match) 

endsWith(string str, string match) 

Supported list functions are: 

min(number n1, number n2,…) returns the minimum number 

max(number n1, number n2,…) 

sum(number n1, number n2,…) 

mean(number n1, number n2,…) 

and(bool b1, bool b2,…) 

or(bool b1, bool b2,…) 

stringJoin(list of strings, [separator]) – joins a list of strings divided by a separator.   

• The separater can be an empty string. Null elements in the list parameter are ignored. If list is 
empty, the result is the empty string. If delimiter is null, the string elements are joined without a 

separator. string join(["a","b","c"], "_and_") = "a_and_b_and_c" string join(["a","b","c"], "") = 

"abc" string join(["a","b","c"], null) = "abc" string join(["a"], "X") = "a" string join(["a",null,"c"], 

"X") = "aXc" string join([], "X") = ""4 

Please refer to the OMG Specification on DMN for more details on these functions 

 

2 Source:  Object Management Group Decision Model and Notation Version 1.4.  OMG Document Number:  dtc/21-12-01. URL:  
https://www.omg.org/index.htm 

3 Source:  Object Management Group Decision Model and Notation Version 1.4.  OMG Document Number:  dtc/21-12-01. URL:  
https://www.omg.org/index.htm 

4 Source:  Object Management Group Decision Model and Notation Version 1.4.  OMG Document Number:  dtc/21-12-01. URL:  
https://www.omg.org/index.htm 



Supported Operators for Models using Date, Time or Duration 

See the Decision Table Containing Duration example in the RASON User Guide for an illustration on using 

expressions within decision table rules.  The following list contains the supported operations for decision tables 

containing dates, times, or durations.   

now() – returns current date and time 

today() – returns current date 

Date – date = duration 

Time – time = duration 

Date + duration = date 

Date – duration = date 

Time + duration[s] = time 

Time – duration[s] = time 

Duration + duration = duration 

Duration – duration = duration 

Duration or number * duration = number 

Duration / duration or number = number 

Duration or number / duration = number 

dayOfWeek(FeelDate date) or dayOfWeek(string date) or dayOfWeek(FeelDateTime datetime)* 

dayOfYear(FeelDate date) or dayOfYear(string date) or dayOfYear(FeelDateTime datetime)* 

monthOfYear(FeelDate date) or monthOfYear (string date) or monthOfYear(FeelDateTime datetime)* 

weekOfYear (FeelDate date) or weekOfYear (string date) or weekOfYear (FeelDateTime datetime)* 

*See Example Code below. 

Comparison operators {=, !=, >, >=, <, <=} are also allowed but only between identical types. 

Important Note:  Date, Time, and Duration data types are S-FEEL types not recognizable in an Excel formula. 

As a result, these data of these types, must arrive as string input arguments in the S-FEEL format. Similarly, 

when a decision table, custom function or custom type returns these types, the latter are formatted as S-FEEL 

strings before they enter the RASON environment. 

Example Code 
{ 

    comment: "Example of specific FEEL operations", 

    data: { 

     D: { value: "'2021-05-31'" } 

    }, 

 

    formulas: { 

 dow: { feelFormula: "dayOfWeek(D)", finalValue: [] }, 

 doy: { feelFormula: "dayOfYear(D)", finalValue: [] }, 

 moy: { feelFormula: "monthOfYear(D)", finalValue: [] }, 

 woy: { feelFormula: "weekOfYear(D)", finalValue: [] } 

    } 

} 

Response 
{ 

    "status": { 

       "code": 0, 
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        "id": "2590+2021-09-17-16-31-48-224467", 

        "codeText": "Solver has completed the calculation." 

    }, 

    "observations": { 

        "dow": { 

            "value": "Monday" 

        }, 

        "doy": { 

            "value": 151 

        }, 

        "moy": { 

            "value": "May" 

        }, 

        "woy": { 

            "value": 23 

        } 

    } 

} 

The path operator 

One additional operator, the path operator is supported by RASON when used with decision tables containing 

dates, times or durations.   

If a variable in an S-FEEL expression is of type Date, the following path operations are defined: 

DateVariable.Year  extracts the year component from the date value 

DateVariable.Month  extracts the month component from the date value 

DateVariable.Day  extracts the day component from the date value 

DateVariable.Weekday extracts the weekday component from the date value 

For example, Date(“2019-05-05”).Year returns 2019; Date(“2019-05-05”).Weekday returns 7 for “Sunday”. 

If a variable in an S-FEEL expression is of type Time, the following path operations are defined: 

TimeVariable.Hour  extracts the hour component from the time value 

TimeVariable.Minute extracts the minute component from the time value 

TimeVariable.Second extracts the second component from the time value 

For example, Time(“18:50:05”).Hour returns 18; Time(“18:50:05”).Minute returns 50. 

If a variable in an S-FEEL expression is of type Duration expressed in years and months, the following path 

operations are defined: 

DurationVariable.Years extracts the years component from the duration value 

DurationVariable.Months extracts the months component from the duration value 

For example, Duration(“P1Y2M”).Years returns 1; Duration(“P1Y2M”).Months returns 2. 

If a variable in an S-FEEL expression is of type Duration expressed in days and time, the following path 

operations are defined: 

DurationVariable.Days extracts the days component from the duration value 

DurationVariable.Hours extracts the hours component from the duration value 

DurationVariable.Minutes extracts the minutes component from the duration value 

DurationVariable.Seconds extracts the seconds component from the duration value 

For example, Duration(“P1DT1H20M10S”).Days returns 1; Duration(“P1DT1H20M10S”).Minutes returns 20. 



Example of the path operator in practice 

2 *ceiling(duration(dtDuration).minutes/duration('PT20M').minutes) 

Display Precision 
Use the optional high level property "displayPrecision": X, to control the decimal precision in the RASON 

model results. (The number of decimal digits displayed in the RASON results.)  The minimum setting for this 

property is -1, the default setting, and the maximum setting is 15 decimal digits.   

If calling the Quick Solve endpoints POST rason.net/api/solvetype = Optimize, Simulate, Decision or Diagnose 

or GET/POST rason.net/api/model/{nameorid}/solvetype = Optimize, Simulate, Decision or Diagnose; the 

default setting is 1.0E-6.   

When the Quick Solve endpoint POST rason.net/api/solvetype=datamine or solve or POST 
rason.net/api/model/{nameorid}/solvetype=datamine or solve is called, the default decimal precision will be 

used which is 1E-17.   

Otherwise, the property value setting will determine the precision returned, i.e. if "displayPrecsion"=10, the 

result decimal precision will be 10 digits, or 1E-10.   

Engine Settings 
In this optional section, you'll specify the engine to be used to solve the optimization, simulation optimization or 

stochastic optimization model and/or set any engine options.  If a specific engine is not selected, the RASON 

server will analyze your model and automatically select the best engine to solve.  If solving a linear 

optimization model, the Standard LP/Quadratic engine will be automatically selected.  If solving a smooth, 

nonlinear optimization model, the Standard LSGRG engine will be selected and if solving a nonsmooth model, 

the Standard Evolutionary Engine will be selected.  If running a simulation, the Risk Solver Engine will be 
automatically selected.   

The first property for engineSettings, engine, identifies the engine to be used during the solve.   To 

specific a specific engine, you must use the string values below. 

To Specify this Engine Use 

Nonlinear GRG Solver "GRG Nonlinear" 

Standard LP/Quadratic Solver "LP/Quadratic" 

Standard Evolutionary "Evolutionary" 

Interval Global Solver "Interval Global" 

Standard SOCP Engine "SOCP Barrier" 

The example code below selects the Standard GRG Nonlinear engine to solve an optimization model, turns on 

the Multistart parameter, and sets the maximum time limit to 600 seconds.   
 

engineSettings: { 

        engine: "GRG Nonlinear", multistart: True, maxTime: 600 

    }, 

See below for complete descriptions of each available engine option.  

*Note:  Unlimited in the tables below equals the maximum 32-bit integer setting, 2,147,483,647. 
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Common Engine Options 

The following parameters are used to control all Solver engines including additional "plug in" engines such as 

Gurobi, Xpress, Large Scale GRG, Large Scale LP/QP, etc. For options specific to a "plug in" engine, please 

see the Frontline Solvers Engines Guide.       

Irreducible Infeasible Set – Bounds 

 

 

 

 

 

 

 

Instead of the full Irreducible Infeasible Set (IIS), which analyzes both the constraints and variable bounds in 

your model and attempts to eliminate as many of them as possible, you can produce the IIS minus the variable 

bounds.  The IIS minus the variable bounds analyzes only the constraints while keeping the variable bounds in 

force. This may be sufficient to isolate the source of the infeasibility, but you must take into account the bounds 

on all of the variables when analyzing the IIS.  

Iterations 

 

 

 

 

 

 

The value for the number of Iterations determines the maximum number of iterations ("pivots" for the Simplex 

Solver, or major iterations for the GRG Solver) that a Solver Engine may perform on one problem.  A new 
"Trial Solution" is generated on each iteration.  For problems with integer constraints, the Iterations setting 

determines the maximum number of iterations for any one subproblem.   

Max Time 

 

 

 

 

 

 

The value for Max Time determines the maximum time in seconds that the Solver Engine will run before it 

stops.  For problems with integer constraints, this is the total time taken to solve all subproblems explored by 

the Branch & Bound method.  

Name iisBounds 

Default 0 – Include Bounds 

Min 0 

Max  1 – No Bounds 

Type Integer 

Name iterations 

Default Unlimited* 

Min 1 

Max Unlimited* 

Type Integer 

Name maxTime 

Default Unlimited* 

Min 1 

Max  Unlimited* 

Type Integer 



Number of Threads 

 

 

The RASON server uses virtual machines to 

run your model.  Each virtual machine has the 

ability to create multiple "threads" of 

execution that can be run on different 

processor cores.  (Currently the number of 

threads is 2.) You can control the number of 

cores used for each Problem.  The default 
value of 0 means: "use as many threads as 

there are processor cores in the machine." (The actual number of threads used may vary dynamically during 

execution.) You can instead set this to a specific number of threads. 

Precision 

 

 

 

 

 

 

The number entered here determines how closely the calculated values of the constraint left hand sides must 

match the right hand sides in order for the constraint to be satisfied.  (This option is not used with the  

LP/Quadratic or SOCP engines.)  With the default setting of 1.0E-6 (0.000001), a calculated left hand side of -

1.0E-7 (0.0000001) would satisfy a constraint such as A1 >= 0.  Use caution in making this number much 

smaller, since the finite precision of computer arithmetic virtually ensures that the calculated values will differ 

from the expected or "true" values by a small amount.  On the other hand, setting the Precision to a much larger 

value would cause constraints to be satisfied too easily.  If your constraints are not being satisfied because the 

values you are calculating are very large (say in millions or billions of dollars), consider adjusting your 

formulas and data to work in units of millions, or setting the "Scaling" parameter (see explanation below) 

instead of altering the Precision setting.  Generally, this setting should be kept in the range from 1.0E-6 
(0.000001) to 1.0E-4 (0.0001). 

Precision and Integer Constraints 

Another use of Precision is determining whether an integer constraint, such as A1:A5 = integer, A1:A5 = binary 

or A1:A5 = alldifferent, is satisfied.  If the difference between the decision variable’s value and the closest 

integer value is less than the Precision setting, the variable value is treated as an integer. 

Use Automatic Scaling 

 

 

 

 

 

 

When Automatic Scaling is turned on (set to 0 or 1), the Solver will attempt to scale the values of the objective 

and constraint functions internally in order to minimize the effects of a poorly scaled model.  A poorly scaled 

Name numThreads 

Default 0 – Use Maximum Number 

of Threads Available 

Min 0 

Max  Number of cores on machine, 

currently 2. 

Type Integer 

Name precision 

Default 1.0e-6 

Min 1.0e-4 

Max 1.0e-9 

Type Double 

Name scaling 

Default 0 – On 

Min -1 – Off 

Max 1 – On 

Type Integer 
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model is one that computes values of the objective, constraints, or intermediate results that differ by several 

orders of magnitude.  Poorly scaled models may cause difficulty for both linear and nonlinear solution 

algorithms, due to the effects of finite precision computer arithmetic.   

If your model is nonlinear and you turn on Automatic Scaling, make sure that the initial values for the decision 

variables are "reasonable," i.e. of roughly the same magnitudes that you expect for those variables at the 
optimal solution.  The effectiveness of the Automatic Scaling option depends on how well these starting values 

reflect the values encountered during the solution process.   

LP/Quadratic Solver Options 

If the LP/Quadratic Solver is manually or automatically selected to solve the problem, the parameters for the 

engine include the parameters in the Common Options section above as well as the parameters described below.  

Note that the default values for Primal Tolerance and Dual Tolerance have been chosen very carefully; the 

LP/Quadratic Solver is designed to solve the vast majority of LP problems ‘out of the box’ with these default 

tolerances. 

Derivatives for the Quadratic Solver 

Name derivatives 

Default 1 – Forward 

Min 1 

Max 2 – Central 

Type Integer 

When a quadratic programming (QP) problem – one with a quadratic objective and all linear constraints – is 

solved with the LP/Quadratic Solver, the quadratic Solver extension requires first or second partial derivatives 

of the objective function at various points.  In the LP/Quadratic engine, these derivatives are computed via finite 

differencing and the method used for finite differencing is determined by the setting of the Derivatives 
parameter.  Forward differencing uses the point from the previous iteration – where the problem function 

values are already known – in conjunction with the current point.  Central differencing relies only on the 

current point, and perturbs the decision variables in opposite directions from that point.  For QP problems, the 

Central differencing choice yields essentially exact (rather than approximate) derivative values, which can 

improve solution accuracy and reduce the total number of iterations; however the initial computation of 

derivatives may take up to twice as long as with Forward differencing.  

Do Presolve 

Name presolve 

Default 1 – On 

Min 0 – Off 

Max 1 

Type Integer 

When this parameter is set to 1 (which is the default setting), the LP/Quadratic Solver performs a Presolve step 

before applying the Primal or Dual Simplex method.  Presolving often reduces the size of an LP problem by 

detecting singleton rows and columns, removing fixed variables and redundant constraints, and tightening 

bounds.  

Dual Tolerance 

Name dualTolerance 

Default 1.0e-7 



Min 0 

Max 1.0 

Type Double 

The Dual Tolerance is the maximum amount by which the dual constraints can be violated and still be 
considered feasible.  The default values of 1.0E-7 (0.000001)  is suitable for most problems. 

Primal Tolerance 

Name primalTolerance 

Default 1.0e-7 

Min 0 

Max 1.0 

Type Double 

The Primal Tolerance is the maximum amount by which the primal constraints can be violated and still be 
considered feasible.  The default value of 1.0E-7 (0.000001) is suitable for most problems. 

Solve Without Integer Constraints 

Name solveWithout 

Default 0 - Off  

Min 0 

Max 1 – On 

Type Integer 

If you solve your problem with this parameter set to 1,  LP/Quadratic ignores integer constraints (including 
alldifferent constraints) and solves the "relaxation" of the problem.   

LP/Quadratic Solver MIP Parameters 

This section describes the parameters which control the LP/Quadratic engine when solving a mixed integer 

problem.  This engine contains an extensive set of options to improve performance on problems that contain 

integers.   

Cuts 

Name cuts 

Default 1   

Min 1 

Max 3  

Type Integer 

1 – Automatic, 2 – None, 3 - Aggressive 

The LP/Quadratic Solver supports a wide range of cuts.  A cut is an automatically generated linear constraint 

for the problem, in addition to the constraints that you specify.  This constraint is constructed so that it "cuts 

off" some portion of the feasible region of an LP subproblem, without eliminating any possible integer 

solutions.   Cuts require more work on each subproblem, but they can often lead more quickly to integer 

solutions and greatly reduce the number of subproblems that must be explored.   



 
 
 

61 

 

The LP/Quadratic engine employs a wide range of cuts including, Clique, Flow Cover, Gomory, Knapsack, 

Local Tree, Mixed Integer Rounding, Probing, Two Mixed Integer Rounding, Reduce and Split, and Special 

Ordered Sets. 

When the Cuts parameter  is set to 1, the LP/Quadratic engine will automatically determine the best cuts to use 

on the problem.  If the parameter is set to 2, then no cuts will be performed and if the parameter is set to 3, then 
the LP/Quadratic Solver will apply the most aggressive forms of cuts.   

Heuristics 

Name heuristics 

Default 1   

Min 1 

Max 3  

Type Integer 

1 – Automatic, 2 – None, 3 - Aggressive 

A heuristic is a strategy that often – but not always – will find a reasonably good "incumbent" or feasible 

integer solution early in the search.  Heuristics require more work on each subproblem, but they can often lead 

more quickly to integer solutions and greatly reduce the number of subproblems that must be explored.  The 

LP/Quadratic engine employs several heuristics including:  Feasibility Pump, Greedy Cover, Local Search, and 

Rounding. 

When the Heuristics parameter  is set to 1, the LP/Quadratic engine will automatically determine the best 

heuristics to apply to the problem.  If the parameter is set to 2, then no heuristics will be used and if the 

parameter is set to 3, then the LP/Quadratic Solver will use heuristics extensively in trying to find a good initial 

incumbent.   

Integer Cutoff 

Name intCutoff 

Default 2.0e+30 

Min -2.0e-30 

Max 2.0e+30 

Type Double 

This option provides another way to save time in the solution of mixed-integer programming problems.  If you 

know the objective value of a feasible integer solution to your problem – possibly from a previous run of the 
same or a very similar problem – you can enter this objective value for the Integer Cutoff parameter.  This 

allows the Branch & Bound process to start with an "incumbent" objective value (as discussed above under 

Integer Tolerance) and avoid the work of solving subproblems whose objective can be no better than this value.  

If you enter a value for this parameter, you must be sure that there is an integer solution with an objective value 

at least this good:  A value that is too large (for maximization problems) or too small (for minimization) may 

cause LP/Quadratic to skip solving the subproblem that would yield the optimal integer solution. 

Integer Tolerance 

Name intTolerance 

Default 0 

Min 0 

Max 1.0 

Type Integer 



When you solve an integer programming problem, it often happens that the Branch & Bound method will find a 

good solution fairly quickly, but will require a great deal of computing time to find (or verify that it has found) 

the optimal integer solution.  The Integer Tolerance setting may be used to tell the Solver to stop if the best 

solution it has found so far is "close enough." 

The Branch & Bound process starts by finding the optimal solution without considering the integer constraints 
(this is called the relaxation of the integer programming problem).  The objective value of the relaxation forms 

the initial "best bound" on the objective of the optimal integer solution, which can be no better than this.  

During the optimization process, the Branch & Bound method finds "candidate" integer solutions, and it keeps 

the best solution so far as the "incumbent."  By eliminating alternatives as its proceeds, the B&B method also 

tightens the "best bound" on how good the integer solution can be. 

Each time the Solver engine finds a new incumbent – an improved all-integer solution – it computes the 

maximum percentage difference between the objective of this solution and the current best bound on the 

objective: 

Objective of incumbent - Objective of best bound 

------------------------------------------------ 

Objective of best bound 

If the absolute value of this maximum percentage difference is equal to or less than the Integer Tolerance, the 

Solver will stop and report the current integer solution as the optimal result, with the status, Solver found an 

integer solution within tolerance.  If you set the Integer Tolerance to zero, the Solver will "prove optimality" by 

continuing to search until all alternatives have been explored and the optimal integer solution has been found. 

This could take a great deal of computing time. 

Max Feasible (Integer) Solutions 

Name maxFeasibleSols 

maxIntegerSols 

Default Unlimited* 

Min 1 

Max Unlimited* 

Type Integer 

The value for the Max Feasible Sols parameter places a limit on the number of feasible integer solutions found 

by the Branch & Bound algorithm before LP/Quadratic stops with the status result, The maximum number of 

integer candidate/feasible solutions was found.  Each feasible integer solution satisfies all of the constraints, 

including the integer constraints; the Solver retains the integer solution with the best objective value so far, 
called the "incumbent." 

It is entirely possible that, in the process of exploring various subproblems with different bounds on the 

variables, the Branch & Bound algorithm may find the same feasible integer solution (set of values for the 

decision variables) more than once; the Max Feasible Solutions limit applies to the total number of integer 

solutions found, not the number of "distinct" integer solutions. 

Max Subproblems 

Name maxSubproblems 

Default Unlimited* 

Min 1 

Max Unlimited* 

Type Integer 
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The value for the Max Subproblems parameter places a limit on the number of subproblems that may be 

explored by the Branch & Bound algorithm before LP/Quadratic stops with the status result, The maximum 

number of subproblems was reached.  Each subproblem is a "regular" Solver problem with additional bounds 

on the variables.  In a problem with integer constraints, the Max Subproblems limit should be used in preference 

to the Iterations limit. 

Preprocessing 

Name preprocessing 

Default 1   

Min 1 

Max 3  

Type Integer 

1 – Automatic, 2 – None, 3 - Aggressive 

When this parameter is set, the LP/Quadratic performs preprocessing on constraints involving integer variables, 

to simplify the problem and speed up the solution process.  Based on the settings of certain binary integer 

variables, preprocessing can fix the values of other binary integer variables, tighten the bounds on continuous 

variables, and in some cases, determine that the subproblem is infeasible, so it is unnecessary to solve it at all. 

When the Preprocessing parameter  is set to 1, the LP/Quadratic engine will automatically determine the best 

preprocessing features to use on the problem.  If the parameter is set to 2, then no preprocessing will be 

performed and if the parameter is set to 3, then the LP/Quadratic Solver will apply the most aggressive forms of 

preprocessing.   

Solve Without Integer Constraints 

Name solveWithout 

Default 0 - Off  

Min 0 

Max 1 – On 

Type Integer 

If you solve your Problem with this parameter set to 1, LP/Quadratic ignores integer constraints (including 

alldifferent constraints) and solves the "relaxation" of the problem.   

SOCP Barrier Solver Parameters 

If the SOCP Barrier Solver is selected as the engine to solve the problem, all parameters described above in the 
Common Parameters section as well as the parameters described below (Precision, Gap Tolerance, Step Size 

Factor, Feasibility Tolerance, and the Search Direction option group) will be available to the User. 

Feasibility Tolerance 

Name feasibilityTolerance 

Default 1.0e-6 

Min 0 

Max 1.0 

Type Double 

The SOCP Barrier Solver considers a solution feasible if the constraints are satisfied to within this tolerance. 



Gap Tolerance 

Name gapTolerance 

Default 1.0e-6 

Min 0 

Max 1.0 

Type Integer 

The SOCP Barrier Solver uses a primal-dual method that computes new objective values for the primal problem 

and the dual problem at each iteration.  When the gap or difference between these two objective values is less 

than the Gap Tolerance, the SOCP Barrier Solver will stop and declare the current solution optimal. 

Power Index 

Name powerIndex 

Default 1 

Min 0 

Max Unlimited* 

Type Integer 

This parameter is used to select a specific search direction when the Search Direction is computed via the Power 

Class or Power Class with Predictor-Corrector methods. 

Search Direction 

Name searchDirection 

Default 3 

Min 0 

Max 3 

Type Integer 

The SOCP Barrier Solver offers four options for computing the search direction on each iteration:  0-Power 

Class, 1-Power Class with Predictor-Corrector, 2-Dual Scaling, and 3- Dual Scaling with Predictor-

Corrector. 

Power Class 

This option uses the power class, which is a subclass of the commutative class of search directions over 

symmetric cones with the property that the long-step barrier algorithm using this class has polynomial 

complexity. 

Power Class with Predictor-Corrector 

This option uses the power class as described above, plus a predictor-corrector term. 

Dual Scaling 

This option uses HKM (Helmberg, Kojima and Monteiro) dual scaling, a Newton direction found from the 

linearization of a symmetrized version of the optimality conditions. 

Dual Scaling with Predictor-Corrector 

This option uses HKM dual scaling, plus a predictor-corrector term. 
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Step Size Factor 

Name stepSizeFactor 

Default 0.99 

Min 0 

Max 1.0 

Type Integer 

This parameter is the relative size (between 0 and 1) of the step that the SOCP Barrier Solver may take towards 

the constraint boundary at each iteration. 

Large Scale GRG Nonlinear Solver Parameters 

If the GRG Nonlinear Solver is manually or automatically selected as the engine to solve the problem, all 

parameters described above in the Common Parameters section as well as the parameters described in this 

section will be available to the User.  The Global Optimization options group and the Population Size 
parameters are described in the next section, "Multistart Search Options."  

The default choices for these options are suitable for the vast majority of problems; although it generally won’t 

hurt to change these options, you should first consider other alternatives such as improved scaling before 

attempting to fine-tune them.  In some scientific and engineering applications, alternative choices may improve 

the solution process. 

Convergence 

Name convergence 

Default 0.0001 

Min 0 

Max 1 

Type Double 

The LSGRG Solver will stop with the status Solver has converged to the current solution. when the objective 

function value is changing very slowly for the last few iterations or trial solutions. More precisely, the LSGRG 

Solver stops if the absolute value of the relative change in the objective function is less than the value in the 

Convergence edit box for the last 5 iterations. While the default value of 1.0E-4 (0.0001) is suitable for most 

problems, it may be too large for some models, causing the LSGRG Solver to stop prematurely when this test is 

satisfied, instead of continuing for more Trial Solutions until the optimality (KKT) conditions are satisfied. 

If you are getting this message when you are seeking a locally optimal solution, you can change the parameter 
setting to a smaller value such as 1.0E-5 (0.00001) or 1.0E-6 (0.000001); but you should also consider why it is 

that the objective function is changing so slowly. Perhaps you can add constraints or use different starting 

values for the variables, so that the Solver does not get "trapped" in a region of slow improvement. 

Relax Bounds on Variables 

Name relaxBounds 

Default 0 – Do Not Relax 

Min 0 

Max 1 – Relax 

Type Integer 

By default, the LSGRG Solver ensures that any trial points evaluated during the solution process will not have 

values that violate the bounds on the variables you specify, even by a small amount.  If your problem functions 



cannot be evaluated for values outside the variable bounds, this default behavior will ensure that the solution 

process can continue.  However, at times, the LSGRG Solver can make more rapid progress along a given 

search direction by testing trial points with values slightly outside the bounds on the variables.  If you want to 

permit this to happen, set this option to 1.  If you receive the Result, Float error status. (Internal float error.), as a 

first step you should set this option back to the default, 0. 

Step Size 

Name stepSize 

Default 1.0e-6 

Min 1.0e-9 

Max 1.0e-4 

Type Double 

This parameter determines the "delta" or amount of change used in computing numerical derivatives via finite 
differencing.  Changing the step size to a very small value could result in the GRG engine stopping prematurely.  

However, a large step size could result in Solver "stepping over" a good solution.  For the vast majority of 

models, this parameter should be left at the default value.     

Derivatives and Other Nonlinear Options 

The default values for the Estimates, Derivatives and Search options can be used for most problems.  If you’d 

like to change these options to improve performance on your model, this section will provide some general 

background on how they are used by the LSGRG Solver.   

On each major iteration, the LSGRG Solver requires values for the gradients of the objective and constraints 

(i.e. the Jacobian matrix). The Derivatives option is concerned with how these partial derivatives are computed. 

The LSGRG (Generalized Reduced Gradient) solution algorithm proceeds by first "reducing" the problem to an 
unconstrained optimization problem, by solving a set of nonlinear equations for certain variables (the "basic" 

variables) in terms of others (the "nonbasic" variables). Then a search direction (a vector in n-space, where n is 

the number of nonbasic variables) is chosen along which an improvement in the objective function will be 

sought. The Search option is concerned with how this search direction is determined. 

Once a search direction is chosen, a one-dimensional "line search" is carried out along that direction, varying a 

step size in an effort to improve the reduced objective. The Step Size parameter controls the size of this step. 

The initial estimates for values of the variables that are being varied have a significant impact on the 

effectiveness of the search. The Estimates option is concerned with how these estimates are obtained. 

Derivatives 

Name derivatives 

Default 1  

Min 1 

Max 2 

Type Integer 

1 – Forward, 2 –Central 

On each major iteration, the LSGRG Solver requires values for the gradients of the objective and constraints 

(i.e. the Jacobian matrix).  In the Large Scale GRG Engine, the method used for finite differencing is 

determined by the Derivatives setting. 

Forward differencing (the default choice) uses the point from the previous iteration – where the problem 

function values are already known – in conjunction with the current point.  Central differencing relies only on 

the current point, and perturbs the decision variables in opposite directions from that point.  This requires up to 
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twice as much time on each iteration, but it may result in a better choice of search direction when the 

derivatives are rapidly changing, and hence fewer total iterations.   

Estimates 

Name estimates 

Default 0 – Tangent 

Min 0 

Max 1 – Quadratic 

Type Integer 

This option determines the approach used to obtain initial estimates of the basic variable values at the outset of 

each one-dimensional search.  The Tangent choice uses linear extrapolation from the line tangent to the reduced 

objective function.  The Quadratic choice extrapolates the minimum (or maximum) of a quadratic fitted to the 

function at its current point.  If the current reduced objective is well modeled by a quadratic, then the Quadratic 
option can save time by choosing a better initial point, which requires fewer subsequent steps in each line 

search.  If you have no special information about the behavior of this function, the Tangent choice is "slower 

but surer."  Note:  the Quadratic choice here has no bearing on quadratic programming problems. 

Search Option 

Name searchOption 

Default 0 – Newton 

Min 0 

Max 1 – Conjugate 

Type Integer 

It would be expensive to determine a search direction using the pure form of Newton’s method, by computing 

the Hessian matrix of second partial derivatives of the problem functions.  Instead, a direction is chosen through 

an estimation method.  The default choice, Newton, uses a quasi-Newton (or BFGS) method, which maintains 

an approximation to the Hessian matrix; this requires more storage (an amount proportional to the square of the 

number of currently binding constraints) but performs very well in practice.  The alternative choice, Conjugate, 

uses a conjugate gradient method, which does not require storage for the Hessian matrix and still performs well 

in most cases.  The choice you make here is not crucial, since the LSGRG solver is capable of switching 

automatically between the quasi-Newton and conjugate gradient methods depending on the available storage. 

Multistart Search Parameters 

This section discusses the Global Optimization options group and the Population Size parameters that are used 

by the Large Scale GRG Solver Engine.  For reproducible results when using the Multistart Search Parameters, 

use the model option, Random Seed.  (See the Engine Settings section for details.)   

These parameters control the multistart methods for global optimization, which will automatically run the GRG 

Solver (or certain field-installable Solver engines) from a number of starting points in order to seek the globally 

optimal solution.   

Multistart Search 

Name multistart 

Default 0 – Off 

Min 0 

Max 1 – On 



Type Integer 

If this parameter is set to 1, the multistart methods are used to seek a globally optimal solution.  If this 

parameter is set to 0, the other options described in this section are ignored.  The multistart methods will 

generate candidate starting points for the GRG Solver (with randomly selected values between the bounds you 

specify for the variables), group them into "clusters" using a method called multi-level single linkage, and then 
run the GRG Solver from a representative point in each cluster.  This process continues with successively 

smaller clusters that are increasingly likely to capture each possible locally optimal solution. 

Population Size 

Name populationSize 

Default 0 

Min 0 

Max 200  

Type Integer 

The multistart methods generate a number of candidate starting points for the GRG Solver equal to the value 

that you enter for the parameter.  This set of starting points is referred to as a "population," because it plays a 

role somewhat similar to the population of candidate solutions maintained by the Evolutionary Solver.  The 

minimum population size is 10 points; if you supply a value less than 10, or do not pass the parameter at all, the 

multistart methods use a population size of 10 times the number of decision variables in the problem, but no 

more than 200. 

Require Bounds on Variables 

Name requireBounds 

Default 1 – On 

Min 0 - Off 

Max 1  

Type Integer 

This parameter is turned on, set to 1, by default, but it comes into play only when the Multistart Search box is 

checked.  The multistart methods generate candidate starting points for the GRG Solver by randomly sampling 

values between the bounds on the variables that you specify.  If you do not specify both upper and lower bounds 

on each of the decision variables, the multistart methods can still be used, but because the random sample must 

be drawn from an "infinite" range of values, this is unlikely to effectively cover the possible starting points (and 

therefore have a good chance of finding all of the locally optimal solutions), unless the GRG Solver is run on a 

great many subproblems, which will take a very long time. 
 

The tighter the bounds on the variables that you can specify, the better the multistart methods are likely to 

perform.  (This is also true of the Evolutionary Solver.)  Hence, this option is turned on by default, so that you 

will be automatically reminded to include both upper and lower bounds on all of the variables whenever you 

select Multistart Search.  If both the Multistart Search and Require Bounds on Variables parameters are both set 

to 1, but you have not defined upper and lower bounds on all of the variables, you will receive the Status result, 

Missing bounds status. Returned for EV/MSL Require Bounds when bounds are missing. 

If you get this result, you must either add both upper and lower variable bounds or else set the Require Bounds 

parameter to 0 and resolve. 

Topographic Search 

Name topoSearch 
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Default 0 – Off 

Min 0 

Max 1 – On 

Type Integer 

If this parameter (and the Multistart parameter) are both set to 1, the multistart methods will make use of a 

"topographic" search method.  This method uses the objective value computed for the randomly sampled 

starting points to compute a "topography" of overall "hills" and "valleys" in the search space, in an effort to find 

better clusters and start the GRG Solver from an improved point (already in a "hill" or "valley") in each cluster.  

Computing the topography takes extra time, but on some problems this is more than offset by reduced time 

taken by the GRG Solver on each subproblem. 

Evolutionary Solver Parameters 

If the Evolutionary Solver is selected as the engine to solve the problem, all parameters described above in the 

Common Parameters section as well as the parameters described in this section will be available to the User. 

As with the other Solver engines, the Max Time option determines the maximum amount of time the 

Evolutionary Solver will run before stopping with the status result, Time out status. Returned when the 

maximum allowed time has been exceeded. Indicates an early exit of the algorithm.   The Iterations option 

rarely comes into play, because the Evolutionary Solver always uses the Max Subproblems and Max Feasible 

Solutions parameters, whether or not the problem includes integer constraints.   (The count of iterations is reset 

on each new subproblem, so the Iterations limit normally is not reached.)  The Precision option plays the same 

role as it does in the other Solver engines – governing how close a constraint value must be to its bound to be 

considered satisfied, and how close to an exact integer value a variable must be to satisfy an integer constraint.  

It also is used in computing the "penalty" applied to infeasible solutions that are accepted into the population:  

A smaller Precision value increases this penalty. 

Convergence 

Name convergence 

Default 0.0001 

Min 0 

Max 1  

Type Double 

The Evolutionary Solver will stop with the Status result, The Solver has converged to the current solution, if 
nearly all members of the current population of solutions have very similar "fitness" values.  Since the 

population may include members representing infeasible solutions, each "fitness" value is a combination of an 

objective function value and a penalty for infeasibility.  Since the population is initialized with trial solutions 

that are largely chosen at random, the comparison begins after the Solver has found a certain minimum number 

of improved solutions that were generated by the evolutionary process.  The stopping condition is satisfied if 

99% of the population members all have fitness values that are within the Convergence tolerance of each other. 

If you believe that the engine is stopping prematurely with the status The Solver has converged to the current 

solution, you can make the Convergence tolerance smaller, but you may also want to increase the Mutation Rate 

and/or the Population Size, in order to increase the diversity of the population of trial solutions. 

Fix Nonsmooth Variables 

Name fixNonsmooth 

Default 0 – Off 

Min 0 



Max 1 – On 

Type Integer 

This parameter determines how non-smooth variable occurrences in the problem will be handled during the 

local search step.  If this parameter is set to 1, the non-smooth variables are fixed to their current values 

(determined by genetic algorithm methods) when a nonlinear Local Gradient or linear Local Gradient search is 
performed; only the smooth and linear variables are allowed to vary.  If this parameter is set to 0, all of the 

variables are allowed to vary. 

Since gradients are undefined for non-smooth variables at certain points, fixing these variables ensures that 

gradient values used in the local search process will be valid.  On the other hand, gradients are defined for non-

smooth variables at most points, and the search methods are often able to proceed in spite of some invalid 

gradient values, so it often makes sense to vary all of the variables during the search.  Hence, this parameter is 

set to 0 by default; you can experiment with its setting on your model. 

Local Search 

Name localSearch 

Default 3 

Min 0 

Max 3 

Type Integer 

0-Randomized Local Search, 1- Deterministic Pattern Search, 2-Gradient Local Search, 3-Automatic 

Choice 

This option determines the local search strategy employed by the Evolutionary Solver.  As noted under the 

Mutation rate option, a "generation" or subproblem in the Evolutionary Solver consists of a possible mutation 

step, a crossover step, an optional local search in the vicinity of a newly discovered "best" solution, and a 
selection step where a relatively "unfit" member of the population is eliminated.  You have a choice of 

strategies for the local search step.  You can use Automatic Choice (the default), which selects an appropriate 

local search strategy automatically based on characteristics of the problem functions.  

Randomized Local Search 

This local search strategy generates a small number of new trial points in the vicinity of the just-discovered 

"best" solution, using a probability distribution for each variable whose parameters are a function of the best 

and worst members of the current population.  (If the generated points do not satisfy all of the constraints, a 

variety of strategies may be employed to transform them into feasible solutions.)  Improved points are accepted 

into the population. 

Deterministic Pattern Search 

This local search strategy uses a "pattern search" method to seek improved points in the vicinity of the just-

discovered "best" solution.  The pattern search method is deterministic – it does not make use of random 

sampling or choices – but it also does not rely on gradient information, so it is effective for non-smooth 

functions.  It uses a "slow progress" test to decide when to halt the local search.  An improved point, if found, is 

accepted into the population. 

Gradient Local Search 

This local search strategy makes the assumption that the objective function – even if non-smooth – can be 

approximated locally by a quadratic model.  It uses a classical quasi-Newton method to seek improved points, 

starting from the just-discovered "best" solution and moving in the direction of the gradient of the objective 

function.  It uses a classical optimality test and a "slow progress" test to decide when to halt the local search.  

An improved point, if found, is accepted into the population. 
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Automatic Choice 

This option allows the Solver to select the local search strategy automatically in the engine.  The Solver uses 

diagnostic information from the Polymorphic Spreadsheet Interpreter to select a linear Gradient Local Search 

strategy if the problem has a mix of non-smooth and linear variables, or a nonlinear Gradient Local Search 

strategy if the objective function has a mix of non-smooth and smooth nonlinear variables.  It also makes 

limited use of the Randomized Local Search strategy to increase diversity of the points found by the local 

search step.  

Mutation Rate 

Name mutationRate 

Default 0.075 

Min 0 

Max 1.0  

Type Double 

The Mutation Rate is the probability that some member of the population will be mutated to create a new trial 

solution (which becomes a candidate for inclusion in the population, depending on its fitness) during each 

"generation" or subproblem considered by the evolutionary algorithm.  In the Evolutionary Solver, a 

subproblem consists of a possible mutation step, a crossover step, an optional local search in the vicinity of a 

newly discovered "best" solution, and a selection step where a relatively "unfit" member of the population is 

eliminated. 

There are many possible ways to mutate a member of the population, and the Evolutionary Solver actually 

employs five different mutation strategies, including "permutation-preserving" mutation strategies for variables 

that are members of an "alldifferent" group.  The Mutation Rate is effectively subdivided between these 

strategies, so increasing or decreasing the Mutation Rate affects the probability that each of the strategies will 

be used during a given "generation" or subproblem. 

Population Size 

Name populationSize 

Default 0 

Min 0 

Max 200 

Type Integer 

The Evolutionary Solver maintains a population of candidate solutions, rather than a "single best solution" so 

far, throughout the solution process.  This option sets the number of candidate solutions in the population.  The 

minimum population size is 10 members; if you supply a value less than 10 for this option, or not pass anything 

for the population, the Evolutionary Solver uses a population size of 10 times the number of decision variables 

in the problem, but no more than 200. 

The initial population consists of candidate solutions chosen largely at random, but it always includes at least 

one instance of the starting values of the variables (adjusted if necessary to satisfy the bounds on the variables), 
and it may include more than one instance of the starting values, especially if the population is large and the 

initial values represent a feasible solution. 

A larger population size may allow for a more complete exploration of the "search space" of possible solutions, 

especially if the rate is high enough to create diversity in the population.  However, experience with genetic and 

evolutionary algorithms reported in the research literature suggests that a population need not be very large to 

be effective – many successful applications have used a population of 70 to 100 members. 



Require Bounds on Variables 

Name requireBounds 

Default 1 – On 

Min 0 – Off 

Max 1  

Type Integer 

If the parameter "Require Bounds on Variables" is set to 1, and some of the decision variables do not have 

upper or lower bounds specified at solve time, the engine will stop immediately with the Status result, Missing 

bounds status. Returned for EV/MSL Require Bounds when bounds are missing.  If this parameter is set to 0, the 

Solver will not require upper and lower bounds on the variables, but will attempt to solve the problem without 

them.  Note that this parameter is turned on by default. 

Bounds on the variables are especially important to the performance of the Evolutionary Solver.  For example, 
the initial population of candidate solutions is created, in part, by selecting values at random from the ranges 

determined by each variable’s lower and upper bounds.  Bounds on the variables are also used in the mutation 

process – where a change is made to a variable value in some member of the existing population – and in 

several other ways in the Evolutionary Solver.  If you do not specify lower and upper bounds for all of the 

variables in your problem, the Evolutionary Solver can still proceed, but the almost-infinite range for these 

variables may significantly slow down the solution process, and make it much harder to find "good" solutions.  

Hence, it pays for you to determine realistic lower and upper bounds for the variables. 

Filtered Local Search 

The Evolutionary engine applies two tests or "filters" to determine whether to perform a local search each time 

a new point generated by the genetic algorithm methods is accepted into the population.  The "merit filter" 

requires that the objective value of the new point be better than a certain threshold if it is to be used as a starting 

point for a local search; the threshold is based on the best objective value found so far, but is adjusted 

dynamically as the engine proceeds.  The "distance filter" requires that the new point’s distance from any 

known locally optimal point (found on a previous local search) be greater than the distance traveled when that 

locally optimal point was found. 

Thanks to its genetic algorithm methods, improved local search methods, and the distance and merit filters, the 

Evolutionary Solver performs exceedingly well on smooth global optimization problems, and on many non-

smooth problems as well. 

The local search methods range from relatively "cheap" to "expensive" in terms of the computing time 

expended in the local search step; they are listed roughly in order of the computational effort they require.  On 

some problems, the extra computational effort will "pay off" in terms of improved solutions, but in other 

problems, you will be better off using the "cheap" Randomized Local Search method, thereby spending 

relatively more time on the "global search" carried out by the Evolutionary Solver’s mutation and crossover 

operations. 

In addition to the Local Search options, the Evolutionary Solver employs a set of methods, corresponding to the 

four local search methods, to transform infeasible solutions – generated through mutation and crossover – into 

feasible solutions in new regions of the search space.  These methods, which also vary from "cheap" to 

"expensive," are selected dynamically (and automatically) via a set of heuristics.  For problems in which a 
significant number of constraints are smooth nonlinear or even linear, these methods can be highly effective.  

Dealing with constraints is traditionally a weak point of genetic and evolutionary algorithms, but the hybrid 

Evolutionary Solver is unusually strong in its ability to deal with a combination of constraints and non-smooth 

functions. 

Global Search 

Name globalSearch 
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Default 1 – Genetic Algorithm 

Min 0 – Scatter Search 

-Max 1 – Genetic Algorithm 

Type Integer 

If this option is set to 1 (Genetic Algorithm), then the Evolutionary Solver will use methods from the literature 

on genetic algorithms (its traditional methods) to solve the model. Otherwise, the Evolutionary Solver will use 

methods from the literature on scatter search.  On some models, the scatter search algorithm will result in better 

answers in less time when compared to the genetic algorithm.  However, for other models, the genetic algorithm 

may be more successful. Since the scatter search algorithm tends to perform best, by a modest margin, on the 

majority of models, it is the default choice.  But we suggest you try both algorithms with your model to see 

which works better for you. 

Model Based Search 

Name modelBasedSearch 

Default 0 – None 

Min 0 

Max 2  

Type Integer 

0-None, 1- CPU Based, 2-GPU Based 

This option takes effect only when the Legacy Mode option is set to False.  When this option is set to "None", 

the new Scatter Search algorithm is used without any Model Based Search. When this option is set to either 

"CPU Based" or "GPU Based", an internal model of the problem is created (using the Radial Basis Functions 

method) which closely fits the original problem. The Evolutionary Engine uses this internal model to evaluate 
many points in parallel (either on the CPU or GPU - depending on the option setting) rather than calling the 

Interpreter to evaluate each of these points sequentially.  Only the most promising of these points are sent to the 

Interpreter for actual evaluation using the new Scatter Search Algorithm.  This new search method typically 

results in better solutions in less time when compared to using only the Scatter Search algorithm.    

Evolutionary Parameters for Integer Problems 

Where the other Solver enignes use the Branch & Bound method to solve problems with integer constraints, the 

Evolutionary Solver handles integer constraints on its own, and is subject to the limits set in the following 

parameters, Max Subproblems, Max Feasible Solutions, Tolerance, Max Time Without Improvement, and 

Solve Without Integer Constraints.  Unlike the other Solver engines, the Evolutionary Solver always works on a 

series of subproblems, even if there are no integer constraints in the model – so these options are always 

important for the Evolutionary Solver. 

Max Feasible Solutions 

Name maxFeasibleSols 

Default Unlimited* 

Min 0 

Max Unlimited* 

Type Integer 

The value for the Max Feasible Solutions parameter places a limit on the number of feasible solutions found by 

the evolutionary algorithm before the engine stops with the status result, Branching and bounding node limit 

reached. Indicates an early exit of the algorithm.  A feasible solution is any solution that satisfies all of the 
constraints, including any integer constraints.   



Max Subproblems 

Name maxSubproblems 

Default Unlimited* 

Min 0 

Max Unlimited* 

Type Integer 

The value for the Max Subproblems parameter places a limit on the number of subproblems that may be 

explored by the evolutionary algorithm before the engine stops with the Status result, Branching and bounding 

maximum number of incumbent points reached. Indicates an early exit of the algorithm.  In the Evolutionary 

Solver, a subproblem consists of a possible mutation step, a crossover step, an optional local search in the 

vicinity of a newly discovered "best" point, and a selection step where a relatively "unfit" member of the 

population is eliminated. 

Max Time without Improvement 

Name maxTimeNoImp 

Default 30  

Min 0 

Max Unlimited 

Type Integer 

This option works in conjunction with the Tolerance option to limit the time the evolutionary algorithm spends 

without making any significant progress.  If the relative (i.e. percentage) improvement in the best solution’s 
"fitness" is less than the Tolerance parameter value, the engine stops with the  

Status result, "No remedies" status. (All remedies failed to find better point.) unless the evolutionary algorithm 

has discovered no feasible solutions at all, in which case the status is Feasible solution could not be found.  If 

you believe that this stopping condition is being met prematurely, you can either make the Tolerance value 

smaller (or even zero), or increase the number of seconds allowed by the Max Time without Improvement 

option. 

Solve Without Integer Constraints 

Name solveWithout 

Default 0 - Off  

Min 0 

Max 1 – On 

Type Integer 

If you solve your Problem with this parameter set to 1, the Solver ignores integer constraints (including 

alldifferent constraints) and solves the "relaxation" of the problem, which is often quite useful. 

Tolerance 

Name intTolerance 

Default 0 

Min 0 

Max 1.0 

Type Double 
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This option works in conjunction with the Max Time without Improvement option to limit the time the 

evolutionary algorithm spends without making any significant progress.  If the relative (i.e. percentage) 

improvement in the best solution’s "fitness" is less than the Tolerance parameter’s value, the Evolutionary 

Solver stops as described below. Since the population may include members representing infeasible solutions, 

the "fitness" value is a combination of an objective function value and a penalty for infeasibility. 

Mixed Integer Problem Parameters 

This section describes parameters used when solving integer programming problems for all Solver engines 

except the LP/Quadratic Solver.  The LP/Quadratic Solver’s integer options are described in the section, 

LP/Quadratic Solver MIP Parameters above.  This section explains all of the options that pertain to the solution 

of problems with integer constraints.   

Integer Cutoff 

Name intCutoff 

Default 2e+30 

Min -2e-30 

Max 2e+30 

Type Double 

This option provides another way to save time in the solution of mixed-integer programming problems. If you 

know the objective value of a feasible integer solution to your problem – possibly from a previous run of the 

same or a very similar problem – you can enter this objective value for the Integer Cutoff parameter.  This 

allows the Branch & Bound process to start with an "incumbent" objective value (as discussed above under 

Integer Tolerance) and avoid the work of solving subproblems whose objective can be no better than this value.  

If you enter a value for this parameter, you must be sure that there is an integer solution with an objective value 

at least this good:  A value that is too large (for maximization problems) or too small (for minimization) may 

cause the engine to skip solving the subproblem that would yield the optimal integer solution. 

Integer Tolerance 

Name intTolerance 

Default 0 

Min 0 

Max 1.0 

Type Integer 

When you solve an integer programming problem, it often happens that the Branch & Bound method will find a 
good solution fairly quickly, but will require a great deal of computing time to find (or verify that it has found) 

the optimal integer solution.  The Integer Tolerance setting may be used to tell the engine to stop if the best 

solution it has found so far is "close enough." 

The Branch & Bound process starts by finding the optimal solution without considering the integer constraints 

(this is called the relaxation of the integer programming problem). The objective value of the relaxation forms 

the initial "best bound" on the objective of the optimal integer solution, which can be no better than this. During 

the optimization process, the Branch & Bound method finds "candidate" integer solutions, and it keeps the best 

solution so far as the "incumbent."  By eliminating alternatives as its proceeds, the B&B method also tightens 

the "best bound" on how good the integer solution can be. 

Each time the Solver finds a new incumbent – an improved all-integer solution – it computes the maximum 

percentage difference between the objective of this solution and the current best bound on the objective: 



Objective of incumbent - Objective of best bound 

------------------------------------------------ 

Objective of best bound 

If the absolute value of this maximum percentage difference is equal to or less than the Integer Tolerance, the 

Solver will stop and report the current integer solution as the optimal result.  If you set the Integer Tolerance to 

zero, the Solver will continue searching until all alternatives have been explored and the optimal integer 

solution has been found. This could take a great deal of computing time. 

Max Feasible (Integer)  Solutions 

Name maxIntegerSols  

maxFeasibleSols 

Default Unlimited* 

Min 0 

Max Unlimited* 

Type Integer 

The value for the Max Integer Solutions parameter places a limit on the number of "candidate" integer solutions 

found by the Branch & Bound algorithm before the engine stops with the status result, Branching and bounding 

node limit reached. Indicates an early exit of the algorithm.  Each candidate integer solution satisfies all of the 

constraints, including the integer constraints; the engine retains the integer solution with the best objective value 

so far, called the "incumbent." 

It is entirely possible that, in the process of exploring various subproblems with different bounds on the 

variables, the Branch & Bound algorithm may find the same integer solution (set of values for the decision 
variables) more than once; the Max Integer Solutions limit applies to the total number of integer solutions 

found, not the number of "distinct" integer solutions. 

Max Subproblems 

Name maxSubproblems 

Default Unlimited* 

Min 0 

Max Unlimited* 

Type Integer 

The value for the Max Subproblems parameter places a limit on the number of subproblems that may be 

explored by the Branch & Bound algorithm before the engine stops with the status result, Branching and 

bounding maximum number of incumbent points reached. Indicates an early exit of the algorithm.  Each 

subproblem is a "regular" Solver problem with additional bounds on the variables.  In a problem with integer 

constraints, the Max Subproblems limit should be used in preference to the Iterations limit. 

Solve Without Integer Constraints 

Name solveWithout 

Default 0 - Off  

Min 0 

Max 1 – On 

Type Integer 
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If you solve your problem with this parameter set to 1, the engine ignores integer constraints (including 

alldifferent constraints) and solves the "relaxation" of the problem.   

Simulation Engine Settings 
 

When "modelType": "simulation, the Monte Carlo Simulation engine is selected.  The options below control 
simulation engine.   

Simulation Random Seed 

Name randomSeed 

Default 0 

Min 0 

Max Unlimited* 

Type Integer 

 

Setting the random number seed to a nonzero value (any number of your choice is OK) ensures that the same 

sequence of random numbers is used for each simulation.  When the seed is zero, the random number generator 

is initialized from the system clock, so the sequence of random numbers will be different in each simulation.  If 

you need the results from one simulation to another to be strictly comparable, you should set the seed.   

 

Sampling Method 

Name samplingMethod 

Default 1 

Monte 

Carlo 

1 

Latin 

HyperCube 

2 

Sobol 

RQMC 

3 

Type  Integer 

 

Use this option to select Monte Carlo (1), Latin Hypercube (2), or Sobol RQMC (3) sampling.  In standard 

Monte Carlo sampling, numbers generated by the chosen random number generator are used directly to obtain 

sample values for the uncertain variables (PSI Distribution functions) in the model.  With this method, the 
variance or estimation error in computed samples for uncertain functions is inversely proportional to the square 

root of the number of trials; hence to cut the error in half, four times as many trials are required. 

RASON provides two other sampling methods than can significantly improve the ‘coverage’ of the sample 

space, and thus reduce the variance in computed samples for output functions.  This means that you can 

achieve a given level of accuracy (low variance or error) with fewer trials. 

• Latin Hypercube Sampling.  Latin Hypercube sampling begins with a stratified sample in each dimension 

(one for each uncertain variable), which constrains the random numbers drawn to lie in a set of subintervals 

from 0 to 1.  Then these one-dimensional samples are combined and randomly permuted so that they 

‘cover’ a unit hypercube in a stratified manner.  This often reduces the variance of uncertain functions. 

 



• Sobol numbers (Randomized QMC).  Sobol numbers are an example of so-called  “Quasi Monte Carlo” 

or “low-discrepancy numbers,” which are generated with a goal of coverage of the sample space rather than 

“randomness” and statistical independence.  A “random shift” is added to Sobol numbers, which improves 

their statistical independence.  Sobol numbers are frequently used in quantitative finance applications, 

where they are often effective at reducing variance. 

Random Number Generator 

Name randomGenerator 

Default 1 

Park-

Miller 

0 

CMRG 1 

Well 2 

Marsenne 3 

HDR 4 

Type Integer 

 

Use this option to select a random number generation algorithm.  RASON includes an advanced set of random 

number generation capabilities – well beyond those found in other Monte Carlo products.  In common 

applications, any good random number generator is sufficient – but for challenging applications (for example in 

financial engineering) that involve many uncertain variables and many thousands of trials, the advanced 

features of RASON can make a real difference. 

Computer-generated numbers are never truly “random,” since they are always computed by an algorithm – they 

are called pseudorandom numbers.  A random number generator is designed to quickly generate sequences of 
numbers that are as close to statistically independent as possible.  Eventually, an algorithm will generate the 

same number seen sometime earlier in the sequence, and at this point the sequence will begin to repeat.  The 

period of the random number generator is the number of values it can generate before repeating. 

A long period is desirable, but there is a tradeoff between the length of the period and the degree of statistical 

independence achieved within the period.  Hence, RASON offers a choice of four random number generators: 

• Park-Miller (0) “Minimal” Generator with Bayes-Durham shuffle and safeguards.  This generator has a 

period of 231-2.  Its properties are good, but the following choices are usually better. 

• Combined Multiple Recursive Generator (CMRG) of L’Ecuyer (1)  This generator has a period of 2191, and 

excellent statistical independence of samples within the period. 

• Well Equidistributed Long-period Linear (WELL1024) generator of Panneton, L’Ecuyer and Matsumoto. 

(2)  This very new generator combines a long period of 21024 with very good statistical independence. 

• Mersenne Twister (3) generator of Matsumoto and Nishimura.  This generator has the longest period of 

219937-1, but the samples are not as “equidistributed” as for the WELL1024 and CMRG generators. 

• HDR (4) Random Number Generator, designed by Doug Hubbard.  Removes the requirement to distribute 

simulation trials and permits simulations running on various computer platforms to generate identical or 

independent streams of random numbers. 

Random Number Streams 

Name randomStreams 

Default 0 
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Single 

Stream 

0 

Double 

Stream 

1 

Type Integer 

You can use this option group to select a Single Stream for all Uncertain Variables, or an Independent 

Stream for each Uncertain Variable.  Most Monte Carlo simulation tools generate a single sequence of 
random numbers, taking values consecutively from this sequence to obtain samples for each of the distributions 

in a model.  This introduces a subtle dependence between the samples for all distributions in one trial.  In many 

applications, the effect is too small to make a difference – but in some cases, found in financial engineering and 

other demanding applications, better results are obtained if independent random number sequences (streams) are 

used for each distribution in the model.  RASON Decision Services offers this capability for Monte Carlo 

sampling and Latin Hypercube sampling; it does not apply to Sobol numbers. 

If you use a PsiSeed() property function as an argument to a PSI Distribution function call, the uncertain 

variable defined by that distribution always has an independent stream of random numbers, regardless of the 

setting of this option.  

CLT Threshold 

Name cltThreshold 

Default 100 

Min 1 

Max 1000 

Type Integer 

RASON Decision Services includes the ability to sum multiple independent random variables using compound 

distributions.  A compound distribution generates values for the sum of N independent identically distributed 

uncertain variables.  A distribution is made compound through the use of the PsiCompound() property.   

When calculating a compound distribution, RASON Decision Services first tries to compute the distribution 
analytically.  For example "=PsiExponential(par, PsiCompund(N))" can be computed as PsiGamma(N, par)   If 

RASON is unable to compute a compound distribution analytically, but the frequency of the severity function 

(N) is greater than the value for the CLT Threshold option, then the distribution will be computed according to 

the Central Limit Theorem as PsiNormal(m, s).  (The parameters m and s will be computed analytically from 

the corresponding analytical moments of the severity distribution.)  Othewise, the compound distribution will be 

computed using Monte Carlo simulation to sum up N independent variates of the severity distribution.  The 

maximum value allowed for this option is 1000 while the minimum value allowed is 1.  The default setting is 

100.   

Censor Type 

Name censorType 

Default 0 

Min 0 

Max 2 

Type Integer 



Use this parameter only if you want to set global default bounds on the probability distributions of all uncertain 

variables. This option specifies the "units of measure" for the values you enter for the Lower Censor and Upper 

Cutoff options. Set this parameter to 0( None - the default) if you do not want to set these global bounds. 

If you set this parameter to 1 (Percentile), then the Lower Censor and Upper Censor values must be between 

0.01 and 0.99, and they specify percentiles of each uncertain variable’s probability distribution. If you set this 

parameter to 2 (Std Deviation), then the Lower Censor and Upper Censor can be any positive or negative value, 

and they specify the number of standard deviations away from the mean for each uncertain variable. 

When you use Censor bounds, random samples from the distribution that lie above the upper bound are set 

equal to the upper bound, and samples that lie below the lower bound are set equal to the lower bound; this 

causes a "buildup of probability mass" at the bounds – which is appropriate in some situations, but not in others. 

Cutoff Type 

Name cutoffType 

Default 0 

Min 0 

Max 2 

Type Integer 

Use this parameter only if you want to set global default bounds on the probability distributions of all uncertain 

variables. This option specifies the "units of measure" for the values you enter for the Lower Cutoff and Upper 

Cutoff parameters. Set this parameter to 0( None - the default) if you do not want to set these global bounds. 

If you set this parameter to 1 (Percentile), then the Lower Cutoff and Upper Cutoff values must be between 0.01 

and 0.99, and they specify percentiles of each uncertain variable’s probability distribution. If you set this 

parameter to 2 (Std Deviation), then the Lower Cutoff and Upper Cutoff can be any positive or negative value, 

and they specify the number of standard deviations away from the mean for each uncertain variable. 

When you use Cutoff bounds, random samples from the distribution are effectively rescaled to lie within the 

lower and upper bounds.  

Lower Censor 

Name lowerCensor 

Default -1e+30 

Min -1e+30 

Max 1e+30 

Type Double 

Use this parameter to set a lower "censor" bound for values sampled from the probability for a specific 

Uncertain Variable. A lower censor bound causes all random samples drawn from the distribution that are less 

than this value to be set equal to this value. This means that there is a "buildup of probability mass" at the lower 

bound. If you do not want this effect, use the Lower Cutoff option instead. 

Lower Cutoff 

Name lowerCutoff 

Default -1e+30 

Min -1e+30 
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Max 1e+30 

Type Double 

Use this parameter to set a lower cutoff for values sampled from the probability for a specific Uncertain 

Variable. A lower cutoff has the effect of re-scaling the distribution so that random samples drawn from the 

distribution will never be less than the value you enter here. Because the distribution is re-scaled, there is no 
"buildup of probability mass" at the lower cutoff, as there is for the Lower Censor option. 

Upper Censor 

Name upperCensor 

Default 1e+30 

Min -1e+30 

Max 1e+30 

Type Double 

Use this parameter to set an upper "censor" bound for values sampled from the probability for a specific 

Uncertain Variable. An upper censor bound causes all random samples drawn from the distribution that are 

greater than this value to be set equal to this value. This means that there is a "buildup of probability mass" at 

the upper bound. If you do not want this effect, use the Upper Cutoff option instead. 

Upper Cutoff 

Name upperCutoff 

Default 1e+30 

Min -1e+30 

Max 1e+30 

Type Double 

Use this parameter to set an upper cutoff for values sampled from the probability for a specific Uncertain 

Variable. An upper cutoff has the effect of re-scaling the distribution so that random samples drawn from the 

distribution will never be greater than the value you enter here. Because the distribution is re-scaled, there is no 

"buildup of probability mass" at the upper cutoff, as there is for the Upper Censor option. 

Formulas 
This optional section can be used to perform calculations on data arrays or constant values which will be used in 

a constraint, objective function or uncertain function definition.  In the example below, c4, c5, c6,c7 and c8 

calculate formulas based on three uncertain variables, uncVar1, uncVar2, and uncVar3.    



formulas : { 

   c4: { formula: "5 * uncVar2" }, 

   c5: { formula: "5 + 2.5* uncVar1" }, 

   c6: { formula: " 4.1 * uncVar3" }, 

   c7: { value: 100 + uncVar2 * 7 }, 

   c8: { formula: "100 + 80* uncVar1" } 

   }, 

Note:  The RASON modeling language supports all but a few of Excel's functions5 which means that you can 

write a formula easily using functions such as SUM, SUMPRODUCT, etc. along with operators such as  + and 

*. You can define arrays and use Excel functions that return vector and matrix results and access your data from 

within an Excel worksheet or a database.   

See the table below for the properties available in the formula section of your RASON model.   

Data Property Type Explanation 

aliasName aliasName: 

“num_parts_inventory” 

This property is automatically inserted into the 

converted RASON model when an Excel model is 

deployed through Analytic Solver’s Deploy Model 

button, if a block of cells containing formulas is 

assigned a defined name in the Excel Solver model. 

name name: "parts" Use this property to define the array name. 

dimensions dimensions: [3,1]               

dimensions: [3] 

dimensions: [1,3]  

dimensions: [3,2] 

Defines a 1 – dimensional vertical array with 3 

elements.  

Defines a 1-dimensional vertical array with 3 

elements.   

Defines a 2 – dimensional horizontal array with 3 
elements. 

Defines a 2 – dimensional array with 3 rows and 2 

columns. 

All arrays are 1 – based.  If missing, array shape will 

be defined by the shape of the value property; 

however, for easier readability of the code, the use of 

the dimensions property is recommended.   

value value: [1, 1, 1] Sets the value of the array. While it is unlikely that 

this property would be required within formulas, 

as typically the value of an object will be computed 

by formula, it is permissible.  See the example 

model, RGSpace2.json for an example.   

If dimensions property is missing, the shape of the 

variable array will be determined by the shape of the 

value property.  However, it is recommended that the 

dimensions property be used for readability 

purposes.   

 

5 Note: Excel functions not supported by the Rason modeling language are: Call(), Cell(), CubeX(), EuroConvert(), 

GetPivotData(), HyperLink(), Indirect(), Info(), Offset(), RegisterID(), PivotDim(), PivotCube(), FormulaText(), 

Dollar(), Fixed(), Replace(), Search(), Text() and SqlRequest(). 

 . 
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formula formula: "5 + 2.5*temp2" 

formula: "MATOP(Supply, 

'min', '+', 

transpose(Demand))" 

Enter a formula to calculate a result or array which 

will be used in a constraint, uncertain function or in 

the objective function.   

 

comment comment: "partsReq" array 

holds the number of parts 

required to produce each 

product" 

Enter a comment here to describe the data.  

Index Sets 
RASON uses index sets exclusively to dimension tables and arrays.  Typical mathematical programming 

models include multiple tables and arrays indexed over various index sets.   An index set should be created at 

the beginning of the model to establish a basis of order for each dimension appearing in a table or array.   

Otherwise, the user will be required to keep track of and maintain the correct order of elements in all arrays and 

tables present in the model. An index set is always a 1-dimensional array and must be defined within the 

indexSets section of the RASON model.   

The example code below creates two ordered sets, part and prod.  The part set contains five items (in order as 

entered):  chas, tube, cone, psup, and elec while the prod set contains 3 items:  tv, stereo, and speakers.  An 

indexSet is always defined as a JSON object{}.    
indexSets: { 

        part: { 

            value: ['chas', 'tube', 'cone', 'psup', 'elec'] 

        }, 

        prod: { 

            value: ['tv', 'stereo', 'speaker'] 

        } 

 

    }, 

data: { 

        parts: { 

            indexCols: ['part', 'prod'], 

            value: [ 

    

                ['chas', 'tv', 1], 

                ['elec', 'stereo', 1], 

                ['tube', 'tv', 1], 

                ['cone', 'tv', 2], 

                ['cone', 'stereo', 2], 

                ['chas', 'stereo', 1], 

                ['cone', 'speaker', 1], 

                ['psup', 'tv', 1], 

                ['psup', 'stereo', 1], 

                ['elec', 'tv', 2], 

                ['elec', 'speaker', 1] 

            ] 

        }, 

        profits: { 

            dimensions: ['prod'], 

            value: [75, 50, 35] 

        }, 



In the data section, a table is created that uses the dimensions part and prod as the index columns.  Since the 

index set prod exists, we can dimension the profits array according to this set in order to assign the correct 

profit values to the appropriate products.    

Members in a set are recorded as strings regardless of the name given to the element.  Typically, the members 

of the set describe or represent examples of the same type of item, i.e. product lines, cities, countries, inventory, 
etc.  The names of these items may be familiar (TVs, Stereos, Speakers) or not (Part 567, Part 987, Part 123).  

Regardless, the names of the set objects must be surrounded by a single quote and the entire set must be 

surrounded by [],  for example:  ['TVs', 'Stereos', 'Speakers'].   

Note:  The RASON modeling language does not consider upper and lower case letters distinct so one could not 

include TVs, tvs, and Tvs in the same set.  The name of an indexed set may be made up of letters, numbers, or 

symbols.  

A set may also be a collection of numbers.  Numbers will be treated as strings when used in an index set.  In the 

example below, the index set birth contains five elements:  1950, 1951, 1952, 1953, and 1954.   

indexSets :{ 

   birth: { value: [1950, 1951, 1952, 1953, 1954] } 

} 

Now let's assume that the following table is created that lists the year of birth and whether or not the person is 

still alive (1) or not (0).   
data: { 

      status: { 

            indexCols: ['birth'], 

            value: [ 

      [1950, 0], 

                [1951, 1] 

                [1952, 1], 

                [1953, 0], 

                [1954, 1] 

            ] 

        }, 

To refer to the coefficient for the year 1952, we would use:  status['1952'].  

 

Note:  If we were to use status[1952] (no quotes), this would obtain the 1,955th element of the status table, 

which does not exist in this particular example.  The only place you must reference index set components as 

strings is within the index operator [ ] when attached to a table name. 

This set contains five years as elements: 1950, 1951, 1952, 1953 and 1954.  We could have specified this same 

set by using the upper and lower properties to specify the lower and upper bounds of the set, respectively. 
indexSets : 

[ 

   { name: "birth", lower: 1950, upper: 1954 

  ], 

In the following example, the years are not given in chronological order.    

indexSets: { 

  { name: "years", value: [1958, 1930, 1940 , 1954, 1925]}, 

} 

 

In this case, the order of the set is the same as the order entered.  .   

However, in the example below, the sort property ensures that the years index is sorted alphabetically in 

ascending order.  (Note:  The properties sort and sortIndexCols perform the same function.)   

 

indexSets: { 
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  { name: "years", value: [1958, 1930, 1940, 1954, 1925], sortIndexCols: true }, 

} 

Note:  In the current implementation of RASON, operations over index sets are not supported.   

See the sections Array Formulas and/or Tables, appearing later on in this guide, for information on how to 

reference an index set in an array or table.  

Model Description 
Use modelDescription to add a text string containing the description of the model (optional). 
{ 

  "modelName":  "CollegeFundModel2",   

  "modelDescription":  "This is a simulation model that simulates activity    

  in a college savings account.", 

… 

}      

Model Name 
Use modelName to assign a name to the RASON model, optional.  RASON V2020 supports both named and 

unnamed models  A model becomes "named" either by including modelName:  "name" in the RASON model 

text and then calling POST rason.net/api/model or by simply calling POST rason.net/api/model/<name> or 

both.  Either call returns a Location header with a new resource ID that identifies this unique model instance.  

The "name" must be unique among models with a user's account. An unnamed model, or a model not containing 

modelName, has no name.   

• A model may be named by using a REST API call to POST rason.net/api/model/{name}, i.e. POST 

rason.net/api/model/TestModel2.  See the example response below, note the resource ID ( 

2590+TestModel2+2019-11-22-17-53-20-176350) that identifies the unique model instance.   

Location: https://rason.net/api/model/2590+TestModel2+2019-11-22-17-53-

20-176350 

• A model may also be named by using the property modelName: "name" in the body of the 

RASON model.  In the example code below, the model name is "TestModel1".  The RASON model 

will be "named" with a call to POST rason.net/api/model or POST rason.net/api/model/{name}.  If 

using POST rason.net/api/model/<name>, the name given to the modelName property and the name 

passed to POST rason.net/api/model/<name>  must be identical, otherwise, an error will be returned.   

 

See the example response below, again, note the resource ID (2590+TestModel1+2019-11-22-18-25-

40-015004) that identifies the unique model instance.   

Location: https://rason.net/api/model/2590+TestModel1+2019-11-22-18-25-40-

015004 

The RASON Server maintains a simple, one-level directory of named models as ordinary text files using Azure 

file storage.   

https://rason.net/api/model/2590+TestModel1+2019-11-22-18-25-40-
https://rason.net/api/model/2590+TestModel1+2019-11-22-18-25-40-


Additionally, a RASON model may be saved to the user's OneDrive for Business account.  If the model is 

stored in OneDrive for Business, the user must give the RASON server permission to access the account on 

OneDrive by adding a Data Connection on the MyAccount page at www.RASON.com. 

 

For more information on creating a Data Connection, see the Data Connections section within the RASON 

Subscriptions chapter in the RASON User Guide.  Note:  There is a 4 MB limit on the size of files written back 

to OneDrive or OneDrive for Business.   

Model Settings 
In this optional section, you may specify options relevant to the solve such as the number of optimizations or 

simulations to run, the number of trials to perform in a simulation model, what Stochastic Transformation 

method to use when solving a stochastic optimization model, if a nonsmooth model should be transformed, etc.   

The example code below sets Transform Nonsmooth to True and the number of optimizations to 2.  The order 

in which the options appear is not relevant.  

modelSettings: { 

        transformNonSmooth: true, numOptimizations:2 

    }, 

See below for a complete description of each available model option.   

*Note:  Unlimited in the tables below equals the maximum 32-bit integer setting, 2,147,483,647. 

Active Sheet 

 

 

 

Auto Adjust Chance Constraint 

Name activeSheet 

Used (only) during automatic conversion from Analytic 

Solver (desktop or online) to the RASON modeling 

language.   

Name chanceAutoAdjust 

Default  False 

Min False 

Max  True 

http://www.rason.com/


 
 
 

87 

 

 

 

 

 

 

 

Set this option to True if you want your Robust Counterpart model to be automatically re-solved while adjusting 

the size of uncertainty sets created for chance constraints, in an effort to find a better (less conservative) 

solution. This can take significantly more time for a large model. If this option is set to False (the default), the 

Robust Counterpart model will not automatically re-solve the model.   

Big M Value 

 

 

 

 

 

 

Use this option to set a "Big M" constant value to be used in newly generated constraints that result from a 

Nonsmooth Model Transformation. The default value is 1E6 or 1 million – but if you are using transformation 

features, you should ensure that this value is correct for your model: It must be bigger than any numeric value 

that may appear in your intermediate calculations (for example, bigger than any value a in an expression 

IF(a>=b,…)) but it should not be excessively large. If your value for the Big M option is smaller than the 
largest value that occurs in your intermediate calculations, the generated constraints will not have the desired 

effect, and your solution will not be valid for your original problem. If your Big M value is too large, the 

transformed model will be poorly scaled, and the Solver engine will likely encounter problems with numerical 

stability as it performs computations with your too-large values. So it pays to investigate the results computed 

by your what-if spreadsheet model, and set the Big M option appropriately. 

Chance Constraint Use 

 

 

 

This option determines the norm (distance measure) used to constrain the size of uncertainty sets in the Robust 

Counterpart model. Select from the L1 Norm, L2 Norm, L-Inf Norm, or D Norm (the default). The D norm is 

equivalent to the intersection of the L1 norm and L-Inf (infinity) norm. If you choose the L2 norm, the Robust 

Counterpart model will be a SOCP (second order cone programming) model, which requires an SOCP or 

smooth nonlinear solver (such as the SOCP Barrier Solver or GRG Nonlinear Solver). If you choose the L1, L-

Inf or D norm, the Robust Counterpart model will be an LP (linear programming) model that can be solved 

efficiently with an LP, QP, or SOCP Solver. 

Uncertainty Sets and Norms 

If a chance constraint is linear in the decision variables, you can use the USet (uncertainty set) criterion, in lieu 

of the VaR or CVaR criterion. The advantage of using this criterion is that the robust counterpart model more 

accurately reflects the degree to which you want the chance constraint to be satisfied, which can lead to less 

Type True or False 

Name BigM 

Default 1E+6 

Min -1.00E+30 

Max  +1.00E+30 

Type Double 

Name chanceConstraintNorm 

Options L1, L2, Linf, D 



conservative solutions, with better objective values. Consider a constraint: a1x1 + a2x2 + ... + anxn  b where =a1x1 + 

a2x2 + ... + anxn is in A1, b is in B, and some or all of the coefficients ai may depend on uncertain variables z1, z2, 

... It is useful to think of the vector [a1 a2 ... an] as having a nominal or expected value, and a variation from this 

value for each realization of the uncertain variables. A constraint of the form USetΩ A1 <= B1 specifies that A1 

<= B1 must be satisfied for all variations from the nominal value of [a1 a2 ... an] that do not exceed a bound Ω, 

measured by a norm. The uncertainty set includes all the points formed by adding a vector of allowed variations 

to the vector of nominal values; the bound Ω is often called the budget of uncertainty for the constraint. 

RASON allows you to choose among four different norms to measure variation from the nominal value: The 

L1, L2, L Inf (Infinity) and D norms. (One choice of norm applies to all chance constraints.) The graphs shown 

on the following pages may help you visualize the shape of the uncertainty set (based on two uncertain variables 

z1, z2) for each of the norms.  The D norm represents the intersection of the L1 norm and the L-Inf norm; thus it 

can define a ‘tighter’ uncertainty set than either of these norms alone. For the D norm, Ω can be interpreted as a 

bound on the number of coefficients [a1 a2 ...an] that depart from nominal values. When the D norm is used, the 

robust counterpart of a stochastic LP problem is a (larger, conventional) LP problem; when the L2 norm is used, 

the robust counterpart is an SOCP problem. 

L1 Norm     L2 Norm 

 

 

 

L Inf Norm    D Norm

 

 

Nonsmooth Model Transformation 

Name transformNonsmooth 

Default False 
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Use this option to choose whether Solver will attempt to transform constraints in your model that are non-

smooth functions of the decision variables into equivalent linear constraints that depend on newly introduced 

binary integer and continuous decision variables. Your model will be automatically diagnosed and if it contains 

non-smooth functions that are candidates for transformation, Solver will attempt the transformation and will 

diagnose the resulting expanded model. If your model is successfully transformed, you should be sure to check, 

and probably adjust, the Big M Value option. 

A simple example is the constraint: 

 constraint1: { 

            formula: "If(test1=0,test2,test3)", 

            upper: 100 

        }, 

If test1 is (or depends on) a decision variable, this constraint is non-smooth – in fact discontinuous – which 

means that the model cannot be solved to optimality by either linear programming (fastest and most reliable) or 

smooth nonlinear optimization.  

Assuming for simplicity that test1 is a decision variable that is non-negative, this constraint can be transformed 
by introducing a new binary integer variable Binary1, and a new constraint test1 <= BigM * Binary1, where 

BigM is a constant larger than any possible value for Binary1 (you can set this value with the Big M Value 

option). 

The IF function is replaced internally with =test3*Binary1+test2*(1-Binary1). Now when Binary1=0, the first 

term (test3 * Binary1) is forced to 0 (test3*0 = 0), and the function evaluates to test2 (test2 * (1-0)); when 

Binary1=1, the second term (test2 * (1 – Binary1) is forced to 0 (test2 * (1-1)), and the function evaluates to 

test3 (test3 * 1). The non-smooth IF function is transformed into a set of linear functions, so a faster and more 

reliable linear programming Solver can potentially be used – but the overall size of the model is increased. The 

Platform can perform much more complex transformations automatically, for constraints involving functions IF, 

AND, OR, NOT, MIN, MAX, and the relational operators <=, = and >=. Such transformations can result in a 

significantly larger model, but if the resulting model is entirely linear, this can be more than offset by the faster 
speed and reliability of a linear programming Solver. 

Optimizations to Run 

Name numOptimizations 

Default 1 

Min 1  

Max Unlimited* 

Type Integer 

 

Use this property to set the number of optimizations to run.  This is useful only if you’ve defined one or more 

optimization parameters, PsiOptParam().  You can use these features to run multiple, parameterized 

optimizations. For example, in a product mix example you could define an optimization parameter to be varied 

from (say) $100 to $50 to reflect different selling prices. If you set the Optimizations to Run value to 6, the 

Solver engine would solve 6 portfolio optimization problems: the first one would use a selling price of $50, the 

Min False 

Max  True 

Type True or False 



second would have a selling price of $60, and so on through the 6th problem with a selling price of $100. The 

results of all 6 optimizations will be returned in the Result.   

For more information on PsiOptParam(), please see the Parameters section explanation below.   

Random Seed 

 

 

 

 

 

 

Setting the random number seed to a nonzero value (any number of your choice is OK) ensures that the same 

sequence of random numbers is used for each simulation.  When the seed is zero, the random number generator 

is initialized from the system clock, so the sequence of random numbers will be different in each simulation.  If 
you need the results from one simulation to another to be strictly comparable, you should set the seed.  To do 

this, click the spinner next to the Random Seed edit box, or type the number you want into the box. 

You can specify a random seed for each uncertain variable if you wish (in the uncertainVariables 

section) by including the PsiSeed() property function as an argument to the PSI Distribution function formula 

for that variable.  The seed value you set using the model option randomSeed affects only uncertain variables 
that do not have PsiSeed() property functions. 

Run Specific Optimization 

Name optimizationIndex 

Default 

 

Min 1  

Max NumOptimizations 

Type Integer 

The specific optimization the Solver will perform, if multiple optimizations are defined. If PsiOptParam() 

exists, the parameter for the optimizationIndex specified will be used.   

Run Specific Simulation 

 

 

 

 

 

 

The specific simulation that will be performed if multiple simulations are defined. If PsiSimParam() exists, the 

parameter for the simulationIndex specified will be used.   

Name randomSeed 

Default 1 

Min 1 

Max  Unlimited* 

Type Integer 

Name simulationIndex 

Default 1 

Min 1 

Max  NumSimulations 

Type Integer 
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Simulation Optimization 

Name simulationOptimization 

Default False 

Min false  

Max True 

Type True or False 

Use this option to determine how an optimization model with uncertainty will be solved.  Your optimization 

includes uncertainty if the formula for the objective, or any constraint, depends (directly or indirectly) on an 

uncertain variable cell, where you’ve used a PSI distribution function (such as PsiNormal).  If 

simulationOptimization="True", then Simulation Optimization will be used to solve the RASON 

model.  This is the most general method (it can handle nonlinear and non-smooth models), but is also the 

slowest and least reliable.  

Simulations to Run 

 

 

 

 

 

 

Use this property to set the number of simulations to run. This is useful only if you’ve defined one or more 

simulation parameters, PsiSimParam().  You can use this feature to run multiple, parameterized simulations. 

For example, in an airline yield management model where the number of "noshows" for a departing flight 

depends on the number of tickets sold, you could define a simulation variable for the number of tickets sold as a 
simulation parameter, varied from (say) 100 to 150. If you set the Simulations to Run value to 51,  51 

simulations will be performed: the first simulation would use 100 tickets sold, the second would use 101 tickets 

sold, and so on through the 51st problem with 150 tickets sold. The results for all 51 simulations will be 

included in the Result.  For more information on PsiSimParam() please see the Parameters section explanation 

below.   

Use Sparse Variables 

 

 

 

 

 

 

Use this option to determine whether Rason should operate in (its own) Sparse mode or Dense mode. The 

default setting is False, meaning that the Interpreter operates in its Dense mode. 

If you set this option to True, Rason will use its own Sparse mode, which can save memory when your 

optimization model is sparse, but possibly at the expense of extra time, since a Structure analysis is always 

performed when analyzing or solving. 

Name numSimulations 

Default 1 

Min 1 

Max  Unlimited* 

Type Integer 

Name Sparse 

Default 0 (False) 

Min 0 (False)  

Max  1 (True) 

Type Boolean 



Use Sparse Cubes 

 

 

 

 

 

 

Use this option to determine whether Rason should calculate a cube defined by PsiCube() or PsiTableCube() 
using Sparse mode or Dense mode.   

Most large cubes are sparse in nature.  While they may contain thousands of elements, in practice, not all 

combinations of dimension elements are possible.   Hence, not all will define a model function during the Psi 

Interpreter's evaluation of the problem.  This means that most cubes will provoke output results as sparse cubes 

(with missing constraints).  Such sparsity in a cube, also known as structural sparsity, can be exploited to save 

memory and gain speed. 

A sparse cube is defined by missing values in cells for PsiCube() and by missing records for PsiTableCube().  If 

this option is equal to False and you have defined a cube using PsiCube() or PsiTableCube(), elements missing 

from the cube will be considered equal to 0. If you set this option to True, you have defined a cube using 

PsiCube() with missing values or PsiTableCube() with missing records, and the percentage of elements missing 
or empty is more than 30% of the total possible cube elements, those missing elements or records will not be 

included in the model.   

For an example of how to use a sparse cube see the Dimensional Modeling chapter in the Frontline Solvers 

User Guide.   

Stochastic Transformation 

 

 

 

 

Use this option to determine how an optimization model with uncertainty will be solved. Your optimization 

includes uncertainty if the formula for the objective, or any constraint, depends (directly or indirectly) on an 

uncertain variable cell, where you’ve used a PSI distribution function (such as PsiNormal). Stochastic 

Transformation works only with linear models that include uncertainty; it uses either stochastic programming or 

robust optimization methods to solve the problem (see the Transformation options for further information).  

You can choose Deterministic Equivalent or Robust Counterpart. This transformation can succeed only if 

your objective and constraints are linear functions of the decision variables (they can also depend on uncertain 

variables). 

Use this option to determine if an attempt is made to transform your optimization model with uncertainty into a 

conventional optimization model without uncertainty: either the Deterministic Equivalent model (as used in 
stochastic linear programming), or a Robust Counterpart model (as used in robust optimization).  

The result of a successful transformation is a conventional linear programming model, but with considerably 

more decision variables and constraints than the original model. Generally, the Robust Counterpart model is 

much smaller than the Deterministic Equivalent model, but the solution of this model may be only an 

approximate (and conservative) solution of the original problem. 

Name sparseCubes 

Default 0 (False) 

Min 0 (False)  

Max  1 (True) 

Type Boolean 

Name transformStochastic 

Options deterministicEquivalent 

or robustCounterpart 
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Trials Per Simulation 

 

 

 

 

 

 

Use this property to set the number of Monte Carlo trials to run in each simulation. The default value is 1,000 

trials, which is enough for a good statistical sample in most models. But applications such as estimating the 

value of options and other derivatives may need a higher number of trials. 

Objective  
This optional section is used for defining a normal, expected, or chance objective function in an optimization, 

stochastic optimization or simulation optimization model.   In the example below the objective is being 

maximized.  In return, the final value of the objective will appear in the result.   
 

objective: { 

        obj: { 

            type: "maximize", 

            formula: "sumproduct(parts, profits)", 

            finalValue: [] 

        } 

    } 

Please see the table below for all input properties available in objective.   

 

Input Property Example Definition 

aliasName aliasName: “num_parts_inventory” This property is automatically inserted into 

the converted RASON model when an 

Excel model is deployed through Analytic 

Solver’s Deploy Model button, if the cell 

containing the objective function is 

assigned a defined name in the Excel Solver 

model. 

comment comment: "Calculate Profit" Enter a comment here to describe the 

objective function.  (Optional) 

name name: "obj" Enter a name for the objective function. 

(Optional) 

type 1. type: "min" 

type: "minimize" 

2. type: "max" 

type: "maximize" 

 

Required.  Defines the problem as a 
“maximum” or “minimum” optimization 

model.    

 

formula formula: 

"sumproduct(X,partsReq[1,])"  

Calculates the objective function; formula 

must resolve to a scalar.  (Required.) 

Name numTrials 

Default 1 

Min 1 

Max  100,000,000 

Type Integer 



where X and partsReq are predefined arrays.   

 

chanceType chanceType: “ExpVal” 

chanceType: “VaR” 

chanceType: “CVaR” 

chanceType: “USet” 

 

Objective must contain uncertainties.   

Expected (ExpVal) – Sets the objective 

value to calculate the expected value of the 

objective or average over all simulation 

trials.   

Value at Risk (VaR) – Specifies that the 
chanceProbability percentile will be 

maximized.   

Conditional Value at Risk – Specifies the 

expected value of all the realizations of the 

objective up to the chanceProbability 

percentile will be maximized. 

Uncertainty Set – Specifies the objective 

must be maximized (or minimized) for all 

variations from the nominal value that does 

not exceed the chanceProbability.   

chanceProbability chanceProbability: 0.95 Defines the percentile for use with VaR, 
CVaR, and USet objective types.   

 

An output property must be specified within the objective definition as an empty array.   

The Objective Function  

The quantity you want to maximize or minimize is called the objective function. This could be a calculated value for 

projected profits (to be maximized), or costs, risk, or error values (to be minimized). If the objective function depends on 

uncertainties, we must specify how we want to ‘optimize’ this function. The most common practice is to maximize or 

minimize the expected value (informally, the mean value) of the objective, over all realizations of the uncertainties. 
Instead of maximizing or minimizing the expected value of a function of the decision variables and uncertainties, you 

can maximize or minimize a measure of the uncertainty in a function. The objective will be converted to the form max t 

or min t, where t is a new variable, and  a chance constraint will be inserted (A1 >= t or A1 <= t)  with the measure of 

uncertainty that you specify. 

Implicit and Explicit Forms for the Objective 

When you set chanceType: "ExpVal", your objective cell will be treated as implicitly containing E[objective], or 

using sample realizations of the uncertainty PsiMean(objective).  

  

Output Property Example Definition 

finalValue finalValue: [] Creates an empty array to hold the final objective value for the 

objective function.   

initialValue initialValue: [] Creates an empty array to hold the initial value for the objective 

function.   
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Parameters 
The RASON Modeling language supports two kinds of parameters: optimization and simulation parameters.   

• An optimization parameter (PsiOptParam) is automatically varied when you perform multiple 

optimizations. An optimization parameter is defined in the parameters section.  The model option, 

numOptimizations, must be set to an integer value greater than 1 in modelSettings.  For more 

information on how to set this option, please see the Model Settings section above.   

• A simulation parameter (PsiSimParam) is automatically varied when you perform multiple 

simulations. A simulation parameter is defined in the parameters section.  The model option, 

numSimulations, must be set to an integer value greater than 1 in modelSettings.  For more 

information on how to set this option, please see the Model Settings section above.   

The example below is for an optimization parameter.  A simulation parameter could be setup in the same way 

using PsiSimParam() and following the same steps below. 
 

parameters: { 

desired: { 

 formula: "PsiOptParam(0.10, 0.6)", finalValue: []  

}, 

}  

In this example, formula contains the PsiOptParam function with two arguments "0.10" and "0.60".  The 

first argument ("0.10") is the lower limit for the optimization parameter and the second argument ("0.60") is the 

upper limit for the optimization parameter.  If numOptimizations is set to 6 in modelSettings,  desired 

will equal 0.10 in the first optimization, 0.20 in the second optimization, 0.30 in the third optimization and 

ending with 0.60 in the sixth and final optimization.  The increment value is calculated as:  (upper – 

lower)/(numoptimizations-1).    

Alternatively, a list of values may be passed to PsiOptParam().   

 

parameters: { 

desired: { 

 formula: "PsiOptParam({0.18,0.08,0.45,0.35,0.50,0.60})", 

finalValue: []  

}, 

} 

PsiOptParam will use the values in order as they are given.  In the example above, in the first optimization 

desired will equal 0.18, in the 2nd optimization 0.08, in the third, 0.45,  and so on.  If numOptimizations is 

set to a number that is greater than the number of values passed, PsiOptParam() will return to the beginning of 

the sequence.  For example, if numOptimizations is set to 8, desired will equal 0.18 in the 7th optimization 

and 0.08 and in the 8th optimization.   

Variables 
The "variables" section is required in an optimization, simulation optimization or stochastic optimization model.  

Here you will define a variable or a block of variables, specify the variable "type" (integer, binary, 

semicontinuous, all different or conic), stipulate if the variable is to be a recourse variable (for use with 

stochastic optimization), identify lower or upper bounds for the variable(s), add a comment to describe the 

variables, and/or assign an initial value to the variable or variable block.  In return you may ask for the 

variable's final value, dual value, dual upper value and/or dual lower value.  In the example code below, three 

variables are defined (x[0], x[1], and x[2]).  All are given an initial value and lower bound of 0.  In return, the 

variable's final value (finalValue: []) will be returned in the result.   
 

variables: {  



        x: { dimensions: [3], value: 0, lower: 0, finalValue: [] 

        } 

    }, 

We also could have created the variable x array by using an alternate syntax, shown below. 
  

variables : [ 

    { name: "X", value: [1.0, 1.0, 1.0], finalValue:[], dualUpper: [],  

      dualLower: [], dualValue: [] } 

    ],  

Please see the table below for all input properties available in variables.   

 

Input 

Property 

Example Definition 

aliasName aliasName: “variables” This property is automatically inserted into the converted 
RASON model when an Excel model is deployed 

through Analytic Solver’s Deploy Model button, if a 

block of cells containing decision or recourse variables is 

assigned a defined name in the Excel Solver model. 

comment comment: "number of 

parts to produce" 

Enter a comment here to describe the variable or block of 

variables.  (Optional) 

name name: "numProducts" Enter a name for a variable or block of variables. 

(Optional) 

dimensions 1. dimensions: [3,1]               

2. dimensions: [3] 

3. dimensions: [1,3]  

4. dimensions: [3,2] 

1. Defines a 1 – dimensional vertical array with 3 

elements.  

2. Defines a 1 - dimensional vertical array with 3 

elements.   

3. Defines a 2 – dimensional horizontal array with 

3 elements. 

4. Defines a 2 – dimensional array with 3 rows and 

2 columns. 

All arrays are 1 – based.  If missing, variable array shape 

will be implicitly defined by the shape of the lower, 

upper, or value properties, however, for readability of the 

code, the use of the dimensions property is 

recommended.   

value value: [1, 1, 1] Sets the initial values of the variables to "1".   

If dimensions property is missing, the shape of the 

variable array will be determined by the shape of the 

value property.  If value is missing, the shape of the array 

will be determined by the lower or upper properties.  

However, it is recommended that the dimensions 

property be used for readability purposes.   

type 1. type: "int" 

      type:  "integer" 

2. type: "bin" 

      type: "binary" 

1. Defines the variable or variable block as integers.  

2. Defines the variable or variable block as binary 

integers.  

3. If present or missing, defines variable or variable 

block as a "real" variable.   
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3. type:  "real" 

4. type: "dif" 

      type: "alldif" 

5. type: "sem" 

      type:  "semCon" 

4. Defines the variable or variable block as having to be 

alldifferent.  Variables in an alldifferent group 

always have a lower bound of 1 and an upper bound 

of N, where N is the number of variables in the group. 

5. Defines the variable or variable block as 
semicontinuous variables.  This specifies that, at the 

solution, the variable must be either 0, or else a 

continuous value within a range, determined by the 

bounds on the variable 

recourse recourse:  true 

recourse:  false  

Defines the variable or variable block as recourse 

variable(s).  The default setting for this option is false.  

For more information on these types of variables, please 

see the topics below.  (Optional)   

lower* lower: 0 

lower: [1, 2, 3] 

lower: ‘availInvent’ 

where availInvent is an 

array of constants.   

Specifies the lower bound of the variable or variable 

block.  If an array is passed and dimensions or value 

properties are missing, the shape of the variable array 

will be determined by the shape of the lower property.  

However, it is recommended that the dimensions 
property be used for readability purposes.  If missing, the 

lower bound is defined as "unbounded".   (Optional) 

Note:  Only constant values are supported for this 

property.  If a formula is provided to lower:[], the error:  

"Can not be parsed" will be returned.   

upper* upper: 0 

upper: [1, 2, 3] 

upper: ‘availInvent’ 

where availInvent is an 

array of constants.   

Specifies the upper bound of the variable or variable 

block.  If an array is passed and dimensions or value 

properties are missing, the shape of the variable array 

will be determined by the shape of the upper property.  

However, it is recommended that the dimensions 

property be used for readability purposes.  If missing, the 
upper bound is defined as "unbounded".  (Optional) 

Note:  Only constant values are supported for this 

property.  If a formula is provided to upper:[], the error:  

"Can not be parsed" will be returned.   

*The RASON Server currently ONLY supports constant values (i.e. 3, 8.54, etc.) or an array containing 

constant values for the lower and upper properties.   

An output property must be specified within the variable definition as an empty array.   

Output Property Example Definition 

dualLower dualLower: [] Creates an empty array to hold the Allowable Decrease for 

the variable or variable block.   See the topic, Interpreting 

Reduced Costs below for more information on this property.   

dualUpper dualUpper: [] Creates an empty array to hold the Allowable Increase for the 

variable or variable block.  See the topic, Interpreting  

Reduced Costs below for more information on each of these 

properties.   

dualValue dualValue: [] Creates an empty array to hold the reduced cost for the 

variable or variable block.  The reduced cost for a variable is 

nonzero only when the variable is equal to its lower or upper 



Interpreting Reduced Costs 
 

Reduced Costs are the most basic form of sensitivity analysis information. The reduced cost for a variable is 

nonzero only when the variable’s value is equal to its upper or lower bound at the optimal solution. This is 

called a nonbasic variable, and its value was driven to the bound during the optimization process. Moving the 

variable’s value away from the bound (or tightening the bound) will worsen the objective function’s value; 

conversely, “loosening” the bound will improve the objective. The reduced cost measures the increase in the 

objective function’s value per unit increase in the variable’s value. The properties dualLower and 

dualUpper report the amount by which the variable's coefficient could be decreased or increased, 

respectively, without changing the dual value. 

Recourse Variables 

Conventional optimization deals with only one type of decision variable, which represents a decision that must 

be made ‘here and now,’ irrespective of any uncertainty in the model. We call this a normal or first-stage 

variable. If we are dealing with uncertainty that will be resolved in the future, then at some point the array of 

sample values for the uncertainty is effectively replaced by a single value, the realization of the uncertainty as it 

actually occurs. 

If the situation we are modeling allows us to make certain decisions after the uncertainty becomes known, on a 

‘wait and see’ basis, we can model these decisions with recourse variables, also called second-stage variables. 

(At the ‘second stage,’ the uncertainty has become known.) 

Uncertain Functions 
This section is required in a simulation model.  In return you may ask for the final value and/or any of the nine 

statistical values computed for the uncertain functions such as mean, standard deviation, variance, skewness, 

etc.  In the example code below, the uncertain function revenue is defined according to the formula property. 

In return, all 100 percentile values as well as the standard deviation will appear in the Result.   
 

uncertainFunctions: { 

        revenue: { 

            formula: "price*(sold - refund_no_shows*Round(no_shows, 0) –  

               refund_overbook*overbook)", 

            percentiles: [], 

  stdev:[] 

        } 

    } 

We also could have created the uncertain function revenue by using an alternate syntax, shown below.   

 

uncertainFunctions : { 

    [ name: "revenue",  

 

bound.  See the topic, Interpreting  Reduced Costs below for 

more information on each of these properties.    

finalValue finalValue: [] Creates an empty array to hold the final value for the variable 

or variable block.   

initialValue initialValue: [] Creates an empty array to hold the initial value of the 

variable. 

indexValue indexValue: [] Creates an empty array to hold the index value for each 

variable in the block of variables.   
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formula: "price*(sold - refund_no_shows*Round(no_shows, 0) –  

      refund_overbook*overbook)", 

      percentiles: [], 

stdev: [] 

    ] 

} 

Please see the table below for all input properties available in uncertainFunctions.   

Input 

Property 

Example Definition 

aliasName aliasName: “OutputFunctions” This property is automatically inserted into 

the converted RASON model when an 

Excel model is deployed through Analytic 

Solver’s Deploy Model button, if a block of 

cells containing uncertain functions are 

assigned a defined name in the Excel Solver 

model. 

comment comment: "number of no-shows for a 

flight" 

Enter a comment here to describe the 

uncertain function.  (Optional) 

name name: "no_shows" Enter a name for the uncertain function. 

(Optional)  

dimensions 1. dimensions: [3,1]               

2. dimensions: [3] 

3. dimensions: [1,3]  

4. dimensions: [3,2] 

1. Defines a 1 – dimensional vertical array 
with 3 rows and 1 column.  

2. Defines a 1-dimensional vertical array 

with 3 rows and 1 column.   

3. Defines a 2 – dimensional horizontal 

array with 1 row and 3 columns. 

4. Defines a 2 – dimensional array with 3 

rows and 2 columns. 

All arrays are 1 – based.  If creating a block 

of uncertain functions, you must use the 

dimensions property to define the size and 
shape of the array.  

formula formula: "price*(sold - 

refund_no_shows*Round(no_shows, 

0) –         

refund_overbook*overbook)" 

Use this property to calculate the uncertain 

function.  

Statistics Functions 

An output property must be specified within the uncertain function definition as an empty array.  An output 

property for an uncertain function is a statistic function such as mean or standard deviation.  During a 

simulation of 1,000 trials, 1,000 random sample values will be drawn for the uncertain function, and used to 

compute the statistic .  Hence, you can think of the uncertain function as ‘containing’ an array of 1,000 values.  

But the output property (i.e. mean) will contain one value, which is the average or mean of the 1,000 values 

computed for the uncertain function. 



Accessing Statistics from Different Simulations 

Each PSI Statistic function is assigned to an optional simulation index (default=1).  If you want statistic values 

from a specific simulation, say simulation #2, then you must set simulationIndex: 2 in 

modelSettings.  For more information, please see this option description in the Model Settings topic above.   

A Note to Analytic Solver Users 

• Selecting a specific simulation value within a statistic function is not supported.  If interested on a particular simulation then users 

should use simulationIndex in modelSettings.  Then output pertaining (only) to that simulation will be available in the results.   

• PsiTheo functions are currently not supported in RASON.   

• Statistics in an Analytic Solver model may be translated into a Rason model using Analytic Solver's Create App functionality when 

function arguments are explicitly provided as constants or cell references, if the cell references point to constant values.  For example, 

=PsiPercentile(cell, A1) where A1 = 0.5 or simply =PsiPercentile(cell, 0.5).   
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Output Property Example Definition 

absDev absDev:[] AbsDev returns the average of the absolute deviations of the 

specified uncertain function’s sample values from their mean. This 
is also known as Mean Absolute Deviation (MAD), especially in 

time series analysis applications. It is defined as: 

𝑀𝐴𝐷(𝑋) =
1

𝑛
∑|𝜇 − 𝑥𝑖|

𝑛

𝑖=1

 

Here μ is the mean of the sample values. 

bvar 

 

bvar(confidence_level): [] 

 

BVaR returns the Value at Risk for the specified uncertain function 

cell at the specified ‘confidence level,’ which is better described as a 

percentile – for example, 0.95 or 0.99.  (The “B” stands for “Basel” 

or “building block,” and is used to distinguish this function name 

from a function named PsiVar().) 

In finance applications, the Value at Risk is the maximum loss that 

can occur at a given confidence level.  In a distribution of returns or 

profits, losses would lie at the “left end” of the distribution and 

would be represented by negative numbers and smaller percentiles 
(say 0.01 or 0.05).  But it is customary in Value at Risk analysis to 

treat losses as positive numbers at the “right end” of the distribution.   

Consider a Normal distribution, bvar (percentile) would be 

converted as –percentile(1- percentile). 

citrials citrials(confidence_level, tolerance):[] 

 

CITrials returns the estimated number of simulation trials needed to 

ensure that the specified uncertain function's sample mean value 

(returned by the PsiMean() function) lies within the confidence 

interval specified by confidence level (for example 0.95 or 0.99) and 

the half-interval size given by tolerance.  

Note that this number of trials is sufficient only to ensure that the 

single output value specified by cell lies within the confidence 
interval.  To ensure that N output cells lie within confidence 

intervals at level 1 -  (e.g. 0.95 = 1 – 0.05), use a confidence level 

of   / N. 

coeffVar coeffVar: [] CoeffVar finds the coefficient of variation for the specified 
uncertain function.  This function is defined as the ratio of the 

standard deviation to the mean and is calculated as: 

vc



=

  

This statistic measures the magnitude of the variability in relation to 

the mean of the population.   

correlation correlation(unc_func_or_var): [] 

Example where correlation statistic is 

used to return a correlation coefficient 

between two uncertain functions, 

uncFunc1 and uncFunc2.   
 

uncertainFunctions: { 

  "uncFunc1": {"formula": "e17"}, 

  "uncFunc2": {"formula": "d17",      

     "correlation(uncFunc1)": []} 

 

The correlation statistic returns the Pearson product moment 

correlation coefficient betweentwo uncertain variables or functions.  

Correlation is a measure of linear dependence between two 

uncertain variables or functions.  The correlation coefficient can 

take on values between -1 and +1.  A correlation of -1 indicates a 

perfect negative correlation (the cells move linearly in opposite 

directions); a correlation of +1 indicates a perfect positive 

correlation (the cells move linearly in the same direction). If the two 

random variables are independent, then their correlation coefficient 
is zero; but if the correlation coefficient is zero, this does not 

necessarily mean that the two variables are independent.   

Pearson’s product moment correlation coefficient between random 

variables X and Y is defined as: 



𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌

=
𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌])]

𝜎𝑋𝜎𝑌

 

In Monte Carlo simulation, this value is computed from the sample 

values x[] and y[] over n trials as: 

𝑟𝑥,𝑦 =
𝑛 ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 − (∑ 𝑥𝑖

𝑛
𝑖=1 )(∑ 𝑦𝑖

𝑛
𝑖=1 )

√[𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1 − (∑ 𝑥𝑖
𝑛
𝑖=1 )2][𝑛 ∑ 𝑦𝑖

2𝑛
𝑖=1 − (∑ 𝑦𝑖

𝑛
𝑖=1 )2]

 

 

count count(type): [] The count statistic returns the number of trials of the specified type 

executed in the most recent simulation for the uncertain function.  

The type argument may be 0 for all trials, 1 for normal or ‘success’ 

trials (where the calculated uncertain function resulted in a number), 

or 2 for error or ‘failed’ trials (where the calculated uncertain 

function resulted in an error value).   

cvar cvar(percentile):[] CVaR returns the conditional Value at Risk for the specified 

uncertain function cell, at the specified ‘confidence level’ which is 

better described as a percentile – for example, 0.95 or 0.99.  The 

conditional Value at Risk is defined as the expected value of a loss 

given that a loss at the specified percentile occurs. 

Like PsiBVaR, PsiCVaR returns a loss as a positive number.  It is 

computed as the negative of the mean value of the specified 

uncertain function for the trials that lie between Min:[] and 

Percentile(1-percentile), inclusive. 

expGain expGain:[] PsiExpGain returns the average of all positive data multiplied by 1 -  

percentrank of 0 among all data. It is always a positive number. 

expGainRatio expGainRatio: [] PsiExpGain returns the expected gain ratio for a specified uncertain 
function.  This function is calculated as: 

𝐸𝑥𝑝𝐺𝑎𝑖𝑅𝑎𝑡𝑖𝑜 =
𝐸𝑥𝑝𝐺𝑎𝑖𝑛

𝐸𝑥𝑝𝐺𝑎𝑖𝑛+|𝐸𝑥𝑝𝐿𝑜𝑠𝑠|
  

This value ranges between 0 and 1 inclusive.   

expLoss expLoss:[] ExpLoss returns the average of all negative data multiplied by the 

percentrank of 0 among all data. It is always a negative number. 

expLossRatio expLossRatio:[] ExpLoss returns the expected loss ratio for a specified uncertain 

function.  This function is calculated as: 

This value ranges between 0 and 1 inclusive.    

expValMargin expValMargin:[] ExpValMargin is calculated as: 

ExpValMargin = ExpGainRatio – ExpLossRatio.   

This statistic ranges between -1 and 1 inclusive.   

frequency frequency(frequency_type, bin bounds): 

[] 

example:  frequency(0, -125000, -100000 

100000,200000): [] 

Frequency returns an array of frequencies describing the distribution of 

trial values for the specified uncertain function.  Use this statistic to 

obtain the data required to draw a histogram chart in your application.   

The freq_type argument affects the contents of each element of the array 

result and can be 0, 1 or 2: 

0    0 – Each element contains the frequency of trial values falling into the 

corresponding bin (like a probability density function) 
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1    1 – Each element contains the cumulative frequency of trial values 

falling into the corresponding bin plus all lower bins (like a cumulative 

distribution function) 

2    2– Each element contains the cumulative frequency of trial values falling 

into the corresponding bin plus all higher bins (like a reverse cumulative 
distribution function) 

In RASON, the bin_bounds argument is an array of values (e.g. { 5, 

10, 15, 20 })  given in strictly increasing order.  The number of 

elements in the array result will be one more than the number of 

values or cells in the bin bounds argument; the last element contains 

the number of trial values larger than the highest bin bound value. 

indexValue indexValue: [] 
Creates an empty array to hold the indexValue of the uncertain  

function. 

kendallTau kendallTau(unc_func_or_var): [] 

Example where KendallTau statistic is 

used to return a correlation coefficient 

between two uncertain functions, 
uncFunc1 and uncFunc2.   
 

uncertainFunctions: { 

  "uncFunc1": {"formula": "e17"}, 

  "uncFunc2": {"formula": "d17",      

     "kendallTau(uncFunc1)": []} 

 

The KendallTau statistic returns a non-parametric correlation 

coefficient (based on the relative ordering of ranks) between two 

uncertain variables or functions.  This statistic can be used to 

determine how (if at all) the two uncertain variables or functions are 

correlated.   

The Kendall Tau rank correlation coefficient measures the ordinal 

association between two uncertain variables or functions.  It is a 

measure of rank correlation.  This correlation coefficient is high 

when observations have a similar rank between the two variables, 

and low when observations have a dissimilar rank between the two 

variables. 

kurtosis 

kurt 

kurtosis: [] 

kurt: [] 

Kurtosis returns the kurtosis for the specified uncertain function 

cell.  Kurtosis is the 4th moment and measures the peakedness of the 

distribution of trial values.  It is computed as: 

( )
( )

( )

4

1

2

2

1

n

i

i

n

i

i

n x

kurtosis X

x





=

=

−

=
 

− 
 





 

where μ is the mean of the trial values. A higher kurtosis indicates a 
distribution with a sharper peak and heavier tails, and that more of 

the variability is due to a small number of extreme outliers or 

values; a lower kurtosis indicates a distribution with a rounded peak 

and that more of the variability is due to many modest-sized values. 

maximum 

max 

maximum: [] 

max: [] 

Max returns the maximum value attained by the specified uncertain  

function over all the trials in the simulation. 

mean 

average 

expectation 

mean: [] 

average: [] 

expectation: [] 

 

Mean returns the mean value for the specified uncertain function.  

The mean or average value is the 1st moment of the distribution of 

trials and is computed as: 

1

n

i

i

x

n
 ==


 



The mean is frequently used as a measure of central tendency or the 

“middle” of an uncertain variable; but for skewed distributions, care 

must be taken in using the mean as a measure of central tendency 

because the mean is easily distorted by extreme outlier values. 

meanCI meanCI(confidence_level) MeanCI returns the confidence “half-interval” for the estimated 

mean value (returned by mean: []) for the specified uncertain 
function, at the specified confidence level (for example 0.95 or 

0.99).  If μ is the value returned by mean:[] and δ is the value 

returned by meanCI(confidence_level):[], the true mean is estimated 

to lie within the interval μ - δ to μ + δ. 

The confidence level can be interpreted as follows:  If we compute a 

large number of independent estimates of confidence intervals on 

the true mean of the uncertain function, each based on n 

observations with n sufficiently large, then the proportion of these 

confidence intervals that contain the true mean of the function 

should equal the confidence level. 

If σ2 (n) is the sample variance from n trial values,  = 1 – 

confidence level, and tn-1, 1-α/2 is the upper 1-α/2 critical point of the 
Student’s t-distribution with n-1 degrees of freedom, the confidence 

half-interval δ is computed as: 

( )2

1,1
2

n

n
t

n



− −

 

The confidence interval measures the precision with which we have 

estimated the true mean.  Larger half widths imply that there is a lot 

of variability in our estimates.  The above formula for the half-width 

assumes that the individual xis are normally distributed; when this is 

not the case, the above formula still gives us an approximate 

confidence interval on the true mean of the uncertain function. 

meanCIB meanCIB(confidence_level, 

[lowerbound]):[] 

MeanCIB returns the lower or upper bound of the confidence 

interval (half width) of the mean value for the specified uncertain 
function. 

Confidence_level – Enter the desired confidence level, i.e. 0.95 or 

0.99. 

lowerbound – (Optional) Enter true for the lower (default) or false 

for the upper bound. 

Example:  meanCIB(.99, true, 5) returns the lower bound for the 

99% confidence interval for the distribution for simulation index 5.   

median median: [] Mean:[] returns the median value for the specified uncertain  

function.  The median value is the 50th percentile of the distribution 

of trials and is computed as:  

          ( )  1 /2
    

n
X

+                   if n is odd 

 

                        
( )/2 /2   1

 

2

n n
X X

+
+

       if n is even  
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The median is a very useful statistic for measuring the center of a 

distribution.    

minimum 

min 

minimum: [] 

min: [] 

Min returns the minimum value attained by the specified uncertain  

function  over all the trials in the simulation. 

mode mode: [] Mode returns the mode of the specified uncertain  function.  For 

discrete distributions, this is the most frequently occurring value 
(where the probability mass function has its greatest value).  For 

continuous distributions, Mode() returns the half-sample mode as 

defined by D.R. Bickel, a robust estimator that is less sensitive to 

outliers than most other estimators of location. 

percentileCI percentile(percentile, confidence_level): 

[] 

PercentileCI returns the confidence “half-interval”  for a given 

percentile (.01-.99) value for the specified uncertain function.   

This function is computed as:  Lower:  Percentile-PercentileCI, 

Upper:   Percentile + PercentileCI. 

Since the output of PercentileCI is symmetric, the mean and median 

are theoretically the same, i.e. MeanCI(0.95) is expected to be 

approximately equal to PercentileCI(0.5, 0.95).  

This function together with MeanCI, MeanCIB, StdDevCI, CITrials 

and the newly added TargetCI, make up the confidence interval 

functions in RASON.    

Example:  PercentileCI (0.95, 0.99,2):[]  - Finds the confidence half-

interval for the uncertain function using the 95th percentile and a 

confidence level of 99% for the 2nd simulation.   

percentileD percentileD(percentile): [] PercentileD returns a descending percentile (.01-.99) value for the 

specified uncertain function:  This means that m (or m%) of the 

simulation trials have values less than the returned value, where m is 

the percentile. 

percentiles  percentiles: [] 

 percentile(confidence_level):[] 

  

percentiles: [] returns all percentile (.01-.99) values for the specified 

uncertain  function:  This means that m (or 100m%) of the 
simulation trials have values less than the returned value, where m is 

the percentile. 

percentile(0.X) - Returns the specific percentile value.  Values must 

be between 0.01 and 0.99.     

range range: [] Range returns the range of the specified uncertain function cell. The 

range is the difference between the maximum and minimum values 

attained in the distribution of trial values. 

semiDev semiDev(q, [target]): [] SemiDev returns the semideviation for the specified uncertain 

function, relative to the target if specified.  If the target is omitted, 

the mean value is used.  This is a one-sided measure of dispersion of 

values of the uncertain function.  The semideviation is the square 
root of the semivariance, described directly below.  If a q argument 

different from 2 is specified, SemiDev(): [] returns the qth root of 

the lower partial moment at power q of the uncertain function. 

semiDev2 semiDev2([lowerdata]): [] SemiDev2 returns the standard deviation of the values in the 

distribution below or above the mean or the square root of 

SemiVar2. 



lowerdata – (Optional) Enter true for the lower (default) or false for 

the upper data. 

Example:  semiDev2(true, 5) returns the standard deviation of the 

values below the mean for the distribution for simulation index 5.    

semiVar semiVar(q, target): [] SemiVar returns the semivariance for the specified uncertain 

function, if the argument q is omitted, or the ‘lower partial moment’ 
for the function, if an argument q different from 2 is specified.  The 

semivariance is computed relative to the target if specified, or 

relative to the mean value if target is omitted.  This is a measure of 

the dispersion of values of an uncertain function, but unlike the 

variance which measures (or penalizes) both positive and negative 

deviations from the target, the semivariance or lower partial moment 

is only concerned with one-sided deviations from the target.  It is 

usually used in finance and insurance applications, when we are 

only concerned with downside risks (or loss in portfolio value).  The 

semivariance is computed by summing only the downside 

differences from the target of all the trials, raised to the given power 
q, divided by the number of trials: 

( )

( ) ( )
1

1

max ,0

target value

n
q
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All trials – not just the trials with downside deviations – are 

included in n.  Again if q is different from 2, the result is called the 

‘lower partial moment. 

semiVar2 sermiVar2([lowerdata]): [] SemiVar2 returns the variance of the values in the distribution 

below or above the mean. 

lowerdata – (Optional) Enter true for the lower (default) or false for 

the upper data. 

Example:  =SemiVar2(true, 5) returns the variance of the values 
below the mean for the distribution for simulation index 5.    

sigmaCP  sigmaCP(lower_limit, upper_limit): [] A Six Sigma index, PsiSigmaCP predicts what the process is 

capable of producing if the process mean is centered between the 

lower and upper limits.  This index assumes the process output is 

normally distributed.   

𝐶𝑝 =
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

6𝜎̂
  

where 𝜎̂ is the estimated standard deviation of the process. 

sigmaCPK sigmaCPK(lower_limit, upper_limit, ): [] A Six Sigma index, PsiSigmaCPK predicts what the process is 

capable of producing if the process mean is not centered between 

the lower and upper limits.  This index assumes the process output is 

normally distributed and will be negative if the process mean falls 
outside of the lower and upper specification limits. 

𝐶𝑝𝑘 =
𝑀𝐼𝑁(𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂,𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡)

3𝜎̂
  

where 𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the 

process.   
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sigmaCPKLower sigmaCPKLower(lower_limit, 

[simulation]): [] 

A Six Sigma index, PsiSigmaCPKLower calculates the one-sided 

Process Capability Index based on the lower specification limit.   

This index assumes the process output is normally distributed. 

𝐶𝑝, 𝑙𝑜𝑤𝑒𝑟 =
𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

3𝜎̂
  

where 𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the 

process.   

 

sigmaCPKUpper sigmaCPKUpper(lower_limit): [] A Six Sigma index, PsiSigmaCPKUpper calculates the one-sided 

Process Capability Index based on the upper specification limit.   

This index assumes the process output is normally distributed. 

𝐶𝑝, 𝑢𝑝𝑝𝑒𝑟 =
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

3𝜎̂
  

where 𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the 

process.   

sigmaCPM sigmaCPM(lower_limit, upper_limit: [] A Six Sigma index, PsiSigmaCPM calculates the capability of the 

process around a target value.  This index is referred to as the 

Taguchi Capability Index.   This index assumes the process output is 

normally distributed and is always positive. 

𝐶𝑝𝑚 =
𝐶̂𝑝

√1+(
𝜇̂−𝑇

𝜎̂
)2

  

where 𝐶̂𝑝 is the process capability (PsiSigmaCP),  𝜇̂ is the process 

mean, 𝜎̂ is the standard deviation of the process and T is the target 

process mean.   

sigmaDefectPPM sigmaDefectPPM(lower_limit, 

higher_limit) 

A Six Sigma index, PsiSigmaDefectPPM calculates the Defective 

Parts per Million.   

𝐷𝑃𝑀𝑂 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
) + 

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
)) ∗ 1000000 

where𝜇̂ is the process mean, 𝜎̂ is the standard deviation of the 

process and 𝛿−1 is the standard normal inverse cumulative 

distribution function.     

sigmaDefectShiftPPM sigmaDefectShiftPPM(lower_limit,  

upper_limit, shift): [] 

A Six Sigma index, PsiSigmaDefectShiftPPM calculates the 

Defective Parts per Million with an added shift.   

𝐷𝑃𝑀𝑂𝑆ℎ𝑖𝑓𝑡 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) + 

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)) ∗ 1000000  

where𝜇̂ is the process mean, 𝜎̂ is the standard deviation of the 

process and 𝛿−1 is the standard normal inverse cumulative 

distribution function.     

sigmaDefectShiftPPMLower sigmaDefectShiftPPMLower(lower_limit, 
shift) 

A Six Sigma index, PsiSigmaDefectShiftPPMLower calculates the 
Defective Parts per Million, with a shift, below the lower 

specification limit.   



𝐷𝑃𝑀𝑂𝑠ℎ𝑖𝑓𝑡, 𝑙𝑜𝑤𝑒𝑟 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) ∗

1000000  

where𝜎̂ is the standard deviation of the process and 𝛿−1 is the 

standard normal inverse cumulative distribution function.    

sigmaDefectShiftPPMUpper sigmaDefectShiftPPMUpper(upper_limit) A Six Sigma index, PsiSigmaDefectShiftPPMUpper calculates the 
Defective Parts per Million, with a shift, above the lower 

specification limit.   

𝐷𝑃𝑀𝑂𝑠ℎ𝑖𝑓𝑡, 𝑢𝑝𝑝𝑒𝑟 = (𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) ∗

1000000  

where𝜎̂ is the standard deviation of the process and 𝛿−1 is the 

standard normal inverse cumulative distribution function.        

sigmaK sigmaK(lower_limit, upper_limit): [] A Six Sigma index, PsiSigmaK calculates the Measure of Process 

Center and is defined as: 

1 −
2∗𝑀𝐼𝑁(𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂,𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡)

𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡
  

where𝜇̂ is the process mean. 

 

sigmaLowerBound sigmaLowerBound(number_stdev) A Six Sigma index, PsiSigmaLowerBound calculates the Lower 

Bound as a specific number of standard deviations below the mean 

and is defined as:   

𝜇̂ − 𝜎̂ ∗ #𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠  

 

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the 

process.   

sigmaProbDefectShift sigmaProbDefectShift(lower_limit, 

upper_limit, shift) 

A Six Sigma index, PsiSigmaProbDefectShift calculates the 

Probability of Defect, with a shift, outside of the upper and lower 
limits.  This statistic is defined as:     

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) + 

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)  

where𝜇̂ is the process mean ,𝜎̂ is the standard deviation of the 

process and 𝛿−1 is the standard normal inverse cumulative 

distribution function.    

sigmaProbDefectShiftLower sigmaProbDefecShiftLower(lower_limit, 

shift) 

A Six Sigma index, PsiSigmaProbDefectShiftLower calculates the 

Probability of Defect, with a shift, outside of the lower limit.  This 

statistic is defined as:     

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)  

where𝜇̂ is the process mean ,𝜎̂ is the standard deviation of the 

process and 𝛿−1 is the standard normal inverse cumulative 

distribution function.     

sigmaProbDefecShiftUpper sigmaProbDefecShiftUpper(upper_limit, 

shift) 

A Six Sigma index, PsiSigmaProbDefectShiftUpper calculates the 

Probability of Defect, with a shift, outside of the upper limit.  This 

statistic is defined as:     



 
 
 

109 

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)  

where𝜇̂ is the process mean ,𝜎̂ is the standard deviation of the 

process and 𝛿−1 is the standard normal inverse cumulative 
distribution function.    

sigmaUpperBound sigmaUpperBound(number_stdev) A Six Sigma index, PsiSigmaUpperBound calculates the Upper 

Bound as a specific number of standard deviations above the mean 

and is defined as:   

𝜇̂ − 𝜎̂ ∗ #𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠  

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the 

process.   

sigmaYield  sigmaYield(lower_limit, upper_limit, 

shift) 

A Six Sigma index, PsiSigmaYield calculates the Six Sigma Yield 

with a shift, or the fraction of the process that is free of defects.   

This statistic is defined as:     

𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) − 

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)  

where𝜇̂ is the process mean, 𝜎̂ is the standard deviation of the 

process and 𝛿−1 is the standard normal inverse cumulative 

distribution function.  

sigmaZLower sigmaZLower(lower_limit): [] A Six Sigma index, PsiSigmaZLower calculates the number of 

standard deviations of the process that the lower limit is below the 

mean of the process.  This statistic is defined as:     

𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂
  

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the 

process.  

sigmaZMin sigmaZMin(lower_limit, upper_limit,  

[simulation]) 

A Six Sigma index, PsiSigmaZLower calculates the minimum of 

PsiSigmaZLower and PsiSigmaZUpper.  This statistic is defined as:     

 

𝑀𝐼𝑁(𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡,𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂)

𝜎̂
  

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the 

process.     

sigmaZUpper sigmaZLower(upper_limit): []   A Six Sigma index, PsiSigmaZUpper calculates the 

number of standard deviations of the process that the upper limit is 

above the mean of the process.  This statistic is defined as:     

𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
  

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the 
process.   

skewness 

skew 

Skewness: [] 

Skew: [] 

Skewness returns the skewness for the specified uncertain  function.  

Skewness is the 3rd moment of an uncertain  function, and describes 

the asymmetry of its distribution.  Skewness can be either positive 

or negative: Positive skewness implies that the distribution is right 

skewed (longer right tails), and negative skewness implies that the 



distribution is left skewed (longer left tails). Skewness is computed 

as: 
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where μ is the mean of the trial values. 

spearmanRho spearmanRho(unc_func_or_var): [] 

Example where SpearmanRho statistic is 
used to return a correlation coefficient 

between two uncertain functions, 

uncFunc1 and uncFunc2.   
 

uncertainFunctions: { 

  "uncFunc1": {"formula": "e17"}, 

  "uncFunc2": {"formula": "d17",      

     "spearmanRho(uncFunc1)": []} 

 

 

The SpearmanRho statistic returns a non-parametric measure (based 

on trial ranks). This function measures the correlation between two 

uncertain variables or functions.  This statistic can be used to 
determine how (if at all) the two uncertain variables or functions are 

correlated. 

The Spearman correlation between two variables is equal to the 

Pearson correlation between the rank values of those two variables; 

while Pearson's correlation assesses linear relationships, Spearman's 

correlation assesses monotonic relationships (whether linear or not). 

If there are no repeated data values, a perfect Spearman correlation 

of +1 or −1 occurs when each of the variables is a perfect monotone 

function of the other. 

The Spearman correlation between two variables will be high when 
observations have a similar rank between the two variables or 

functions, and low when observations have a dissimilar rank 

between the two variables or functions. 

stdDevCI stdDevCI(confidence_level): [] StdDevCI returns the confidence ‘half-interval’ for the estimated 

standard deviation of the simulation trials (returned by the 

stdDev():[] function) for the specified uncertain function cell, at 

confidence level (for example 0.95 or 0.99).  If σ is the value 

returned by stdDev():[] and δ is the value returned by stdDevCI():[], 

the true mean is estimated to lie within the interval σ - δ to σ + δ. 

If σ2 (n) is the sample variance from n trial values,  = 1 – 

confidence level, and tn-1, 1-α/2 is the upper 1-α/2 critical point of the 

Student’s t-distribution with n-1 degrees of freedom, the confidence 

half-interval δ is computed as: 

𝑡
𝑛−1,1−

𝛼
2

𝜎(𝑛)√
𝑘 − 1

4(𝑛 − 1)
 

See also the description of the MeanCI() function. 

stdev stdev: [] StdDev returns the standard deviation for the specified uncertain  

function.  Standard deviation is a measure of the dispersion of an 

uncertain  function, and accounts for both positive and negative 

deviations from the mean. The square of standard deviation is the 

Variance.  Standard deviation is defined as: 

( )  ( )

( ) ( )
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The sampled population standard deviation is given by
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where E[.] is the expected value, and µ is the mean of the trial 

values. As a rough rule, about ¾ of the values of any uncertain 

variable are within two standard deviations from the mean. A large 

standard deviation indicates that most of the trial values are away 

from the mean, and a small standard deviation indicates that most of 

the trial values are close to the mean. 

sterr sterr: [] StdErr finds the standard error of the mean of the specified uncertain 

function.  This function can be defined as the standard deviation of 

the sample mean ans is calculated as: 

𝑆𝐸𝑥 =
𝑠

√𝑛
  

where s is the sample standard deviation and n is the size of the 
sample.   

target target(target_value_[simulation]: [] Target returns the cumulative frequency of the target value in the 

distribution of trial values for the specified uncertain function.  This 

function returns the proportion of simulated values for the uncertain 

function that are less than or equal to target value. 

targetCI targetCI(target_value, confidence_level) TargetCI returns the confidence “half-interval” for the cumulative 

probability of the target value in a distribution of trial values for the 

specified uncertain function.  This means that Target is accurate 

within Target +/- TargetCI with a given confidence level.   

This function is computed as:  Lower:  Target-TargetCI, Upper:   

Target + TargetCI. 

This function together with MeanCI, MeanCIB, StdDevCI, CITrials 

and the newly added PercentileCI, make up the confidence interval 

functions in Rason Services.    

Example:  TargetCI (7, 0.99,2)  - Finds the confidence half-interval 

for the uncertain function for the target value = 7, using a confidence 

level of 99% for the 2nd simulation.   

 

targetD targetD(target_value) TargetD returns the descending cumulative probability of the target 

value in the distribution of trial values for the specified uncertain 

function.  This function returns the proportion of simulated values 

for the uncertain function that are less than or equal to target value. 

trials trials: []  Returns the trial values of the uncertain  function.   

variance 

var 

Variance: [] 

var: [] 

Variance returns the variance for the specified uncertain  function.  

Like standard deviation, variance is a measure of the spread or 

dispersion of the distribution of trial values for the uncertain 

function, and takes into account both positive and negative 

deviations from the mean.  The square root of variance is the 

standard deviation.  The variance is the 2nd moment of the 

distribution of trials and is computed as: 

( )  ( )

( ) ( )
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1
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The sampled population variance is given by
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Uncertain Variables  
The "uncertain variables" section is required in a simulation, simulation optimization or stochastic optimization 

model.  Here you will define an uncertain variable or block of uncertain variables using a PSI distribution such 

as PSILogNormal or PSITriangular.  In return you may ask for the final value and/or any of the twelve 

statistical values computed for the uncertain variables such as mean, standard deviation, variance, skewness, 

etc.  

In the example code below,  the uncertain variable no_shows follows the PsiLogNormal distribution with 

parameters mean = 5 and standard deviation = 1.  In return, the expected mean of the function (mean: [])  

and the standard deviation (stdev: []) will be returned in the Result.   
 

uncertainVariables: { 

        no_shows: { 

            formula: "PsiNormal(5, 1)", 

            mean: [], 

  stdev: [] 

        } 

    }, 

We also could have created the uncertain variable no_show array by using an alternate syntax, shown below.   

  

 uncertaionVariables : { 

    { name: "no_shows",  

formula: "PsiNormal(5,1)" , 

mean: [], 

stdev: [] 

    } 

} 

Note:  Psi Distribution functions, such as PsiNormal(), PsiBeta(), etc., must be assigned to a single variable 

within the uncertainVariable section, in a RASON model.  The use of Psi Distribution functions in an array is 

not supported.   

Please see the table below for all input properties available in uncertainVariables.   

Input 

Property 

Example Definition 

aliasName aliasName: “variables” This property is automatically inserted into the converted 

RASON model when an Excel model is deployed 
through Analytic Solver’s Deploy Model button, if a 

block of cells containing uncertain variables is assigned a 

defined name in the Excel Solver model. 

comment comment: "number of no-shows 

for a flight" 

Enter a comment here to describe the uncertain variable.  

(Optional) 

name name: "no_shows" Enter a name for the uncertain variable. (Optional) 

dimensions 5. dimensions: [3,1]               

6. dimensions: [3] 

7. dimensions: [1,3]  

8. dimensions: [3,2] 

5. Defines a 1 – dimensional vertical array with 3 rows 

and 1 column.  

6. Defines a 1-dimensional vertical array with 3 rows 

and 1 column.   

7. Defines a 2 – dimensional horizontal array with 1 

row and 3 columns. 
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8. Defines a 2 – dimensional array with 3 rows and 2 

columns. 

All arrays are 1 – based.  If creating a block of variables, 

you must use the dimensions property to define the size 

and shape of the array.  

formula formula: "PsiNormal(5,1)" Use this property to define the Psi Distribution function 
used in the uncertain variable.  

To add cutoffs values, censor values, a correlation 

matrix, shift, etc, use the appropriate Psi function within 

this property, i.e.  

formula: =PsiNormal(5,1,PsiTruncate(3, 

7)).   

See below for a list of all Psi Distributions and Psi 

Distribution function properties supported.  

Psi Distribution Functions 

The PSI Distribution functions are used to define the ‘nature of the uncertainty’ assumed by uncertain variables.  

They can be broadly classified into four groups: 

• Continuous analytic distributions such as PsiUniform() and PsiNormal() 

• Discrete analytic distributions such as PsiBinomial() and PsiGeometric() 

• Custom distributions such as PsiCumul() and PsiGeneral() 

• Special distributions such as PsiSip() and PsiSlurp() 

On each trial of a simulation, Risk Solver Engine (RSE) draws a random sample value from each PSI 

Distribution function you use.  PsiSip() and PsiSlurp() operate differently:  On each trial, RSE draws the next 

sequential value listed in the SIP or SLURP for that uncertain variable.  Then Risk Solver uses these sample 

values to calculate your model and its uncertain functions 

The sample values drawn for PSI Distribution functions other than PsiSip() and PsiSlurp() depend on the type of 

distribution function, the parameters of the distribution (for example, mean and variance for the PsiNormal 

distribution), and the property functions that you pass as additional arguments to the distribution function call, 

which can shift, truncate, or lock the distribution, or correlate its sample values with samples drawn for other 

uncertain variables.  To learn more about the analytic probability distributions supported by the RASON 

modeling language, see the Appendix.   

Statistic Functions 

An output property must be specified within the uncertain variable definition as an empty array.  An output 

property for an uncertain variable is a statistic function such as mean or standard deviation.  During a simulation 

of 1,000 trials, 1,000 random sample values will be drawn for the uncertain variable, and used to compute the 

statistic .  Hence, you can think of the uncertain variable as ‘containing’ an array of 1,000 values.  But the 

output property (i.e. mean) will contain one value, which is the average or mean of the 1,000 values computed 

for the uncertain variable.  See the ta 

Accessing Statistics from Different Simulations 

Each PSI Statistic function is assigned to a simulation index.  If you want statistic values from a specific 

simulation, say simulation #2, then you must set simulationIndex: 2 in modelSettings as well as 

use the optional simulation index for the function.  For more information, please see this option description in 
the Model Settings topic above.   



A Note to Analytic Solver Users 

• Selecting a specific simulation value within a statistic function is not supported.  If interested on a particular simulation then users 

should use simulationIndex in modelSettings.  Then output pertaining (only) to that simulation will be available in the results.   

• PsiTheo functions are supported in RASON.  However, the translation of PisTheo functions from Excel into RASON is currently not 

supported.   

• Statistics in an Analytic Solver model may be translated into a Rason model using Analytic Solver's Create App functionality when 

function arguments are explicitly provided as constants or cell references, if the cell references point to constant values.  For example, 

=PsiPercentile(cell, A1) where A1 = 0.5 or simply =PsiPercentile(cell, 0.5).   
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Output Property Example Definition 

absDev absDev:[] AbsDev returns the average of the absolute deviations of the 

specified uncertain function’s sample values from their mean. This 
is also known as Mean Absolute Deviation (MAD), especially in 

time series analysis applications. It is defined as: 

𝑀𝐴𝐷(𝑋) =
1

𝑛
∑|𝜇 − 𝑥𝑖|

𝑛

𝑖=1

 

Here μ is the mean of the sample values. 

bvar 

 

bvar(confidence_level): [] 

 

BVaR returns the Value at Risk for the specified uncertain function 

cell at the specified ‘confidence level,’ which is better described as a 

percentile – for example, 0.95 or 0.99.  (The “B” stands for “Basel” 

or “building block,” and is used to distinguish this function name 

from a function named PsiVar().) 

In finance applications, the Value at Risk is the maximum loss that 

can occur at a given confidence level.  In a distribution of returns or 

profits, losses would lie at the “left end” of the distribution and 

would be represented by negative numbers and smaller percentiles 
(say 0.01 or 0.05).  But it is customary in Value at Risk analysis to 

treat losses as positive numbers at the “right end” of the distribution.   

Consider a Normal distribution, bvar (percentile) would be 

converted as –percentile(1- percentile). 

citrials citrials(confidence_level, tolerance):[] 

 

CITrials returns the estimated number of simulation trials needed to 

ensure that the specified uncertain function's sample mean value 

(returned by the PsiMean() function) lies within the confidence 

interval specified by confidence level (for example 0.95 or 0.99) and 

the half-interval size given by tolerance.  

Note that this number of trials is sufficient only to ensure that the 

single output value specified by cell lies within the confidence 
interval.  To ensure that N output cells lie within confidence 

intervals at level 1 -  (e.g. 0.95 = 1 – 0.05), use a confidence level 

of   / N. 

coeffVar coeffVar: [] CoeffVar finds the coefficient of variation for the specified 
uncertain function.  This function is defined as the ratio of the 

standard deviation to the mean and is calculated as: 

vc



=

  

This statistic measures the magnitude of the variability in relation to 

the mean of the population.   

correlation correlation: [] 

example:   
uncertainVariables: { 

  "uncVar1": {"formula":         

      "PsiNormal(10,5)"}, 

  "uncVar2": {"formula":     

      "PsiNormal(20,10)",      

      "correlation(uncVar1)": []} 

 

The correlation statistic returns the Pearson product moment 

correlation coefficient betweentwo uncertain variables or functions.  

Correlation is a measure of linear dependence between two 

uncertain variables or functions.  The correlation coefficient can 

take on values between -1 and +1.  A correlation of -1 indicates a 

perfect negative correlation (the cells move linearly in opposite 

directions); a correlation of +1 indicates a perfect positive 

correlation (the cells move linearly in the same direction). If the two 

random variables are independent, then their correlation coefficient 
is zero; but if the correlation coefficient is zero, this does not 

necessarily mean that the two variables are independent.   

Pearson’s product moment correlation coefficient between random 

variables X and Y is defined as: 



𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌

=
𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌])]

𝜎𝑋𝜎𝑌

 

In Monte Carlo simulation, this value is computed from the sample 

values x[] and y[] over n trials as: 

𝑟𝑥,𝑦 =
𝑛 ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 − (∑ 𝑥𝑖

𝑛
𝑖=1 )(∑ 𝑦𝑖

𝑛
𝑖=1 )

√[𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1 − (∑ 𝑥𝑖
𝑛
𝑖=1 )2][𝑛 ∑ 𝑦𝑖

2𝑛
𝑖=1 − (∑ 𝑦𝑖

𝑛
𝑖=1 )2]

 

 

count count(type): [] The count statistic returns the number of trials of the specified type 

executed in the most recent simulation for the uncertain function.  

The type argument may be 0 for all trials, 1 for normal or ‘success’ 

trials (where the calculated uncertain function resulted in a number), 

or 2 for error or ‘failed’ trials (where the calculated uncertain 

function resulted in an error value).   

cvar cvar(percentile):[] CVaR returns the conditional Value at Risk for the specified 

uncertain function cell, at the specified ‘confidence level’ which is 

better described as a percentile – for example, 0.95 or 0.99.  The 

conditional Value at Risk is defined as the expected value of a loss 

given that a loss at the specified percentile occurs. 

Like PsiBVaR, PsiCVaR returns a loss as a positive number.  It is 

computed as the negative of the mean value of the specified 

uncertain function for the trials that lie between Min:[] and 

Percentile(1-percentile), inclusive. 

expGain expGain:[] PsiExpGain returns the average of all positive data multiplied by 1 -  

percentrank of 0 among all data. It is always a positive number. 

expGainRatio expGainRatio: [] PsiExpGain returns the expected gain ratio for a specified uncertain 
function.  This function is calculated as: 

𝐸𝑥𝑝𝐺𝑎𝑖𝑅𝑎𝑡𝑖𝑜 =
𝐸𝑥𝑝𝐺𝑎𝑖𝑛

𝐸𝑥𝑝𝐺𝑎𝑖𝑛+|𝐸𝑥𝑝𝐿𝑜𝑠𝑠|
  

This value ranges between 0 and 1 inclusive.   

expLoss expLoss:[] ExpLoss returns the average of all negative data multiplied by the 

percentrank of 0 among all data. It is always a negative number. 

expLossRatio expLossRatio:[] ExpLoss returns the expected loss ratio for a specified uncertain 

function.  This function is calculated as: 

This value ranges between 0 and 1 inclusive.    

expValMargin expValMargin:[] ExpValMargin is calculated as: 

ExpValMargin = ExpGainRatio – ExpLossRatio.   

This statistic ranges between -1 and 1 inclusive.   

frequency frequency(frequency_type, bin bounds): 

[] 

example:  frequency(0, -125000, -100000 

100000,200000): [] 

Frequency returns an array of frequencies describing the distribution of 

trial values for the specified uncertain variable.  Use this statistic to 

obtain the data required to draw a histogram chart in your application.   

The freq_type argument affects the contents of each element of the array 

result and can be 0, 1 or 2: 

0    0 – Each element contains the frequency of trial values falling into the 

corresponding bin (like a probability density function) 
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1    1 – Each element contains the cumulative frequency of trial values 

falling into the corresponding bin plus all lower bins (like a cumulative 

distribution function) 

2    2– Each element contains the cumulative frequency of trial values falling 

into the corresponding bin plus all higher bins (like a reverse cumulative 
distribution function) 

In RASON, the bin_bounds argument is an array of values (e.g. { 5, 10, 

15, 20 })  given in strictly increasing order.  The number of elements in 

the array result will be one more than the number of values or cells in the 

bin bounds argument; the last element contains the number of trial values 

larger than the highest bin bound value. 

indexValue indexValue: [] 
Creates an empty array to hold the indexValue of the uncertain  

function. 

kendallTau kendallTau(unc_func_or_var): [] 

Example where KendallTau statistic is 

used to return a correlation coefficient 

between two uncertain variables, uncVar1 
and uncVar2.   
 

uncertainVariables: { 

  "uncVar1": {"formula":         

      "PsiNormal(10,5)"}, 

  "uncVar2": {"formula":     

      "PsiNormal(20,10)",      

      "kendallTau(uncVar1)": []} 

 

The KendallTau statistic returns a non-parametric correlation 

coefficient (based on the relative ordering of ranks) between two 

uncertain variables or functions.  This statistic can be used to 

determine how (if at all) the two uncertain variables or functions are 

correlated.   

The Kendall Tau rank correlation coefficient measures the ordinal 

association between two uncertain variables or functions.  It is a 

measure of rank correlation.  This correlation coefficient is high 

when observations have a similar rank between the two variables, 

and low when observations have a dissimilar rank between the two 

variables. 

kurtosis 

kurt 

kurtosis: [] 

kurt: [] 

Kurtosis returns the kurtosis for the specified uncertain function 

cell.  Kurtosis is the 4th moment and measures the peakedness of the 

distribution of trial values.  It is computed as: 
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where μ is the mean of the trial values. A higher kurtosis indicates a 

distribution with a sharper peak and heavier tails, and that more of 

the variability is due to a small number of extreme outliers or 

values; a lower kurtosis indicates a distribution with a rounded peak 

and that more of the variability is due to many modest-sized values. 

maximum 

max 

maximum: [] 

max: [] 

Max returns the maximum value attained by the specified uncertain  

function over all the trials in the simulation. 

mean 

average 

expectation 

mean: [] 

average: [] 

expectation: [] 

 

Mean returns the mean value for the specified uncertain function.  

The mean or average value is the 1st moment of the distribution of 
trials and is computed as: 
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i

i

x

n
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The mean is frequently used as a measure of central tendency or the 

“middle” of an uncertain variable; but for skewed distributions, care 

must be taken in using the mean as a measure of central tendency 

because the mean is easily distorted by extreme outlier values. 

meanCI meanCI(confidence_level) MeanCI returns the confidence “half-interval” for the estimated 

mean value (returned by mean: []) for the specified uncertain 
function, at the specified confidence level (for example 0.95 or 

0.99).  If μ is the value returned by mean:[] and δ is the value 

returned by meanCI(confidence_level):[], the true mean is estimated 

to lie within the interval μ - δ to μ + δ. 

The confidence level can be interpreted as follows:  If we compute a 

large number of independent estimates of confidence intervals on 

the true mean of the uncertain function, each based on n 

observations with n sufficiently large, then the proportion of these 

confidence intervals that contain the true mean of the function 

should equal the confidence level. 

If σ2 (n) is the sample variance from n trial values,  = 1 – 

confidence level, and tn-1, 1-α/2 is the upper 1-α/2 critical point of the 
Student’s t-distribution with n-1 degrees of freedom, the confidence 

half-interval δ is computed as: 
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The confidence interval measures the precision with which we have 

estimated the true mean.  Larger half widths imply that there is a lot 

of variability in our estimates.  The above formula for the half-width 

assumes that the individual xis are normally distributed; when this is 

not the case, the above formula still gives us an approximate 

confidence interval on the true mean of the uncertain function. 

meanCIB meanCIB(confidence_level, 

[lowerbound]):[] 

MeanCIB returns the lower or upper bound of the confidence 

interval (half width) of the mean value for the specified uncertain 
function. 

Confidence_level – Enter the desired confidence level, i.e. 0.95 or 

0.99. 

lowerbound – (Optional) Enter true for the lower (default) or false 

for the upper bound. 

Example:  meanCIB(.99, true, 5) returns the lower bound for the 

99% confidence interval for the distribution for simulation index 5.   

median median: [] Mean:[] returns the median value for the specified uncertain  

function.  The median value is the 50th percentile of the distribution 

of trials and is computed as:  
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The median is a very useful statistic for measuring the center of a 

distribution.    

minimum 

min 

minimum: [] 

min: [] 

Min returns the minimum value attained by the specified uncertain  

function  over all the trials in the simulation. 

mode mode: [] Mode returns the mode of the specified uncertain  function.  For 

discrete distributions, this is the most frequently occurring value 
(where the probability mass function has its greatest value).  For 

continuous distributions, Mode() returns the half-sample mode as 

defined by D.R. Bickel, a robust estimator that is less sensitive to 

outliers than most other estimators of location. 

percentileCI percentile(percentile, confidence_level): 

[] 

PercentileCI returns the confidence “half-interval”  for a given 

percentile (.01-.99) value for the specified uncertain function.   

This function is computed as:  Lower:  Percentile-PercentileCI, 

Upper:   Percentile + PercentileCI. 

Since the output of PercentileCI is symmetric, the mean and median 

are theoretically the same, i.e. MeanCI(0.95) is expected to be 

approximately equal to PercentileCI(0.5, 0.95).  

This function together with MeanCI, MeanCIB, StdDevCI, CITrials 

and the newly added TargetCI, make up the confidence interval 

functions in RASON.    

Example:  PercentileCI (0.95, 0.99,2):[]  - Finds the confidence half-

interval for the uncertain function using the 95th percentile and a 

confidence level of 99% for the 2nd simulation.   

percentileD percentileD(percentile): [] PercentileD returns a descending percentile (.01-.99) value for the 

specified uncertain function:  This means that m (or m%) of the 

simulation trials have values less than the returned value, where m is 

the percentile. 

percentiles  percentiles: [] 

 percentile(confidence_level):[] 

  

percentiles: [] returns all percentile (.01-.99) values for the specified 

uncertain  function:  This means that m (or 100m%) of the 
simulation trials have values less than the returned value, where m is 

the percentile. 

percentile(0.X) - Returns the specific percentile value.  Values must 

be between 0.01 and 0.99.     

range range: [] Range returns the range of the specified uncertain function cell. The 

range is the difference between the maximum and minimum values 

attained in the distribution of trial values. 

semiDev semiDev(q, [target]): [] SemiDev returns the semideviation for the specified uncertain 

function, relative to the target if specified.  If the target is omitted, 

the mean value is used.  This is a one-sided measure of dispersion of 

values of the uncertain function.  The semideviation is the square 
root of the semivariance, described directly below.  If a q argument 

different from 2 is specified, SemiDev(): [] returns the qth root of 

the lower partial moment at power q of the uncertain function. 

semiDev2 semiDev2([lowerdata]): [] SemiDev2 returns the standard deviation of the values in the 

distribution below or above the mean or the square root of 

SemiVar2. 



lowerdata – (Optional) Enter true for the lower (default) or false for 

the upper data. 

Example:  semiDev2(true, 5) returns the standard deviation of the 

values below the mean for the distribution for simulation index 5.    

semiVar semiVar(q, target): [] SemiVar returns the semivariance for the specified uncertain 

function, if the argument q is omitted, or the ‘lower partial moment’ 
for the function, if an argument q different from 2 is specified.  The 

semivariance is computed relative to the target if specified, or 

relative to the mean value if target is omitted.  This is a measure of 

the dispersion of values of an uncertain function, but unlike the 

variance which measures (or penalizes) both positive and negative 

deviations from the target, the semivariance or lower partial moment 

is only concerned with one-sided deviations from the target.  It is 

usually used in finance and insurance applications, when we are 

only concerned with downside risks (or loss in portfolio value).  The 

semivariance is computed by summing only the downside 

differences from the target of all the trials, raised to the given power 
q, divided by the number of trials: 
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All trials – not just the trials with downside deviations – are 

included in n.  Again if q is different from 2, the result is called the 

‘lower partial moment. 

semiVar2 sermiVar2([lowerdata]): [] SemiVar2 returns the variance of the values in the distribution 

below or above the mean. 

lowerdata – (Optional) Enter true for the lower (default) or false for 

the upper data. 

Example:  =SemiVar2(true, 5) returns the variance of the values 
below the mean for the distribution for simulation index 5.    

sigmaCP  sigmaCP(lower_limit, upper_limit): [] A Six Sigma index, PsiSigmaCP predicts what the process is 

capable of producing if the process mean is centered between the 

lower and upper limits.  This index assumes the process output is 

normally distributed.   

𝐶𝑝 =
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

6𝜎̂
  

where 𝜎̂ is the estimated standard deviation of the process. 

sigmaCPK sigmaCPK(lower_limit, upper_limit, ): [] A Six Sigma index, PsiSigmaCPK predicts what the process is 

capable of producing if the process mean is not centered between 

the lower and upper limits.  This index assumes the process output is 

normally distributed and will be negative if the process mean falls 
outside of the lower and upper specification limits. 

𝐶𝑝𝑘 =
𝑀𝐼𝑁(𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂,𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡)

3𝜎̂
  

where 𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the 

process.   
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sigmaCPKLower sigmaCPKLower(lower_limit, 

[simulation]): [] 

A Six Sigma index, PsiSigmaCPKLower calculates the one-sided 

Process Capability Index based on the lower specification limit.   

This index assumes the process output is normally distributed. 

𝐶𝑝, 𝑙𝑜𝑤𝑒𝑟 =
𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

3𝜎̂
  

where 𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the 

process.   

sigmaCPKUpper sigmaCPKUpper(lower_limit): [] A Six Sigma index, PsiSigmaCPKUpper calculates the one-sided 

Process Capability Index based on the upper specification limit.   

This index assumes the process output is normally distributed. 

𝐶𝑝, 𝑢𝑝𝑝𝑒𝑟 =
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

3𝜎̂
  

where 𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the 

process.   

sigmaCPM sigmaCPM(lower_limit, upper_limit: [] A Six Sigma index, PsiSigmaCPM calculates the capability of the 

process around a target value.  This index is referred to as the 

Taguchi Capability Index.   This index assumes the process output is 

normally distributed and is always positive. 

𝐶𝑝𝑚 =
𝐶̂𝑝

√1+(
𝜇̂−𝑇

𝜎̂
)2

  

where 𝐶̂𝑝 is the process capability (PsiSigmaCP),  𝜇̂ is the process 

mean, 𝜎̂ is the standard deviation of the process and T is the target 

process mean.   

sigmaDefectPPM sigmaDefectPPM(lower_limit, 
higher_limit) 

A Six Sigma index, PsiSigmaDefectPPM calculates the Defective 
Parts per Million.   

𝐷𝑃𝑀𝑂 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
) + 

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
)) ∗ 1000000 

where𝜇̂ is the process mean, 𝜎̂ is the standard deviation of the 

process and 𝛿−1 is the standard normal inverse cumulative 
distribution function.     

sigmaDefectShiftPPM sigmaDefectShiftPPM(lower_limit,  

upper_limit, shift): [] 

A Six Sigma index, PsiSigmaDefectShiftPPM calculates the 

Defective Parts per Million with an added shift.   

𝐷𝑃𝑀𝑂𝑆ℎ𝑖𝑓𝑡 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) + 

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)) ∗ 1000000  

where𝜇̂ is the process mean, 𝜎̂ is the standard deviation of the 

process and 𝛿−1 is the standard normal inverse cumulative 

distribution function.     

sigmaDefectShiftPPMLower sigmaDefectShiftPPMLower(lower_limit, 

shift) 

A Six Sigma index, PsiSigmaDefectShiftPPMLower calculates the 

Defective Parts per Million, with a shift, below the lower 

specification limit.   

𝐷𝑃𝑀𝑂𝑠ℎ𝑖𝑓𝑡, 𝑙𝑜𝑤𝑒𝑟 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) ∗

1000000  



where𝜎̂ is the standard deviation of the process and 𝛿−1 is the 

standard normal inverse cumulative distribution function.    

sigmaDefectShiftPPMUpper sigmaDefectShiftPPMUpper(upper_limit) A Six Sigma index, PsiSigmaDefectShiftPPMUpper calculates the 

Defective Parts per Million, with a shift, above the lower 

specification limit.   

𝐷𝑃𝑀𝑂𝑠ℎ𝑖𝑓𝑡, 𝑢𝑝𝑝𝑒𝑟 = (𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) ∗

1000000  

where𝜎̂ is the standard deviation of the process and 𝛿−1 is the 

standard normal inverse cumulative distribution function.        

sigmaK sigmaK(lower_limit, upper_limit): [] A Six Sigma index, PsiSigmaK calculates the Measure of Process 

Center and is defined as: 

1 −
2∗𝑀𝐼𝑁(𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂,𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡)

𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡
  

where𝜇̂ is the process mean. 

 

sigmaLowerBound sigmaLowerBound(number_stdev) 
A Six Sigma index, PsiSigmaLowerBound calculates the Lower Bound 

as a specific number of standard deviations below the mean and is 

defined as:   

 

𝜇̂ − 𝜎̂ ∗ #𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠  

 

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the 

process.   

 

sigmaProbDefectShift sigmaProbDefectShift(lower_limit, 

upper_limit, shift) 

A Six Sigma index, PsiSigmaProbDefectShift calculates the 

Probability of Defect, with a shift, outside of the upper and lower 

limits.  This statistic is defined as:     

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) + 

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)  

where𝜇̂ is the process mean ,𝜎̂ is the standard deviation of the 

process and 𝛿−1 is the standard normal inverse cumulative 

distribution function.    

 

sigmaProbDefectShiftLower sigmaProbDefecShiftLower(lower_limit, 

shift) 

A Six Sigma index, PsiSigmaProbDefectShiftLower calculates the 

Probability of Defect, with a shift, outside of the lower limit.  This 

statistic is defined as:     

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)  

where𝜇̂ is the process mean ,𝜎̂ is the standard deviation of the 

process and 𝛿−1 is the standard normal inverse cumulative 

distribution function.     

 

sigmaProbDefecShiftUpper sigmaProbDefecShiftUpper(upper_limit, 

shift) 

A Six Sigma index, PsiSigmaProbDefectShiftUpper calculates the 

Probability of Defect, with a shift, outside of the upper limit.  This 

statistic is defined as:     
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1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)  

where𝜇̂ is the process mean ,𝜎̂ is the standard deviation of the 

process and 𝛿−1 is the standard normal inverse cumulative 
distribution function.    

 

sigmaUpperBound sigmaUpperBound(number_stdev) A Six Sigma index, PsiSigmaUpperBound calculates the Upper 

Bound as a specific number of standard deviations above the mean 

and is defined as:   

𝜇̂ − 𝜎̂ ∗ #𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠  

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the 

process.   

sigmaYield  sigmaYield(lower_limit, upper_limit, 
shift) 

A Six Sigma index, PsiSigmaYield calculates the Six Sigma Yield 
with a shift, or the fraction of the process that is free of defects.   

This statistic is defined as:     

𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) − 

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)  

where𝜇̂ is the process mean, 𝜎̂ is the standard deviation of the 

process and 𝛿−1 is the standard normal inverse cumulative 

distribution function.  

sigmaZLower sigmaZLower(lower_limit): [] A Six Sigma index, PsiSigmaZLower calculates the number of 

standard deviations of the process that the lower limit is below the 

mean of the process.  This statistic is defined as:     

𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂
  

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the 

process.  

sigmaZMin sigmaZMin(lower_limit, upper_limit,  

[simulation]) 

A Six Sigma index, PsiSigmaZLower calculates the minimum of 

PsiSigmaZLower and PsiSigmaZUpper.  This statistic is defined as:     

 

𝑀𝐼𝑁(𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡,𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂)

𝜎̂
  

 

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the 

process.     

sigmaZUpper sigmaZLower(upper_limit): []   A Six Sigma index, PsiSigmaZUpper calculates the 

number of standard deviations of the process that the upper limit is 

above the mean of the process.  This statistic is defined as:     

𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
  

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the 

process.   

skewness 

skew 

Skewness: [] 

Skew: [] 

Skewness returns the skewness for the specified uncertain  function.  

Skewness is the 3rd moment of an uncertain  function, and describes 

the asymmetry of its distribution.  Skewness can be either positive 



or negative: Positive skewness implies that the distribution is right 

skewed (longer right tails), and negative skewness implies that the 

distribution is left skewed (longer left tails). Skewness is computed 

as: 
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where μ is the mean of the trial values. 

spearmanRho spearmanRho(unc_func_or_var): [] 

Example where SpearmanRho statistic is 

used to return a correlation coefficient 

between two uncertain variables, uncVar1 

and uncVar2.   
 

uncertainVariables: { 

  "uncVar1": {"formula":         

      "PsiNormal(10,5)"}, 

  "uncVar2": {"formula":     

      "PsiNormal(20,10)",      

      "spearmanRho(uncVar1)": []} 

 

 

The SpearmanRho statistic returns a non-parametric measure (based 
on trial ranks). This function measures the correlation between two 

uncertain variables or functions.  This statistic can be used to 

determine how (if at all) the two uncertain variables or functions are 

correlated. 

The Spearman correlation between two variables is equal to the 

Pearson correlation between the rank values of those two variables; 

while Pearson's correlation assesses linear relationships, Spearman's 

correlation assesses monotonic relationships (whether linear or not). 

If there are no repeated data values, a perfect Spearman correlation 

of +1 or −1 occurs when each of the variables is a perfect monotone 

function of the other. 

The Spearman correlation between two variables will be high when 

observations have a similar rank between the two variables or 

functions, and low when observations have a dissimilar rank 

between the two variables or functions. 

stdDevCI stdDevCI(confidence_level): [] StdDevCI returns the confidence ‘half-interval’ for the estimated 

standard deviation of the simulation trials (returned by the 

stdDev():[] function) for the specified uncertain function cell, at 

confidence level (for example 0.95 or 0.99).  If σ is the value 

returned by stdDev():[] and δ is the value returned by stdDevCI():[], 

the true mean is estimated to lie within the interval σ - δ to σ + δ. 

If σ2 (n) is the sample variance from n trial values,  = 1 – 

confidence level, and tn-1, 1-α/2 is the upper 1-α/2 critical point of the 
Student’s t-distribution with n-1 degrees of freedom, the confidence 

half-interval δ is computed as: 

𝑡
𝑛−1,1−

𝛼
2

𝜎(𝑛)√
𝑘 − 1

4(𝑛 − 1)
 

See also the description of the MeanCI() function. 

stdev stdev: [] StdDev returns the standard deviation for the specified uncertain  

function.  Standard deviation is a measure of the dispersion of an 

uncertain  function, and accounts for both positive and negative 

deviations from the mean. The square of standard deviation is the 

Variance.  Standard deviation is defined as: 
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where E[.] is the expected value, and µ is the mean of the trial 

values. As a rough rule, about ¾ of the values of any uncertain 

variable are within two standard deviations from the mean. A large 
standard deviation indicates that most of the trial values are away 

from the mean, and a small standard deviation indicates that most of 

the trial values are close to the mean. 

sterr sterr: [] StdErr finds the standard error of the mean of the specified uncertain 

function.  This function can be defined as the standard deviation of 

the sample mean ans is calculated as: 

𝑆𝐸𝑥 =
𝑠

√𝑛
  

where s is the sample standard deviation and n is the size of the 

sample.   

target target(target_value_[simulation]: [] Target returns the cumulative frequency of the target value in the 

distribution of trial values for the specified uncertain function.  This 

function returns the proportion of simulated values for the uncertain 

function that are less than or equal to target value. 

targetCI targetCI(target_value, confidence_level) TargetCI returns the confidence “half-interval” for the cumulative 

probability of the target value in a distribution of trial values for the 

specified uncertain function.  This means that Target is accurate 

within Target +/- TargetCI with a given confidence level.   

This function is computed as:  Lower:  Target-TargetCI, Upper:   

Target + TargetCI. 

This function together with MeanCI, MeanCIB, StdDevCI, CITrials 

and the newly added PercentileCI, make up the confidence interval 

functions in Rason Services.    

Example:  TargetCI (7, 0.99,2)  - Finds the confidence half-interval 

for the uncertain function for the target value = 7, using a confidence 

level of 99% for the 2nd simulation.   

 

targetD targetD(target_value) TargetD returns the descending cumulative probability of the target 
value in the distribution of trial values for the specified uncertain 

function.  This function returns the proportion of simulated values 

for the uncertain function that are less than or equal to target value. 

theoKurtosis* theoKurtosis:[] Returns the analytic kurtosis (4th moment) value for the specified 

distribution. 

theoMax* theoMax:[] Returns the maximum value of the specified distribution.     

theoMean* theoMean:[]     Returns the mean of the specified distribution. 

theoMedian* theoMedian:[] Returns the median of the specified distribution. 

theoMin* theoMin:[] Returns the minimum of the specified distribution. 

theoMode* theoMode:[] Returns the mode of the specified distribution.   



*Theo Functions are statistics functions that return a statistic on a simulation input distribution, or uncertain variable.   If a theoXXX 

function is applied to an output function or if the statistic can not be computed, the function will be ignored and will not appear in the 
results.  The theoXXX functions compute the moment only when distribution parameters are not dependent on other distributions or 
decision variables in order to guarantee that the moment is constant throughout solving.  These functions were designed to aid in the 
visualization of results and for comparison of the exact analytic moment with the trial statistics.   

 

theoPercentile* 

theoPtoX 

theoPercentile(percentile):[] 

theoPtoX(percentile):[] 

The functions theoPercentile and theoPtoX are alternate names for the 

same function.  

Both functions return the analytic percentile (CDFInv) value for the 

specified distribution specified.   Enter the desired percentile (in decimal 

form) for the percentile argument, i.e. .01, .30, or .98.  The 

percentile value must be between 0 and 1.   

theoPercentileD* 

theoQtoX 

theoPercentileD(percentile):[] 

theoQtoX(percentile):[] 

The functions theoPercentileD and PsiTheoQtoX are alternate names for 

the same function.  Both return the percentile (CDFInv descending) 

value for the specified distribution.   Enter the desired percentile (in 

decimal form) for the percentile argument, i.e. .01, .30, or .98.  The 

percentile value must be between 0 and 1.  

theoRange* theoRange:[] Returns the range information for the specified distribution.     

theoSkewness* theoSkewness:[] Returns the skewness of the specified distribution.     

theoStdDev* theoStdDev:[] Returns the standard deviation of the specified distribution.     

theoTarget* 

theoXtoP 

theoTarget(target):[] 

theoXtoP(target):[] 

 

Returns the cumulative probability for target for the specified 

distribution. The cumulative probability returned is the probability of a 

value less than or equal to target occurring. (The functions theoTarget 

and theoXtoP are alternative names for the same function.) 

theoTargetD* 

theoXtoQ 

theoTargetD(target):[] 

theoXtoP(target):[] 

Returns the cumulative descending probability for target for the 

specified distribution. The cumulative probability returned is the 

probability of a value greater than or equal to target occurring. (The 

functions theoTargetD and theoXtoQ are alternative names for the same 

function.) 

theoVariance* theoVariance:[] Returns the variance of the specified distribution.  

theoXtoY* theoXtoY(value):[] Returns the probability for value for the specified distribution. For a 

continuous distribution, the value returned is the probability density 

value at value. For a discrete distribution, the value returned is the 

probability value at value. 

trials trials: []  Returns the trial values of the uncertain  function.   

variance 

var 

Variance: [] 

var: [] 

Variance returns the variance for the specified uncertain  function.  

Like standard deviation, variance is a measure of the spread or 

dispersion of the distribution of trial values for the uncertain 

function, and takes into account both positive and negative 
deviations from the mean.  The square root of variance is the 

standard deviation.  The variance is the 2nd moment of the 

distribution of trials and is computed as: 

( )  ( )

( ) ( )

22

2

1

var

The sampled population variance is given by

1
var

1

n

i

i

X E X E X

X x
n


=

 = − 

= −
−



 



 
 
 

127 

A Note on Excel Ranges in a Converted RASON Model 
When a model built using Analytic Solver, in Destop Excel or Excel Online, is converted to the RASON 

modeling language using Create App, you'll notice that many RASON components, such as names for 

variables/constraints, uncertain variables/functions/, the objective function, etc.  These Excel ranges are defined 

as in Excel using the row and column notations[a1 or A1:B2].  These ranges behave as they do in Excel.  The 

Excel range, A1:C3, is a double array containing 9 elements.  To access the contents of B2, you would use B2.    

Extreme care should be taken when removing these ranges from a converted model as inadvertent errors may 

result.  For example, assumg the data definition "A1:C3" is changed to simply "A1C3".  If cell "B2" is defined 

in another RASON component, an error will be generated since B2 references a value within "A1:C3" but not 

"A1C3".     

  



 

Rason Data Mining Model 
Components  

Introduction 
This section introduces each of the nine components or sections which make up a data mining RASON model:  

"data", "datasources", "datasets", "weakLearner", "estimator", "transformer", "actions", "model" and 
"preProcessor".   This chapter explains how each component of your model should be defined.   

All algorithms featured in Analytic Solver and XLMiner SDK can be expressed using a standardized structure 

in RASON DM.  This basic structure includes four major "sections" or "segments":  datasources, datasets, 

estimator/transformer, and actions.   

{ 

   "datasources": {}, 

   "datasets":{}, 

   "estimator"/"transformer": { 

 "type":"", 

 "algorithm":"", 

 "parameters":", 

   }, 

   "actions":{} 

} 

• datasources -- The "datasources" section is where the data for the model is acquired.  Most times, the 

data is contained in an external data source such as a database or delimited file. 

• datasets -- The "datasets" section is where the external dataset is "bound" to a RASON dataset. 

• estimator/transformer – These sections are mutually exclusive -- A model may not contain both a 

transformer and an estimator.  An "estimator" object estimates a model from the training data and 

stores the fitted model, which may be used later.  Examples of estimators are classification or 

regression algorithms.  These algorithms fit a model which can be used later to score new data.  A 

"transformer" applies to estimators that do not fit a model but rather transform data, such as Feature 
Selection or Sampling.  

• actions -- The function of the estimator or transformer is carried out within the "actions" section.   If a 

model was "fit" within the estimator section, then the model is applied to the desired dataset (training, 

validation, test partitions or to new data) within this section.  If a transformer was initiated, then the 

actual data transformation will be performed within this segment. 

Rason DM also features several additional optional sections that can be used to further refine the Rason model.  

These additional sections are:  data, model, preprocessor and weakLearner.   
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• data -- Data arrays may be defined and calculated in this optional section, to be used later in a data 

mining method.  Scalars, arrays or tables containing scalars maybe be defined in the data section.  If 

pulling data from an external source, this section may be used to "bind" the data to an array or table.   

• model --  Used (only) when scoring a model.  This section is similar to "datasets" but rather than 

refining imported data, this section defines a model that you can bind to when performing an "action" 
such as "forecast", "predict", "fit" or  "transform".    

Note:  Currently it is not possible to manually match features in the dataset with features in the 

new data, as is possible in Excel via the Scoring dialog.  Rather, features are always matched 

sequentially.    

• preProcessor -- This optional section may be used for preliminarily data preparation or to 

compute values of some properties, which are passed later, at parse-time, to the RASON DM 

engine.  This section is parsed once, before the model is parsed.   

• weakLearner -- This section is only required when a bagging or boosting estimator is specified in 

"estimator", and is used to define the weak learner used in these algorithms.      

It is important to note that order inside the Rason model is very important as the Rason interpreter does not 

parse the model to determine the correct order beforehand. Therefore, "actions" may not appear before 

"estimator", "estimator" may not appear before "datasets" and so on.   

Data 
Data arrays may be defined and calculated in this optional section to be used later in a data mining method.  If 

you are pulling data from an external source, use this section to "bind" the data to an array or table.   

In the example code below, data from the qty column from the parts_data data source is assigned to the 

parts table.  Note:  A table is created here, rather than an array, by the use of the valueCol property.     

 

"data": { 

        "parts": { 

            "binding": "parts_data", "valueCol": "qty" 

        },  

} 

Scalars, arrays or tables containing scalars maybe be defined in the data section. 

The following is an example of a scalar constant, which is neither an array nor a table.   

"time": { "value": 10 }  

In the example below, the array wine with size equal to 3 contains the values, A, B, and C.  In this instance, the 

binding property allows write access to the profit array outside of the model environment  using the 

keyword "get".   
                    

"wine": { 

                   "dimensions": [3], "value": [A, B, C], "binding": "get" }, 

}, 

To change the array elements in "wine" to C, D, E; you can pass new data directly in the REST API call, via 

standard HTTP GET parameters, for example:   

$.get(https://rason.net/api/optimize?wine=C,D,E... 

To change only one element, say the middle element from B to D, your call to the REST API, via standard 

HTTP GET parameters would change to: 

$.get(https://rason.net/api/optimize?wine[2]=... 

https://rason.net/api/optimize?wine%5b2


We also could have created the profit array by using an alternate syntax, shown below.  However, when a 

parameter is defined in this way, you will not be able to pass new values to the array outside of the RASON 

model environment (as shown above).   

"data" : [ 

  { "name": "wine", "value": [A, B, C], "binding": "get" } 

 ],  

All properties available for data, can be found in the table below.   

 

Data Property Type Explanation 

name "name": "parts" Use this property to define the table, array or scalar 

name. 

dimensions "dimensions": [3,1]               

"dimensions": [3] 

"dimensions": [1,3]  

"dimensions": [3,2] 

Defines a 1-dimensional vertical array.  

Defines a 1-dimensional vertical array. 

Defines a 2 – dimensional horizontal array with three 

elements. 

Defines a 2 – dimensional array or table with 3 rows 

and 2 columns. 

All arrays are 1 – based.  If missing, array shape will 

be defined by the shape of the value property; 

however, for easier readability of the code, the use of 

the dimensions property is recommended.   

value "value": [1, 1, 1] 

"value": [[1, 1, 1], 

          [2, 2, 2], 

          [3, 3, 3]] 

 

Sets the values of the array. 

Sets the values of a table. 

If dimensions property is missing, the shape of the 

variable array will be determined by the shape of the 

value property.  However, it is recommended that the 

dimensions property be used for readability 

purposes.   

valuecol "valueCol": 

["initials"] 

Used with binding property to bind imported 

values from a readable data source.  If omitted, the 

RASON interpreter assumes the last column in the 

table as the input to valueCol.   

binding  "binding": "get"  

"Profit": { "binding": 

"profit_data" }  

Allows data to be edited outside of the model from a 

URL or when calling the RASONTM interpreter to 

solve an optimization or simulation model.   

Used to bind imported table from the 

profit_data datasource to a new table named 

profit.   

comment "comment": "partsReq 

array holds the number 

of parts required to 

produce each product" 

Enter a comment here to describe the data.  
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Datasources ("datasources") 
External data sources are defined in this section.  Data from these sources is imported into parametric tables or 

arrays to be used in a data mining model.    Currently the RASON modeling language supports ten different 

data sources:  "excel" (Microsoft Excel), "access" or "msaccess" (Microsoft Access), "odbc" (ODBC database), 

"odata" (OData database), "mssql" (Microsoft Sequel), "oracle" (Oracle database), CSV (Comma Separated 

Value), "json" (JSON file), or "xml" (XML file).  Data sources such as "Access", "ODBC", "CSV", etc, contain 

data in tables with records described by index and value columns.  Binding to these data sources results in table 

objects.  Data source types such as Excel and CSV may contain data in 2-dimensional arrays without any 

descriptions.  Binding to these data sources results in array objects.  Objects are bound to data sources within 

the data section.   

Importing 

In the example below, three data sources are defined:  "myTrainingData", "myValidationData" and 

"myTestData".  In the first data source, myTrainingData, data is imported from the hald-small-binary-train.txt 

file.  In the second data source, myValidationData, data is imported from hald-small-binary-valid.txt and in the 

third data source, myTestData, data is imported from hald-small-binary-test.txt.       

The first property, type, specifies the type of file where the data is contained. In this example, the file is a CSV 

(Comma Separated Values) file.  (A screenshot of hald-small-binary-train.txt is shown below the example code.  

The remaining files, hald-small-binary-validation.txt and hald-small-binary-test.txt are similar.  The second 

property, connection, specifies the file name and location within quotes ("/datafiles/hald-small-

binary-train.txt").  The third property "direction": "import" tells the RASON Server that the 

contents of each data source will be imported.  (This is the default setting for this property.) 

 
     "datasources": { 

"myTrainingData": { 

       "type": "csv", 

            "connection": "/datafiles/hald-small-binary-train.txt", 

  "direction": "import" 

      } 

"myValidationData": { 

            "type": "csv", 

            "connection": "/datafiles/hald-small-binary-valid.txt", 

  "direction": "import" 

      } 

"myTestData": { 

            "type": "csv", 

            "connection": "/datafiles/hald-small-binary-test.txt", 

  "direction": "import" 

        } 

 

}, 



               hald-small-binary-train.txt CSV file 

 

In this next example, data is imported from an Excel table.   

"datasources": { 

      "msExcelSrc": { 

       "type": "excel", 

       "connection": "hald.xlsx", 

       "selection": "Data!A2:E14", 

       "headerExists": "true", 

  "direction": "import" 

     } 

  }, 

The first property, type, specifies that the data is contained in an Excel file.  The second property, 

connection, specifies the name of the file, "hald.xlsx".     

The 3rd property,selection: "Data!A2:E14", specifies the Excel range where the data is contained.  

Alternatively, we could also pass "selection": "Data_Table" where "Data_Table" is an Excel 

defined name given to the Excel Range, Data!A1:E14. The 4th property, headerExists (may also use 

simply "header") indicates whether the columns contain titles, or headers, or not, and is set to True by 

default.   

Note: Column headings are contained in cells Data!A1:E1 and the data is contained in cells Data!A2:E14.  

Since headerExists is set to true, the default, RASON assumes the headings are contained in the next row up, 

which in this case in Row 1.  If headerExists is set to false, the selection property would still be 
"selection":"Data!A2:E14"; the row containing the headings is never passed.   

The 5th property, "direction": "import", indicates that the contents of hald.xlsx will be imported.   
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               hald.xlsx Excel file 

 
 

In this next example, data is imported using the "colIndex" and "rowIndex" properties.  Recall that colIndex and 

rowIndex create a dataframe, rather than a RASON Table.   

"datasources" : { 

"msExcelSrc":  {  

"type": "excel",  

"connection": "HaldRaw.xlsx",  

"selection": "Sheet1!A1:F13", 

    "colIndex": "features",  

"rowIndex": "records", 

"direction": "import"  

} 

} 

As in the example above, the first property, type, specifies that the data is contained in an Excel worksheet, 

"excel"; the second property, connection, passes the name of the Excel file, "HaldRaw.xlsx"; and 

the third property, selection, passes the Excel cell range that contains the data, in this instance, 
"Sheet1!A1:F13".   



               HaldRaw.xlsx Excel file 

 

However in this example, the 4th property, colIndex, binds the index name features to the columns and 

the 5th property, rowIndex, binds the index name records to the rows.  The property colIndex binds a 

set of integers from 1 to the number of columns and the property rowIndex binds a set of integers from 1 to 

the number of rows to the 2-dimensional array .  The 5th property, "direction": "import", indicates 

that the contents of haldraw.xlsx will be imported.         

As a result, if a new product or new part is added, there will be no changes required to this section of the model.  

It is completely scalable.   

This next example illustrates how to import data from an SQL database residing on an Azure server in the 

Cloud using an ODBC connection string.    

"datasources": { 

"mssqlSrc": { 

       "type": "mssql", 

"connection": "Server=Test-

DELL;Database=Test;trusted_connection=Yes", 

       "selection": "SELECT * FROM dbo.Data", 

  "direction": "import" 

     } 

  }, 

The first property, type,  specifies the type of file containing the data, in this case the file is an Microsoft SQL 

database.  The second property, connection, passes the connection string as obtained from the server.  The 

third property, selection, performs an SQL query from dbo.Data (<db_name>.<table_name>).   

The next example illustrates how to import data from an OData data source.  This model is also completely 

scalable.  For more information on OData, see http://www.odata.org.   Note:  OData data sources are not 

currently writeable due to limitations in the common OData specification.   

"datasources": { 

"odataSrc": { 

       "type": 'odata', 

       "connection": 'http://localhost:12345/', 

"selection": "Hald?$select=TriAlum,TriSil,TetraAlumFer,DicSil, 

 Heat,Comment", "direction"="import" 

     } 

http://www.odata.org/
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  } 

The first property for odataSrc, type,  specifies the type of file containing the data. In this case, the type is 

an OData data source.  The second property, connection, specifies the location of the OData data source on 

the internet or distributed server. The third property, "selection",imports six fields from the Hald table, 

TriAlum, TriSil, TetraAlumFer, DicSil, Heat and Comment.    

In this example, the last selection property, $format=json, is not passed.  This property stipulates the type 

of OData format (JSON or XML) in which the table should be returned.  This is an optional argument.  If 

passed, the OData service will return the data in the format specified, $format=json for JSON or $format=atom 

for XML.  If omitted, the OData service will return the data in preferred format:  JSON or XML.  The RASON 

server will automatically recognize the format if not specified.   

Using a Named Data Connection 

In previous versions of RASON, models that accessed external databases required actual credentials to be 

passed, such as database URLs, port numbers, usernames, and passwords, in the text of the RASON model, in a 
dataSource declaration, as shown above and in the example code below.   

Previous versions of RASON 

 "parts_data": { 

      "type": "odbc", 

      "connection": "Driver={SQL Server Native Client 

11.0};Server=tcp:solver.database.windows.net,1433;Database=Rason;Uid=ra

sonread;Pwd=Rason1234;Encrypt=yes;TrustServerCertificate=no;Connection 

Timeout=30;", 

      "selection": "SELECT Parts as parts, Products as prods, Qty as qty 

FROM Parts ORDER BY ID", 

      "indexCols": [ "parts", "prods" ], 

      "valueCols": [ "qty" ], 

      "direction": "import" 

    }, 

RASON 2020 offers an alternative to tackle this security risk by substituting 

"connection": "Driver={SQL Server Native Client 

11.0};Server=tcp:solver.database.windows.net,1433;Database=Rason;Uid=ra

sonread;Pwd=Rason1234;Encrypt=yes;TrustServerCertificate=no;Connection 

Timeout=30;", 

with three options:  a file containing the contents of "connection" as in (1) below, a named Data Connection as 

shown in (2) or a URL pointing to Microsoft Common Data Service as shown in (3).  

4. "connection":  "File = filename", 

RASON 2020 will interpret this as (i) get the text contents of filename, which must be attached to the 

current model instance and (ii) substitute this text for the string "File=filename".  Therefore, if 

filename contains the text "Driver={SQLServerNativeClient…Timeout=30;", the effect 

will be the same as in previous versions of RASON. 

5.  "connection": "Name=myname", where myname is the name given to the Data Connection.  See 

below for instructions on how to create a named Data Connection.   

6. "connection": "secret=uri", where uri is the Microsoft Common Data Service URL 

"connection": "xxxx.crm.dynamics.com" where the actual Microsoft Common Data Service 

URL is passed directly to "connection".   

If using a with "secret=url" in the dataSources section of your RASON model, enter a URI of the 

form https://subdomain.crm.dynamics.com.  , i.e. 

http://xxxx.crm.dynamics.com/
https://subdomain.crm.dynamics.com/


"https://www.cdatacloud.net/solver/api.rsc/GoogleSheets1_ODataSourceExa

mple_Sheet1", 

RASON 2020 will interpret this as (i) get the text contents of the "secret" represented by the URL and (ii) 

substitute this text for the string "Secret=url". So if the "secret" contains the text 

"Driver={SQLNativeClient…Timeout=30;", the effect will be the same as in previous versions of RASON.  

Similarly, if using CData Cloud Hub with "connection": "xxxx.crm.dynamics.com", enter a 

URI of the form https://subdomain.crm.dynamics.com.   

RASON 2020 will interpret this as (i) get the text contents of the connection represented by the URL and 

(ii) substitute this text for the string "connection".   

Currently, RASON 2020 supports "secrets" maintained, only, in an Azure Key Vault.  Enterprise customers 

can provision their own Key Vault and arrange to authenticate the RASON Server to this Key Vault if so 

desired.   

For more information on how to setup and maintain a named Data Connection, see the RASON Services WEB 

IDE chapter within the RASON User Guide.   

See the table below for more examples illustrating how to import data in Rason DM. 

 

Importing From:    

JSON file 
"datasources": { 

   "jsonSrc": { 

      "type": "json", 

      "connection": "hald-small-nested.json", 

      "selection": "test.data", 

      "direction": "import" 

   } 

}, 

ODBC Database 
"datasources": { 

   "odbcSrc": { 

      "type": "odbc", 

      "connection": "Driver={SQL Server Native    

       Client 11.0};Server=Frontline;Database=Test; 

       trusted_connection=Yes; 

       Connection Timeout=30;", 

      "selection": "SELECT * FROM dbo.Data", 

      "direction": "import" 

    } 

}, 

MS Access Source 
"datasources": { 

   "msAccessSrc": { 

      "type": "access",  

      "connection": "ms-access-db.accdb", 

      "Selection": "SELECT * FROM Hald", 

      "direction": "import" 

   } 

}, 

Exporting 

Evaluation results may either be 1.  A part of the RASON response or 2. Bound to a writeable datasource.  In 

the example below, "fittedModelJson" and "regressionSummary" are part of the RASON response while 

"influenceDiagnostics" is bound to the writeable datasource "myExportSrc".   To view this complete example, 

see LinearRegression.json on the Try It page on RASON.com.  Note:  Some code has been removed from the 
example below for simplicity. 

mlr: { 

https://www.cdatacloud.net/solver/api.rsc/GoogleSheets1_ODataSourceExample_Sheet1
https://www.cdatacloud.net/solver/api.rsc/GoogleSheets1_ODataSourceExample_Sheet1
http://xxxx.crm.dynamics.com/
https://subdomain.crm.dynamics.com/
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  comment: 'regression: linear model', 

  datasources: { 

    myTrainSrc: { 

      type: 'csv', 

      connection: 'hald-small-train.txt', 

      direction:"import" 

    }, 

    … 

    myExportSrc: { 

      type: 'csv', 

      connection: 'Results/Export/influence-diagnostics.csv', 

      direction:"export" 

    } 

  }, 

  datasets: { 

    myTrainData: { 

      binding: 'myTrainSrc', 

      targetCol: 'Y' 

    }, 

    … 

  }, 

  estimator: { 

    mlrEstimator: { 

      type: 'regression', 

      algorithm: 'linearRegression', 

      parameters: { 

        fitIntercept: true 

      } 

    } 

  }, 

  actions: { 

    mlrModel: { 

      trainData: 'myTrainData', 

      estimator: 'mlrEstimator', 

      binding: 'myJSONSrc', 

      action: 'fit', 

      evaluations: [ 

        'fittedModelJson', 

        { 

          name: 'influenceDiagnostics', 

          binding: 'myExportSrc' 

        }, 

        'regressionSummary' 

        … 

      ] 

      … 

  } 

} 

Notes on exporting to a writable data source. 

1. "Type": "CSV" and "Type":  "JSON" simply create or overwrite the files with the 

dataframe/table evaluation. 

2. The "selection" property specifies the Excel worksheet and is optional when "Type":"Excel". If 

not provided, the worksheet name will be automatically assigned based on the rason script’s 

name, action, and evaluation, i.e mlr-mlrmodel-influenceDiagnostics. 



3. The "selection" property specifies the Database table name and is optional for all database types.  

If not provided, the table name will be automatically assigned as in 2 above. 

4. Users can write to the same Excel workbook or same database – adding new worksheets/tables 

with subsequent evaluations. 

5. It's also possible to create a new MS Access database file and write evaluations there. 

6. Creating a new database for MS SQL/Oracle types or when using an ODBC connection string is 

not supported.  As a result, "connection" must point to an existing database.  

7. See the table below for more examples illustrating how to import data in Rason DM. 

8. Importing data and exporting results to the same data source is not supported when using the data 

mining solve endpoint.  This is only supported when solving an optimization or simulation model 

where the initial variable values are imported and the final variable values are exported  (to the same 

data source).   

See the table below for more examples on exporting datamining/forecasting results to a writeable file. 

Importing From:    

CSV File 
myExportSrc: { 

  type: 'csv', 

  connection: 'Results/Export/influence-

diagnostics.csv', 

  direction: "import" 

} 

JSON File 
myExportSrc: { 

  type: 'json', 

  connection: 'Results/Export/influence-

diagnostics.json', 

  direction: "import" 

} 

Excel Workbook 
myExportSrc: { 

  type: 'excel', 

  connection: 'Results/Export/excel-export.xlsx', 

  selection: 'InfluenceDiagnosticsWorksheet', 

  direction: "import" 

} 

Access Database 
myExportSrc: { 

  type: 'access', 

  connection: 'Results/Export/access-export.accdb', 

  selection: 'InfluenceDiagnosticsTable', 

  direction: "import" 

} 

MSSQL Database 
myExportSrc: { 

  type: 'mssql', 

  connection: 'Server=OLEG-

DELL;Database=test;trusted_connection=Yes', 

  selection: 'InfluenceDiagnosticsTable',  

  direction: "import" 

} 

ODBC Connection 
myExportSrc: { 

  type: 'odbc', 

  connection: 'Driver={SQL Server Native Client 

11.0};Server=OLEG-

DELL;Database=test;trusted_connection=Yes;Timeout=30;', 

  selection: 'InfluenceDiagnosticsTable',  

  direction: "import" 

} 
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All properties available for dataSources, can be found in the table below.     

 

Data Source 

Property 

Example Explanation 

Binding "binding":"mySrc" Binds dataset to new data source.   

colIndex "colIndex": "prods" 

This property creates a dataframe and should only be used in 

conjunction with rowIndex, not indexCols and valueCols 

which create a RASON table. 

Use this property to create an implicit 

index set consisting of integer 

numbers from 1 to the number of 

columns.    This property should be 

used when importing data not 

organized as a table, and thus not 

having index columns or value 

columns.   

connection "connection":  "ProductMix.xlsx" Use this property to pass the filename 
of the data source.  Note:  Columns 

are assumed to have headers.  If no 

header exists, set "headerExists" : 

false.   

When referring to excel ranges with 

"headerExists": true/false, do not 

include the header row in the range.   

content "content": "corpus" 

 

Parameter Options 

• corpus 

• itemset 

• json-model 

• pmml-model 

• table 

• time-series 

 

Use this property to read data in some 

specific manner such as: 

corpus – text corpus 

itemset – item list 

json-model – Model in JSON format 

pmml-model – Model in PMML 

format 

table – table 

time-series – time series dataset 

direction direction: "import" 

direction: "export" 

 

Use direction: "import" 

when importing the contents of a file.  

Use direction: "export" 

when exporting results. 

headerExists 

header 

"headerExists": true 

"header": true 

Set to True by default.  Parameter 
indicates if the data file contains 

column headings (true) or not (false).  

When referring to excel ranges with 

"headerExists": true/false, do not 

include the header row in the range.   

indexCols "indexCols": ["parts", "prods"] 

This property creates a RASON table and should only be used 

in conjunction with valueCols, not colIndex and rowIndex 

which create a dataframe. 

Used in conjunction with 

valueCols. Use this property to 

index by dimension(s).   



rowIndex "rowIndex": "parts"  

This property creates a dataframe and should only be used in 

conjunction with rowIndex, not indexCols and valueCols 

which create a RASON table. 

Use this property to create an implicit 

index set consisting of integer 

numbers from 1 to the number of 

rows.  This property should be used 

when importing data not organized as 

a table, and thus not having index 
columns or value columns.   

selection Importing 

1a. "selection": "Sheet1!B2:D6" 

1b. "selection": "Sheet1!Parts_Table" 

2.  "selection": "SELECT Parts,  

    Products, Qty FROM Parts ORDER BY ID" 

 

 

 

 

 

 

 

Exporting 

1. "selection": 
"InfluenceDiagnosticsSheet" 

2. "selection": 
"InflusenceDiagnosticsTable" 

 

 

 

 

Use this property to select the 

columns/fields to import.   

3. If data source is an Excel file, 

pass A.  the Excel Range or B. an 

Excel defined name.  

4. If data source is an odbc database 

use:  SELECT + desired fields 

separated by commas + FROM + 

name of table containing desired 

field(s) + ORDER BY + field 

name containing order index. 

When exporting use this property to:  

1. Specify the Excel worksheet.  

This property is optional when 

"Type":"Excel". If not 

provided, the worksheet name 

will be automatically assigned 

based on the rason script’s 

name, action, and evaluation, i.e 

mlr-mlrmodel-

influenceDiagnostics. 

2. Specify the Database table 

name.  This property is optional 

for all database types.  If not 

provided, the table name will be 

automatically assigned as in 1 

above. 

 

Note:  When referring to excel ranges, 

do not include the header row in the 

range.   

sortIndexCols 

or 

sort 

"sortIndexCols": true Use this property to sort the columns 

alphabetically.     

Type "type": "excel" 

"type": "odbc" 

"type": "csv" 

Use this property to pass the file type: 

"excel" (Microsoft Excel), "access" or 

"msaccess" (Microsoft Access), 

"odbc" (ODBC database), "odata" 

(OData database), "mssql" (Microsoft 

Sequel), "oracle" (Oracle database), 

"csv" (Comma Separated Value), 

"json" (JSON file), "stage"  or "xml" 

(XML file).    
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The last two file types "json" and 

"xml", may be used for referencing 

stored models in external JSON and 

XML (PMML) files. The "json" file 

type may also be used for reading 

XLMiner::DataFrame serialized into 
JSON and stored in an external JSON 

file.   

valuecol "valueCol": ["Initials"] 

This property creates a RASON table and should only be used 

in conjunction with valueCols, not colIndex and rowIndex 

which create a dataframe. 

Used with binding property to bind 

imported values from a readable data  

source.  If omitted, the RASON 
interpreter assumes the last column in 

the table as the input to valueCol.   

valueCols "valueCols": ["qty"] Used in conjunction with 

indexCols.  Use this property to 

import columns/fields containing 

values 

Datasets ("datasets") 
You'll use this section to further refine data imported from within "datasources".  The section, "datasets", is an 

object with user defined attributes where each attribute defines an object containing the following properties.  

See the example below. 

"datasets": { 

"myData": { 

       "binding": "mySrc", 

  "targetCol":"Y" 

    } 

  }, 

Properties associated with "datasets" are listed in the table below.   
 

Data Set Property Example Explanation 

binding "binding":"mySrc" 

 

In the example above, this property 

binds imported data, mySrc, (from 

within dataSource) to a new 

dataset, "myData".   (String property) 

colNames "colNames": ["A", "B", "C", "D", "E", 

"F", "G"] 

Assigns column names. (Array 

property) 

dataCol "dataCol":"CHAS" Selects input variables.  (String 
property) 

excludedCols "excludedCols": ["CHAS", "MEDV"] Excludes specified columns from the 

data mining method.  (Array property) 

indexCols indexCols: ["parts", "prods"] Used in conjunction with 

valueCols. Use this property to 

index by dimension(s).   

rowNames "rowNames": ["record1", "record2"] Assigns row names.  (Array property) 



selectedCols "selectedCols": ['X1', 'X2', 'X3', 'X4'] Selects specified columns. (Array 

property) 

strataCol "strataCol":"Y" Selects the stratum variable when 

performing stratified random 

sampling.  (String property) 

targetCol "targetCol":"Y" Use this property to pass the name of 

the output column.  (String property)   

timeVariable "timeVariable":"Year" Selects the Time variable in a time 

series dataset.  (String property) 

value 
"value": [ 

["black", null, 6.0, 2.0, 1.0, "nan", 1], 

["", 3.0, 9.0, 5.1, null, "", 2], 

["red", 7.0, 8.0, null, 9.2, "small", 3], 

["red", 10000.0, null, 4.4, 4.4, "large", 

-1], 

["blue", 2, 3, 5.6, 3.4, "unknown", 5] 

], 

Sets the values of the array. 

Sets the values of a table. 

 

weights "weights": [1.0,2.1,...] Using a Weight variable allows the 

user to allocate a weight to each 

record.  A record with a large weight 

will influence the model more than a 

record with a smaller weight.   (Array 

property) 

Weaklearner ("weakLearner") 
This section is used (only) to specify a weak learner in a bagging or boosting estimator algorithm.  

Two examples are displayed below.  The first example selects the decision tree algorithm to perform a 

classification and the second selects the decision tree algorithm to perform a regression.   

weakLearner: { 

    treeWeakLearner: { 

      type: 'classification', 

      algorithm: 'decisionTree', 

      parameters: { 

        minNumRecordsInLeaves: 2 

      } 

    } 

  }, 

 

  weakLearner: { 

    treeWeakLearner: { 

      type: 'regression', 

      algorithm: 'decisionTree', 

      parameters: { 

        minNumRecordsInLeaves: 2 

      } 

    } 

  }, 

The following properties are available for use. 

weakLearner 

Property 

Example Explanation 



 
 
 

143 

type "type":"classification" 

"type":"regression" 

Use this property to specify whether 

the estimator will be a classification or 

regression estimator.      

algorithm "algorithm":"decisionTree" 

 

Parameter Options 

• decisionTree 

• discriminantAnalysis 

• linearRegression 

• logisticRegression 

• naiveBayes 

• nearestNeighbors 

• neuralNetwork 

Use this property to select the weak 

learner.  See the Example column for a 

list of choices.   

   

parameters "parameters" : { 

     "method": "M1_BREIMAN",         

     "numWeakLearners": 2, 

     "resamplingSeed": 10 

} 

Use this property to set parameter 

values or turn parameters on or off 

using "true" or "false". For a full list of 

parameters, see below. 

Algorithm Parameters:  Decision Tree 

Parameters Option Settings or Example Explanation 

priorProbMethod "priorProbMethod":"EMPIRICAL" 

 

Parameter Options 

• EMPIRICAL 

• UNIFORM 

• MANUAL 

 

For classification only 

Use EMPIRICAL when the 

probability of encountering a 

particular class in the dataset is the 

same as the frequency with which it 

occurs in the training data.    

Use UNIFORM when all classes 
occur with equal probability.    

Use MANUAL to enter the desired 

class and probability. 

maxNumLevels "maxNumLevels":3 This option specifies the maximum 

number of levels in the tree. 

maxNumNodes "maxNumNodes":5 This option specifies the maximum 

number of nodes in the tree. 

minNumRecordsInLeaves "minNumRecordsInLeaves":5 This option specifies the minimum , 

number of records allowed in 

terminal nodes, or leaves of the tree.   

maxNumSplits "maxNumSplits":10 This option specifies the maximum 

number of splits in the tree.   

Algorithm Parameters:  Discriminant Analysis 

Parameters Option Settings or Example Explanation 

priorProbMethod "priorProbMethod":"EMPIRICAL" 

 

Use EMPIRICAL when the probability of 
encountering a particular class in the dataset is 



Parameter Options 

• EMPIRICAL 

• UNIFORM 

• MANUAL 

 

the same as the frequency with which it occurs 

in the training data.    

Use UNIFORM when all classes occur with 

equal probability.    

Use MANUAL to enter the desired class and 
probability. 

quadratic "quadratic": true 

"quadratic": false 

 

 

Use True to use Quadratic Discriminant 

Analysis (QDA).  QDA 

produces a quadratic decision boundary.   

Use False to use Linear Discriminant 

Analysis (LDA). 

LDA produces a linear decision boundary.   

Both QDA and LDA assume that the data is 

normally distributed and each class has it’s 

own mean.  However, while LDA assumes 

that the covariance matrix for each class is the 
same, QDA assumes that the covariance 

matrices for each class are different.   

QDA is a more flexible technique when 

compared to LDA.  QDA's performance 

improves over LDA when the class 

covariance matrices are disparate. Since each 

class has a different covariance matrix, the 

number of parameters that must be estimated 

increases significantly as the number of 

dimensions (predictors) increase.  As a result, 

LDA might be a better choice over QDA on 
datasets with small numbers of 

observations and large numbers of 

classes.  It’s advisable to try both techniques 

to determine which one performs best on your 

model.  You can easily switch between LDA 

and QDA simply by setting this option to true 

or false.    

Algorithm Parameters: Linear Regression 

Parameters Option Settings or Example Explanation 

fitIntercept "fitIntercept": true When this option is set to true, the default 

setting, the linear regression intercept will be 

fit.  When this option is set to false, the 

intercept term will be forced to 0. 

Algorithm Parameters: Logistic Regression 

Parameters Option Settings or Example Explanation 

fitIntercept "fitIntercept": true When this option is set to true, the default 

setting, the logistic regression intercept will be 

fit.  When this option is set to false, the 

intercept term will be forced to 0. 
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priorProbMethod "priorProbMethod":"EMPIRICAL" 

 

Parameter Options 

• EMPIRICAL 

• UNIFORM 

• MANUAL 

 

For classification only 

Use EMPIRICAL when the probability of 

encountering a particular class in the dataset is 

the same as the frequency with which it occurs 

in the training data.    

Use UNIFORM when all classes occur with 

equal probability.    

Use MANUAL to enter the desired class and 

probability. 

maxIterations "maxIterations": 30 Estimating the coefficients in the Logistic 

Regression algorithm requires an iterative 

non-linear maximization procedure.  You can 

specify a maximum number of iterations to 

prevent the program from getting lost in very 

lengthy iterative loops.  This value must be an 

integer greater than 0 or less than or equal to 
200 (0 < value <= 200). 

Algorithm Parameters:  Naïve Bayes  

Parameters Option Settings or Example Explanation 

laplaceSmoothing "laplaceSmoothing": true If a particular realization of some feature 

never occurs in a given class in the training 

partition, then the corresponding frequency-

based prior conditional probability estimate 

will be zero.  To mitigate this problem, this 

parameter allows users to specify a small 

correction value, known as a pseudocount, so 

that no probability estimate is ever set to 0.  A 

Pseudocount set to zero is equivalent to no 

smoothing.  Any positive value for this 

parameter is accepted. 

priorProbMethod "priorProbMethod":"EMPIRICAL" 

 

Parameter Options 

• EMPIRICAL 

• UNIFORM 

• MANUAL 

 

For classification only 

Use EMPIRICAL when the probability of 

encountering a particular class in the dataset is 

the same as the frequency with which it occurs 

in the training data.    

Use UNIFORM when all classes occur with 

equal probability.    

Use MANUAL to enter the desired class and 

probability. 

smoothingAlpha "smoothingAlpha":1 Setting this option to zero is equivalent to no 
smoothing.   

Algorithm Parameters:  Nearest Neighbors  

Parameters Option Settings or Example Explanation 

priorProbMethod "priorProbMethod":"EMPIRICAL" For classification only 



 

Parameter Options 

• EMPIRICAL 

• UNIFORM 

• MANUAL 

 

Use EMPIRICAL when the probability of 

encountering a particular class in the dataset is 

the same as the frequency with which it occurs 

in the training data.    

Use UNIFORM when all classes occur with 
equal probability.    

Use MANUAL to enter the desired class and 

probability. 

numNeighbors "numNeighbors":3 This is the parameter k in the k-Nearest 

Neighbor algorithm. 

Algorithm Parameters:  Neural Network  

Parameters Option Settings or Example Explanation 

dataForErrorComputation 
"dataForErrorComputation" : 

"TRAIN_AND_VALID" 

Parameter Options 

• ONLY_TRAIN 

• ONLY_VALID 

• TRAIN_AND_VALID 

Specifies the data partition to be used to 

estimate the error after each training epoch.    

errorTolerance 
"errorTolerance": 0.01 

Use this option to set the error tolerance.  The 

error in a particular iteration is 

backpropagated only if it is greater than the 

value specified for this option.  Typically error 

tolerance is a small value in the range from 0 
to 1. 

hiddenLayerActivation 
"hiddenLayerActivation": 

"LOGISTIC_SIGMOID" 

 

Parameter Options 

• LOGISTIC_SIGMOID 

• SOFTMAX 

• TANH 

 

Nodes in the hidden layer receive input from 

the input layer.  The output of the hidden 

nodes is a weighted sum of the input values.  

This weighted sum is computed with weights 

that are initially set at random values.  As the 

network “learns”, these weights are adjusted.  

This weighted sum is used to compute the 

hidden node’s output using a transfer function.  

Select Sigmoid (the default setting) to use a 

logistic function for the transfer function with 

a range of 0 and 1.  This function has a 
“squashing effect” on very small or very large 

values but is almost linear in the range where 

the value of the function is between 0.1 and 

0.9.  Select Hyperbolic Tangent  to use the 

tanh function for the transfer function, the 

range being -1 to 1.  If more than one hidden 

layer exists, this function is used for all layers.  

learningOrder 
"learningOrder": "RANDOM" 

 

Parameter Options 

• ORIGINAL 

• RANDOM 

 

 

This option sets the order in which the records 

in the training dataset are processed.  It is 

recommended to shuffle the training data to 

avoid the possibility of processing correlated 

records in order which can help the neural 
network algorithm to converge faster.    Use 
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RANDOM to randomly shuffle the data.  

ORIGINAL uses the original order of records. 

learningOrderSeed 
"learningOrderSeed":12345 

This option specifies the seed for shuffling the 

training records. Note that different random 

shuffling may lead to different results, but as 

long as the training data is shuffled, different 

ordering typically does not result in drastic 
changes in performance.      

learningRate 
"learningRate":0.4 

This option sets the multiplying factor for the 

error correction during backpropagation; it is 

roughly equivalent to the learning rate for the 

neural network. A low value produces slow 

but steady learning, a high value produces 

rapid but erratic learning. Values for the step 

size typically range from 0.000001 to 1.0. 

maxNumEpochsWithNoImprovem

ent 

"maxNumEpochsWithNoImprovement": 

30 
The algorithm will stop after this number of 

epochs has been completed and no 

improvement has been realized. 

maxTrainingTimeSeconds 
"maxTrainingTimeSeconds":5.0 

 
The algorithm will stop once this time (in 

seconds) has been exceeded. 
                                                
minRelativeErrorChangeComp

aredToNullModel 

 

"minRelativeErrorChangeComparedT

oNullModel":0.0001 

                                                
If the relative change in error compared to the 

Null Model is less than this value, the 

algorithm will stop.  Null Model  is the 

baseline model used for comparing the 
performance of the neural network model. 

minRelativeErrorChange  
"minRelativeErrorChange": 

0.00001, 

 

If the relative change in error is less than this 

value, the algorithm will stop.    

numEpochs 
"numEpochs":100 

 
Use this option to set the number of epochs, or 

one sweep through all records in the training 

set.   

numNeurons "numNeurons":[5,4] 

 

 

 

Use this open to  specify the number of 

neurons in the Neural Network Architecture 

i.e. the number of neurons in the hidden 

layer(s).  The first value will determine the 

number of neurons in the 1st hidden layer, the 
second value determines the number of 

neurons in the 2nd layer, and so on.  

outputLayerActivation 
"outputLayerActivation": "TANH" 

 

Parameter Options 

• LOGISTIC_SIGMOID 

• SOFTMAX 

• TANH 

 

The output layer is also computed using the 

same transfer function as described for 

setHiddenLayerActivation.  Select 

Sigmoid (the default setting) to use a logistic 
function for the transfer function with a range 

of 0 and 1.  Select Hyperbolic Tangent to use 

the tanh function for the transfer function, the 

range being -1 to 1.  In neural networks, the 

Softmax function is often implemented at the 

final layer of a classification neural network to 

impose the constraints that the posterior 



probabilities for the output variable must be 

>= 0 and <= 1 and sum to 1.  

priorProbMethod "priorProbMethod": "EMPIRICAL" 

 

Parameter Options 

• EMPIRICAL 

• MANUAL 

• UNIFORM 

 

 

 

For classification only 

Use EMPIRICAL when the probability of 

encountering a particular class in the dataset is 

the same as the frequency with which it occurs 
in the training data.    

Use MANUAL to enter the desired class and 

probability. 

Use UNIFORM when all classes occur with 

equal probability.    

 

responseCorrection "responseCorrection":0.01 This option specifies the value applied to the 

Normalization rescaling formula, if the output 

layer activation is Sigmoid (or Softmax in 

Classification) or Adjusted Normalization, if 

the output layer activation is Hyperbolic 
Tangent.  The rescaling correction ensures 

that all response values stay within the range 

of activation function.   

weightDecay 
"weightDecay":0.0 

Use this option to prevent over-fitting of the 

network on the training data.  Set a weight 

decay to penalize the weight in each iteration.  

Each calculated weight will be multiplied by 

(1-decay). 

weightInitSeed 
"weightInitSeed":12345 

Use this option to initialize the Random Seed 

for Weights Initialization.  This value is used 

to set the seed for the initial assignment of the 

neuron values.  Setting the random number 
seed to a nonzero value (any number of your 

choice is OK) ensures that the same sequence 

of random numbers is used each time the 

neuron values are calculated.  The default 

value is “12345”.   

weightMomentum 
"weightMomentum":0.0 

This option controls the weight change 

momentum in the neural network algorithm.  

In each new round of error correction, some 

memory of the prior correction is retained so 

that an emerging outlier does not spoil the 

accumulated learning.   

Estimator ("estimator") 
This section is where the "estimator" is defined and is applicable only to algorithms that "fit" a model.  In other 
words, an "estimator" estimates "something" from the training data and stores it in a fitted model to be used 

later.  Every algorithm that implements a "fit()" interface has an Estimator – Model pair.  This section is 

mutually exclusive with the "transformer" section.  Both may not appear in the same Rason model.  Data 

mining algorithms that "fit" a model include:  Rescaler, Principal Components Analysis, Binning, Factorization, 

Encoding, Canonical Variate Analysis, Imputation, k-Means Clustering, Hierarchical Clustering, TF-IDF (Text 

Mining), Latent Semantic Analysis (Text Mining), ARIMA, all Smoothing methods (Exponential, Double 
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Exponential, Moving Average, and Holt Winters) and all classification and regression methods (Decision Trees, 

Ensemble Methods, Discriminant, Linear Regression, Logistic Regression, Naïve Bayes, Nearest Neighbors, 

and Neural Networks).   

In the example below, the estimator "mlrEstimator" uses the linear regression  algorithm to fit a model.   

"estimator": { 

    "mlrEstimator": { 

      "type": "regression", 

      "algorithm": "linearRegression", 

      "parameters": { 

        "fitIntercept": true 

      } 

    } 

  },   

This section includes the following properties. 

 

Property Example Definition 

type "type":"regression" 

 

Parameter Options 

"classification" 

"clustering" 

"regression" 

"textMining" 

"timeSeries" 

"transform" 

Use this property to specify the type of algorithm 

to be applied:  classification, regression, clustering, 

text mining, transformation or time series.   

algorithm "algorithm": "boosting" 

 

Available option settings will vary depending on 

the type setting.  Use this property to specify the 

algorithm to be used to "fit" the model.  See the 

chart below for all options.   

parameters "parameters" : { 

     "method": "M1_BREIMAN",         

     "numWeakLearners": 2, 

     "resamplingSeed": 10 

} 

Available parameter settings will vary depending 

on the algorithm setting.  Use this property to set 

parameter values or turn parameters on or off using 

"true" or "false". For a full list of parameters, see 

below. 

 

The chart below contains the available options for "algorithm" based on the "type" argument. 

 

If "type" = Algorithm option settings Definition 

"classification"  
"algorithm" : "boosting" 

 

Parameter Options 

• bagging 

• boosting 

• decisionTree 

• findBestModel 

• DiscriminantAnalysis 

boosting – Runs the Boosting ensemble method 
for classification. 

bagging – Runs the Bagging ensemble method for 

classification. 

decisionTree – Runs the Decision Tree algorithm 

for classification. 



• logisticRegression 

• naïveBayes 

• nearestNeighbors 

• neuralNetwork 

• randomTrees              

 

findBestModel – Runs the Find Best Model 

method.  For more details, see the Data Mining 

chapter within the RASON User Guide.   

DiscriminantAnalysis – Runs the Discriminant 

Analysis classification algorithm.    

logisticRegression – Runs the Logistic Regression 

classification algorithm.   

naïveBayes – Runs the Naïve Bayes classification 

algorithm.  

nearestNeighbors – Runs the k-Nearest Neighbors 

algorithm for classification. 

neuralNetwork – Runs the Neural Network 

algorithm for classification. 

randomTrees – Runs the Random Trees ensemble 
method for classification. 

"clustering" "algorithm" : "hierarchical" 

 

Parameter Options 

• hierarchical 

• kMeans 

               

kmeans – Performs clustering using the k Means 

Clustering algorithm. 

hierarchical – Performs clustering using the 

Hierarchical Clustering algorithm. 

"regression" "algorithm" : "boosting" 

 

Parameter Options 

• bagging 

• boosting 

• decisionTree 

• findBestModel 

• linearRegression 

• nearestNeighbors 

• neuralNetwork 

• randomTrees 

• findBestModel 

 

boosting – Runs the Boosting ensemble method 

for regression. 

bagging – Runs the Bagging ensemble method for 

regression. 

decisionTree – Runs the Decision Tree algorithm 

for regression. 

findBestModel – Runs the Find Best Model 

method.  For more details, see the Data Mining 

chapter within the RASON User Guide.   

linearRegression – Runs the Linear Regression 

regression algorithm.   

nearestNeighbors – Runs the k-Nearest Neighbors 

algorithm for regression. 

neuralNetwork – Runs the Neural Network 

algorithm for regression. 

randomTrees – Runs the Random Trees ensemble 

method for regression. 

"textMining" "algorithm" : "tfIdf"  

 

Parameter Options 

• latentSemanticAnalysis 

• tfIdf 

tfIdf – Performs text mining using Term 

Frequency – Inverse Document Frequency 

Vectorization (TF-IDF). 

latentSemanticAnalysis – Performs text mining 

using Latent Semantic Analysis (LSA). 

"transform" "algorithm" : "binning" 

 

binning – Use to group measured data into data 

classes. 
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Parameter Options 

• binning 

• canonicalVariateAnalysis 

• factorization 

• imputation 

• linearWrapping 

• logisticWrapping 

• oneHotEncoding 

• principalComponentAnalysis 

• rescaling 

• univariate 

               

               

 

canonicalVariateAnalysis – Produces the 

Canonical Variates.   

factorization – Use to create category scores. 

imputation – Use to handle missing values. 

linearWrapping – Performs Feature Selection (on 

a continuous output variable) using linear 

wrapping.  

logisticWrapping  - Performs Feature Selection 

(on a categorical output variable) using logistic 

wrapping.   

oneHotEncoding – Use to create dummy 

variables. 

principalComponentAnalysis – Use to run PCA. 

rescaling – Use to rescale data 

univariate – Performs Feature Analysis by ranking 

variables according to one or more univariate 

measures. 

"timeSeries" "algorithm" : "addHoltWinters" 

 

Parameter Options 

• addHoltWinters 

• arima 

• doubleExponential 

• exponential 

• lagAnalysis 

• movingAverage 

• mulHoltWinters 

• noTrendHoltWinters               

               

                             

               

addHoltWinters – Runs the Additive Holt Winters 

Smoothing method. 

arima – Performs Time Series Analysis using 

ARIMA. 

doubleExponential – Runs the Double 

Exponential Smoothing method. 

exponential – Runs the Exponential Smoothing 
method. 

lagAnalysis -- Performs Time Series Analysis 

using lag analysis. 

movingAverage – Runs the Moving Average 

smoothing method. 

mulHoltWinters - Runs the Multiplicative Holt 

Winters Smoothing method. 

noTrendWintersHoltWinters - Runs the No Trend 

Holt Winters Smoothing method. 

 
The chart below contains the available options for "parameters" based on the "algorithm" argument. 

Algorithm Parameters Common to All Classification Algorithms 

Parameters Option Settings or Example Explanation 

priorProb 
"priorProb": [ 

   [ '1', 0.4 ], 

[ '0', 0.6 ] 

], 

For classification models only. 

Specifies the desired class and probability 

values 

priorProbMethod "priorProbMethod":"EMPIRICAL" 

 

Parameter Options 

For classification models only. 

Use EMPIRICAL when the probability of 

encountering a particular class in the dataset is 



• EMPIRICAL 

• UNIFORM 

• MANUAL 

 

the same as the frequency with which it occurs 

in the training data.    

Use UNIFORM when all classes occur with 

equal probability.    

Use MANUAL to enter the desired class and 
probability.  See the example to the left.   

 

Algorithm Parameters:  Find Best Model for Classification & Regression 

Parameters Option Settings or Example Explanation 

learners   
Full Specification 

"estimator": { 

  "fbmEstimator": { 

    "type": "regression", 

    "algorithm":     

     "findBestModel", 

    "learners": { 

      "linearRegression": { 

        "fitIntercept": false 

      }, 

      "nearestNeighbors": { 

        "numNeighbors": 5 

      }, 

      "neuralNetwork": {} 

    } 

  } 

} 

 

Partial Specification 

"estimator": { 

  "fbmEstimator": { 

    "type": "regression", 

    "algorithm":     

     "findBestModel", 

    "learners": [      

       "linearRegression",  

       "nearestNeighbors",  

       "neuralNetwork" 

    ] 

  } 

} 

 

Default Specification 

"estimator": { 

  "fbmEstimator": { 

    "type": "regression", 

    "algorithm":     

     "findBestModel", 

  } 

} 

 

Full Specification:  User specifies all 

available learners and may edit parameter 

settings.  In the Full Specification example to 

the left, three learners will be available to the 

Find Best Model method:  linearRegression, 

nearestNeighbors and neuralNetwork.  

Parameter settings are defined for just two 

learners: linearRegression and 

nearestNeighbors.  The nueralNetwork learner 

will use it's default parameter settings.  Refer 
to each learner's chart in this section for a list 

of all available parameters.   

Partial Specification:  User specifies all 

available learners.  Default parameter settings 

will be used.  In the Partial Specification 

example to the left, three learners will be 

available to the Find Best Model method: 

linearRegression, nearestNeighbors and 

neuralNetwork.   

When using the Default Specification, no 
learners are specified.  All learners will be 

available to the Find Best Model method. 

 

Learners available to classification models 

are:  bagging, boosting, decisionTree, 

discriminantAnalysis, logisticRegression, 

nearestNeighbors, neuralNetwork and 

randomTrees.    

 

Learners available to regression models are:  

bagging, boosting, decisionTree, 
linearRegression, nearestNeighbors, 

neuralNetwork and randomTrees.             
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Algorithm Parameters:  Discriminant Analysis for Classification 

Parameters Option Settings or Example Explanation 

quadratic 
"quadratic": true 

"quadratic": false 

 

Use True to use Quadratic Discriminant 

Analysis (QDA).  QDA 

produces a quadratic decision boundary.   

Use False to use Linear Discriminant 

Analysis (LDA). 

LDA produces a linear decision boundary.   

Both QDA and LDA assume that the data is 

normally distributed and each class has it’s 

own mean.  However, while LDA assumes 

that the covariance matrix for each class is the 

same, QDA assumes that the covariance 

matrices for each class are different.   

QDA is a more flexible technique when 

compared to LDA.  QDA's performance 

improves over LDA when the class 

covariance matrices are disparate. Since each 
class has a different covariance matrix, the 

number of parameters that must be estimated 

increases significantly as the number of 

dimensions (predictors) increase.  As a result, 

LDA might be a better choice over QDA on 

datasets with small numbers of 

observations and large numbers of 

classes.  It’s advisable to try both techniques 

to determine which one performs best on your 

model.  You can easily switch between LDA 

and QDA simply by setting this option to true 

or false.    

 

Algorithm Parameters:  Logistic Regression for Classification 

Parameters Option Settings or Example Explanation 

categoricalFeaturesNames "categoricalFeaturesNames": [ 

"X1" ] 

Enter categorical variables by name using this 

parameter. 

Any non-numeric columns are automatically 

considered as categorical (nominal) variables. 

confidenceLevel "confidenceLevel":0.95 Sets the confidence level for the Coefficients 

Confidence Interval.    

fitIntercept "fitIntercept":false Set "fitIntercept":false to force the intercept 

term to 0.  Set this option to "true", the 

default, to fit the Logistic Regression 

intercept.   

maxIterations 

  

"maxIterations": 30 Estimating the coefficients in the Logistic 

Regression algorithm requires an iterative 

non-linear maximization procedure.  You can 

specify a maximum number of iterations to 



prevent the program from getting lost in very 

lengthy iterative loops.  This value must be an 

integer greater than 0 or less than or equal to 

200 (1 < value <= 200). 

successClass "successClass":"1" Select the success value for the output 

variable here (i.e. 0 or 1 or “yes” or “no”). 

weights "weights": [1.0,2.1,...] Provides a weight variable allowing the user 
to allocate a weight to each record.  A record 

with a large weight will influence the model 

more than a record with a smaller weight.     

Algorithm Parameters:  Naïve Bayes for Classification 

Parameters Option Settings or Example Explanation 

laplaceSmoothing "laplaceSmoothing": true Set this option to True to turn on LaPlace 

Smoothing.  Set the Pseudocount using the 

option, smoothingAlpha.  

smoothingAlpha "smoothingAlpha":1 Use this option to specify a small correction 

value, known as a pseudocount, so that no 

probability estimate is ever set to 0.  A 

pseudocount set to zero is equivalent to no 

smoothing.  When Laplace Smoothing is 

turned on, any positive value for psuedocount 
will be accepted.     

 
Algorithm: Bagging for Classification or Regression  

Parameters Example/Parameter Options Definition 

bootstrapSeed "bootstrapSeed": 10 This value specifies the seed for random 

resampling of the training data for each 
weak learner.  Setting the random number 

seed to a nonzero value (any number of 

your choice is OK) ensures that the same 

sequence of random numbers is used each 

time the dataset is chosen for the classifier. 

The default value is "12345". 

num num b numWeakLearners "numWeakLearners" : 4 

 

 

 

 

This option controls the number of “weak” 

classification/regression models that will be 

created.  The ensemble method will stop 

when the number of models created reaches 

the value set for this option.  The algorithm 

will then compute the weighted sum of 
votes for each class and assign the 

“winning” classification to each record.   

 

Algorithm: Boosting for Classification or Regression 

Parameter Example/Parameter Options Definition 

method "method" : "M1_BREIMAN" 

 

Parameter Options 

For Classification models only. 



 
 
 

155 

• M1_BREIMAN 

• M1_FREUND 

• SAMME 

The difference in the algorithms is the way in which 

the weights assigned to each observation or record 

are updated.    

In AdaBoost.M1 (Freund), the constant is calculated 

as:  

αb= ln((1-eb)/eb)  

In AdaBoost.M1 (Breiman), the constant is 

calculated as:  

αb= 1/2ln((1-eb)/eb)  

In SAMME, the constant is calculated as:  

αb= 1/2ln((1-eb)/eb + ln(k-1) where k is the number 

of classes  

(When the number of categories is equal to 2, 

SAMME behaves the same as AdaBoost Breiman.) 

num num b numWeakLearners "numWeakLearners" : 4 

 

 

 

 

This option controls the number of “weak” 

classification/regression models that will be created.  

The ensemble method will stop when the number of 

models created reaches the value set for this option.  

The algorithm will then compute the weighted sum of 

votes for each class and assign the “winning” 

classification to each record.   

resamplingSeed "resamplingSeed": 10 For Classification models only. 

This value specifies the seed for random resampling 

of the training data for each weak learner.  Setting the 

random number seed to a nonzero value (any number 

of your choice is OK) ensures that the same sequence 
of random numbers is used each time the dataset is 

chosen for the classifier. The default value is 

"12345". 

stepSize "stepSize": 0.3 For Regression models only. 

The Adaboost algorithm minimizes a loss function 

using the gradient descent method. The Step size 

parameter is used to ensure that the algorithm does 

not descend too far when moving to the next step. It 

is recommended to leave this option at the default of 

0.3, but any number between 0 and 1 is acceptable. A 

Step size setting closer to 0 results in the algorithm 
taking smaller steps to the next point, while a setting 

closer to 1 results in the algorithm taking larger steps 

towards the next point.   

Algorithm Parameters:  Neural Network for Classification or Regression 

Parameters Option Settings or Example Explanation 

categoricalFeaturesNames "categoricalFeaturesNames": [ 

'X1' ] 

Enter categorical variables by name using this 

parameter. 

Any non-numeric columns are automatically 

considered as categorical (nominal) variables. 



costFunction 
"costFunction": "SUM_OF_SQUARES" 

 

Parameter Options for 

Classification 

• SUM_OF_SQUARES 

• CROSS_ENTROPY 

• LOG_LOSS 

 

Parameter Options for Regression 

• SUM_OF_SQUARES 

Sets the cost function.  The cost function 

measures "how well" a neural network 

performed with respect to a given training 

dataset and the expected output.   

If not set, this option will be set automatically 
based on the classification/regression and 

output layer activation.   

dataForErrorComputation 
"dataForErrorComputation" : 

"TRAIN_AND_VALID" 

 

Parameter Options 

• ONLY_TRAIN 

• ONLY_VALID 

• TRAIN_AND_VALID 

 

Specifies the data partition to be used to 

estimate the error after each training epoch.    

errorTolerance 
"errorTolerance": 0.01 

Use this option to set the error tolerance.  The 

error in a particular iteration is 

backpropagated only if it is greater than the 

value specified for this option.  Typically error 

tolerance is a small value in the range from 0 

to 1. 

hiddenLayerActivation 
"hiddenLayerActivation":"LOGISTI

C_SIGMOID" 

 

Parameter Options 

• LOGISTIC_SIGMOID 

• SOFTMAX 

• TANH 

 

Nodes in the hidden layer receive input from 

the input layer.  The output of the hidden 
nodes is a weighted sum of the input values.  

This weighted sum is computed with weights 

that are initially set at random values.  As the 

network “learns”, these weights are adjusted.  

This weighted sum is used to compute the 

hidden node’s output using a transfer function.  

Select Sigmoid (the default setting) to use a 

logistic function for the transfer function with 

a range of 0 and 1.  This function has a 

“squashing effect” on very small or very large 

values but is almost linear in the range where 

the value of the function is between 0.1 and 
0.9.  Select Hyperbolic Tangent  to use the 

tanh function for the transfer function, the 

range being -1 to 1.  If more than one hidden 

layer exists, this function is used for all layers.  

learningOrder 
"learningOrder":"RANDOM" 

 
This option sets the order in which the records 

in the training dataset are processed.  It is 

recommended to shuffle the training data to 

avoid the possibility of processing correlated 

records in order which can help the neural 

network algorithm to converge faster.    Use 

RANDOM to randomly shuffle the data.  If 

ORIGINAL, the original order of records will 
be used. 

learningOrderSeed 
"learningOrderSeed":12345 

This option specifies the seed for shuffling the 

training records. Note that different random 
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shuffling may lead to different results, but as 

long as the training data is shuffled, different 

ordering typically does not result in drastic 

changes in performance.      

learningRate 
"learningRate":0.4 

This option sets the multiplying factor for the 

error correction during backpropagation; it is 

roughly equivalent to the learning rate for the 
neural network. A low value produces slow 

but steady learning, a high value produces 

rapid but erratic learning. Values for the step 

size typically range from 0.000001 to 1.0. 

maxNumEpochsWithNoImprovem

ent 

"maxNumEpochsWithNoImprovement": 

30 
The algorithm will stop after this number of 

epochs has been completed and no 

improvement has been realized. 

maxTrainingTimeSeconds 
                        

"maxTrainingTimeSeconds":5.0 

 

The algorithm will stop once this time (in 

seconds) has been exceeded. 

                                                
minRelativeErrorChangeComp

aredToNullModel 

 

                                         

"minRelativeErrorChangeComparedT

oNullModel":0.0001 

                                                
If the relative change in error compared to the 

Null Model is less than this value, the 

algorithm will stop.  Null Model  is the 

baseline model used for comparing the 

performance of the neural network model. 

 
minRelativeErrorChange  

"minRelativeErrorChange": 

0.00001 

 

If the relative change in error is less than this 

value, the algorithm will stop.    

numEpochs 
"numEpochs":100 

 

Use this option to set the number of epochs, or 

one sweep through all records in the training 

set.   

numNeurons "numNeurons":[5,4] 

 

 

 

Use this open to  specify the number of 

neurons in the Neural Network Architecture 

i.e. the number of neurons in the hidden 

layer(s).  The first value will determine the 

number of neurons in the 1st hidden layer, the 
second value determines the number of 

neurons in the 2nd layer, and so on.  

   

outputLayerActivation 
"outputLayerActivation":"TANH" 

 

Parameter Options 

• LOGISTIC_SIGMOID 

• SOFTMAX 

• TANH 

 

The output layer is also computed using the 

same transfer function as described for 

setHiddenLayerActivation.  Select 

Sigmoid (the default setting) to use a logistic 

function for the transfer function with a range 

of 0 and 1.  Select Hyperbolic Tangent to use 
the tanh function for the transfer function, the 

range being -1 to 1.  In neural networks, the 

Softmax function is often implemented at the 

final layer of a classification neural network to 

impose the constraints that the posterior 

probabilities for the output variable must be 

>= 0 and <= 1 and sum to 1.  



weightDecay 
"weightDecay":0.0 

Use this option to prevent over-fitting of the 

network on the training data.  Set a weight 

decay to penalize the weight in each iteration.  

Each calculated weight will be multiplied by 

(1-decay). 

weightInitSeed 
"weightInitSeed":12345 

Use this option to initialize the Random Seed 
for Weights Initialization.  This value is used 

to set the seed for the initial assignment of the 

neuron values.  Setting the random number 

seed to a nonzero value (any number of your 

choice is OK) ensures that the same sequence 

of random numbers is used each time the 

neuron values are calculated.  The default 

value is “12345”.   

weightMomentum 
"weightMomentum":0.0 

This option controls the weight change 

momentum in the neural network algorithm.  

In each new round of error correction, some 

memory of the prior correction is retained so 
that an emerging outlier does not spoil the 

accumulated learning.   

Algorithm Parameters:  Decision Trees for Classification or Regression 

Parameters Option Settings or Example Explanation 

categoricalFeaturesNames "categoricalFeaturesNames": [ 

"X1" ] 

Enter categorical variables by name using this 

parameter. 

Any non-numeric columns are automatically 

considered as categorical (nominal) variables. 

prunedTreeType "prunedTreeType": "MIN_ERROR" 

 

Parameter Options 

• FULL_GROWN 

• BEST_PRUNED 

• MIN_ERROR 

• MANUAL 

 

Use this option to select the tree used to score 

the validation dataset:  FULL_GROWN, 

BEST_PRUNED, MIN_ERROR or 

MANUAL.    

• Use "FULL_GROWN" to use the complete 
tree.    

• Use "BEST_PRUNED" to use the Best 

Pruned Tree. 

• Use "MIN_ERROR" to use the Minimum 

Error Tree.    

 • Use "MANUAL" to create a tree with a 

specified number of decision nodes.  When 

this option is used, set the number of decision 

nodes in the Pruned Tree using 

"prunedTreeNumDecisionNodes" 

maxNumLevels "maxNumLevels":3 This option specifies the maximum number of 

levels in the tree. 

maxNumLevelsTreeDiagram "maxNumLevelsTreeDiagram": 7 This option specifies the maximum number of 

levels in the tree to be included in the output. 
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maxNumNodes "maxNumNodes":5 This option specifies the maximum number of 

nodes in the tree. 

maxNumSplits "maxNumSplits":10 This option specifies the maximum number of 

splits in the tree.   

minNumRecordsInLeaves "minNumRecordsInLeaves":5 This option specifies the minimum number of 

records allowed in terminal nodes, or leaves of 

the tree.   

prunedTreeNumDecisionNodes "prunedTreeNumDecisionNodes":5 Used in conjuction with "prunedTree 

Type" : "MANUAL".  Use this option to 

specify the number of decision nodes in the 

pruned tree.   

weights "weights": [1.0,2.1,...] Provides a weight variable allowing the user 

to allocate a weight to each record.  A record 

with a large weight will influence the model 

more than a record with a smaller weight.     

Algorithm Parameters:  Random Trees for Classification or Regression 

Parameters Option Settings or Example Explanation 

bootstrapSeed "bootstrapSeed": 1 This value sets the bootstrapping random 

number seed.  Setting the random number 

seed to a nonzero value (any number of your 

choice is OK) ensures that the same sequence 
of random numbers is used each time the 

dataset is chosen for the classifier.  The 

default value is “12345".   

categoricalFeaturesNames "categoricalFeaturesNames": [ 

"X1" ] 

Enter categorical variables by name using this 

parameter. 

Any non-numeric columns are automatically 

considered as categorical (nominal) variables. 

featureSelectionSeed "featureSelectionSeed":2 This value sets the feature selection random 

number seed.  Setting the random number 

seed to a nonzero value (any number of your 

choice is OK) ensures that the same sequence 

of random numbers is used each time the 
dataset is chosen for the classifier.  The 

default value is “12345”.   

maxNumLevels "maxNumLevels":3 This option specifies the maximum number of 

levels in the tree. 

maxNumNodes "maxNumNodes":5 This option specifies the maximum number of 

nodes in the tree. 

maxNumSplits "maxNumSplits":10 This option specifies the maximum number of 

splits in the tree.   

minNumRecordsInLeaves "minNumRecordsInLeaves":5 This option specifies the minimum number of 

records allowed in terminal nodes, or leaves of 

the tree.   

numSelectedFeatures "numSelectedFeatures": 5 The Random Trees ensemble method works 

by training multiple “weak” classification 



trees using a fixed number of randomly 

selected features then taking the mode of each 

class to create a “strong” classifier. This 

option controls the fixed number of randomly 

selected features in the algorithm.  The default 

setting is 3.    

num num b numWeakLearners "numWeakLearners" : 4 

 

 

 

 

 

This option controls the number of “weak” 
classification/regression models that will be 

created.  The ensemble method will stop when 

the number of models created reaches the 

value set for this option.  The algorithm will 

then compute the weighted sum of votes for 

each class and assign the “winning” 

classification to each record.   

Algorithm Parameters:  k-Nearest Neighbors for Classification or Regression 

Parameters Option Settings or Example Explanation 

includeTies "includeTies": true If includeTies = True, all points with distance 

equal to kth nearest neighbor are included in 

the result. 

If includeTies = False, exactly k nearest 

neighbors are returned.  

numNeighbors "numNeighbors":3 This is the parameter k in the k-nearest 

neighbor algorithm.  

stable "stable":true 

 

If stable = true, the tied neighbors (up to kth 

neighbor) remain in the original order. 

If stable = false, the tied neighbors (up to kth 

neighbor) are in pseudo-random order.   

weightingScheme "weightingScheme": 

"INVERSE_DISTANCE" 

 

Parameter Options 

• EQUAL 

• INVERSE_DISTANCE 

Use this option to select the weighting 
scheme:  equal or inverse distance.  

weights "weights": [1.0,2.1,...] Provides a weight variable allowing the user 

to allocate a weight to each record.  A record 

with a large weight will influence the model 

more than a record with a smaller weight.     

Algorithm Parameters:  Hierarchical for Clustering 

Parameters Option Settings or Example Explanation 

dissimilarity "dissimilarity" : "EUCLIDEAN" EUCLIDEAN -- Hierarchical clustering uses 

the Euclidean Distance as the similarity 

measure for working on raw numeric data.  
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When the data is binary, the remaining two 

options, Jaccard's coefficients and Matching 

coefficient are available. 

Suppose we have binary values for all the xij 

’s.  See the table below for individual i’s and 
j’s. 

 

The most useful similarity measures in this 

situation are: 

JACCARD  -- Jaccard’s coefficient = 

d/(b+c+d). This coefficient ignores zero 
matches. 

MATCHING -- The matching coefficient = (a 

+ d)/p. 

linkage "linkage" : "SINGLE_LINKAGE" 

 

Parameter Options 

• CENTROID 

• COMPLETE_LINKAGE 

• GROUP_AVERAGE 

• MCQUITTY 

• MEDIAN 

• SINGLE_LINKAGE 

• WARD 

SINGLE_LINKAGE -- One of the simplest 

agglomerative hierarchical clustering methods 

is single linkage, also known as the nearest 

neighbor technique. The defining feature of 

this method is that distance between groups is 

defined as the distance between the closest 

pair of objects, where only pairs consisting of 

one object from each group are considered.  

In this method, D(r,s) is computed as 

D(r,s) = Min { d(i,j) : Where object i is in 

cluster r and object j is cluster s }  

Here the distance between every possible 

object pair (i,j) is computed, where object i is 

in cluster r and object j is in cluster s. The 

minimum value of these distances is said to be 

the distance between clusters r and s. In other 

words, the distance between two clusters is 

given by the value of the shortest link between 
the clusters.  

At each stage of hierarchical clustering, the 

clusters r and s, for which D(r,s) is minimum, 

are merged. 

 

This measure of inter-group distance is 

illustrated in the figure below: 



 

COMPLETE_LINKAGE – This method, also 

called farthest neighbor clustering method, is 

the opposite of single linkage. In this 
clustering method, the distance between 

groups is defined as the distance between the 

most distant pair of objects, one from each 

group.  

In the complete linkage method, D(r,s) is 

computed as 

D(r,s) = Max { d(i,j) : Where object i is in 

cluster r and object j is cluster s } 

Here the distance between every possible 

object pair (i,j) is computed, where object i is 
in cluster r and object j is in cluster s and the 

maximum value of these distances is said to 

be the distance between clusters r and s. In 

other words, the distance between two clusters 

is given by the value of the longest link 

between the clusters.  

At each stage of hierarchical clustering, the 

clusters r and s, for which D(r,s) is minimum, 

are merged.   

The measure is illustrated in the figure below: 

 

GROUP_AVERAGE -- Here the distance 

between two clusters is defined as the average 

of distances between all pairs of objects, 

where each pair is made up of one object from 

each group.  
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In the average linkage method, D(r,s) is 

computed as  

D(r,s) = Trs / ( Nr * Ns) 

Where Trs  is the sum of all pairwise distances 

between cluster r and cluster s. Nr and Ns are 
the sizes of the clusters r and s respectively.  

At each stage of hierarchical clustering, the 

clusters r and s, for which D(r,s) is the 

minimum, are merged.  The figure below 

illustrates average linkage clustering: 

 

CENTROID -- With this method, groups once 

formed are represented by their mean values 

for each variable, that is, their mean vector, 

and inter-group distance is now defined in 

terms of distance between two such mean 

vectors.  

In the group average linkage method, the two 

clusters r and s are merged such that, after 

merging, the average pairwise distance within 

the newly formed cluster, is minimized. 

Suppose we label the new cluster formed by 

merging clusters r and s, as t. Then D(r,s) , 

the distance between clusters r and s is 

computed as  

D(r,s) = Average { d(i,j) : Where observations 

i and j are in cluster t, the cluster formed by 
merging clusters r and s }  

At each stage of hierarchical clustering, the 

clusters r and s, for which D(r,s) is 

minimized, are merged. In this case, those two 

clusters are merged such that the newly 

formed cluster, on average, will have 

minimum pairwise distances between the 

points. 

WARD -- Ward (1963) proposed a clustering 

procedure seeking to form the partitions Pn, P 

n-1,........, P1 in a manner that minimizes the loss 
associated with each grouping, and to quantify 



that loss in a form that is readily interpretable. 

At each step in the analysis, the union of every 

possible cluster pair is considered and the two 

clusters whose fusion results in the minimum 

increase in 'information loss' are combined. 

Information loss is defined by Ward in terms 
of an error sum-of-squares criterion, ESS. 

The rationale behind Ward's proposal can be 

illustrated most simply by considering 

univariate data. Suppose for example, 10 

objects have scores (2, 6, 5, 6, 2, 2, 2, 2, 0, 0, 

0) on some particular variable. The loss of 

information that would result from treating the 

ten scores as one group with a mean of 2.5 is 

represented by ESS given by, 

ESS One group = (2 -2.5)2 + (6 -2.5)2 + ....... + (0 -

2.5)2 = 50.5  

On the other hand, if the 10 objects are 

classified according to their scores into four 

sets, 

{0,0,0}, {2,2,2,2}, {5}, {6,6} 

The ESS can be evaluated as the sum of 

squares of four separate error sums of squares 

ESS One group = ESS group1 + ESSgroup2 + ESSgroup3 

+ ESSgroup4 = 0.0 

Clustering the 10 scores into 4 clusters results 
in no loss of information. 

MCQUITTY -- When this procedure is 

selected, at each step, when two clusters are to 

be joined, the distance of the new cluster to an 

existing cluster is computed as the average of 

the distances from the proposed cluster to the 

existing cluster.   

MEDIAN -- The Median Method also uses 

averaging when calculating the distance 

between two records or observations.  
However, this method uses the median instead 

of the mean. 

One of the reasons why Hierarchical 

Clustering is so attractive to statisticians is 

that all possible clusters can be examined 

visually, or in any desired way, by examining 

the full dendrogram.  However, there are a 

few limitations.   

1. Hierarchical clustering can be 

computationally expensive as this method 

requires computing and storing an n x n 
distance matrix.  If using a large dataset, 

this requirement can be very slow and 

require large amounts of memory. 
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2.  Clusters created through Hierarchical 

clustering are not very stable.  If records 

are eliminated, the results can be very 

different. 

3.  Outliers in the data can impact the results 
negatively.   

inputDataType "inputDataType" : 

"DISTANCE_MATRIX" 

Parameter Options 

• DISTANCE_MATRIX 

• RAW_DATA 

The Hierarchical clustering method can be 

used on raw data as well as the data in 

Distance Matrix format. Pass the appropriate 

option to fit your dataset.  If Raw Data is 

chosen, the similarity matrix will be computed 

before clustering is performed.   

Algorithm Parameters:  k-Means for Clustering 

Parameters Option Settings or Example Explanation 

maxIterations "maxIterations" : 10 This parameter limits the number of iterations 

for the k-Means Clustering algorithm. Even if 

the convergence criteria has not yet been met, 

the cluster adjustment will stop once the limit 

on # Iterations has been reached.  The default 
value for this option is 10.       

numClusters "numclusters" : 3 This parameter controls the number of final 

cohesive groups of observations (k) to be 

formed.  The number of clusters should be at 

least 1 and at most the number of 

observations-1 in the data range.  This value 

should be based on your knowledge of the 

data and the number of projected clusters.  

One can use the results of Hierarchical 

Clustering or several values of K to 

understand the best data partitioning level.  

The default value for this option is 2.   

numStarts "numStarts" : 5 If numStarts = 0, the clustering method will 

start building the model with a single fixed 

starting point. 

If numStarts is set to a positive integer, the 

algorithm will start at any random point.  

Enter the number of desired starting points for 

the clustering algorithm.  The final result of 

the K-Means Clustering algorithm depends on 

the initial choice on the cluster centroids. The 

clustering algorithm allows a better choice by 

trying several random assignments. The best 
assignment (based on Sum of Squared 

Distances) is chosen as an initialization for 

further K-Means iterations.   

randomSeed "randomSeed" : 123 This option initializes the random number 

generator that is used to assign  the initial 

cluster centroids.  Setting the random number 

seed to a nonzero value (any number of your 



choice is OK) ensures that the same sequence 

of random numbers is used each time the 

initial cluster centroids are calculated.  When 

the seed is not specified or is set to zero, the 

random number generator is initialized from 

the system clock, so the sequence of random 
numbers will be different each time the 

centroids are initialized.  

Algorithm Parameters:  Linear Regression 

Parameters Option Settings or Example Explanation 

categoricalFeaturesNames "categoricalFeaturesNames": [ 

'X1' ] 

Enter categorical variables by name using this 

parameter. 

Any non-numeric columns are automatically 

considered as categorical (nominal) variables. 

fitIntercept "fitIntercept": false Set "fitIntercept":false to force the intercept 

term to 0.  Set this option to "true", the 

default, to fit the Linear Regression intercept.   

weights "weights": [1.0,2.1,...] Provides a weight variable allowing the user 

to allocate a weight to each record.  A record 

with a large weight will influence the model 
more than a record with a smaller weight.     

Algorithm Parameters:  Latent Semantic Analysis for Text Mining  

Parameters Option Settings or Example Explanation 

computeConceptImportance "computeConceptImportance" : 

true 

If true, the Concept Importance table is 

computed.  This table displays the total 

number of concepts extracted, the Singular 

Value for each, the Cumulative Singular 

Value and the % of Singular Value explained..   

computeTermImportance "computeTermImportance" : true If true, the Term Importance table is 

computed.  This table display each term along 

with its Importance as calculated by singular 

value decomposition.  This option is not 

selected by default.   

 

maxNumConcepts "maxNumConcepts": 4 Use this parameter to specify the maximum 

number of concepts in the Scree Plot.   

minPercentExplained "minPercentExplained" : 50 Identifies the concepts with singular values 

that, when taken together, sum to the 

minimum percentage explained, 90% is the 

default.   

 

Algorithm Parameters:  TFIDF for Text Mining     

Parameters Option Settings or Example Explanation 
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endPhrase "endPhrase" : "End of Chat 

Transcript" 

Text appearing before the first occurrence of 

the Start Phrase (if used) will be disregarded 

and similarly, text appearing after End Phrase 

(if used) will be disregarded. For example, if 

text mining the transcripts from a Live Chat 

service, you would not be particularly 
interested in any text appearing before the 

heading “Chat Transcript” or after the heading 

“End of Chat Transcript”.  Thus you would 

pass “Chat Transcript” for "startPhrase" and 

“End of Chat Transcript” for "endPhrase".  

emailToken "emailToken" : "emailToken" If NORMALIZE_EMAIL is passed for 

"processing", then this term may be used to 

replace email addresses appearing in the 

document collection with the term entered 

here.  If "emailToken" is not specified, email 

addresses will be replaced with the phrase:  

"emailToken".   

exclusiveInclusionTerms "exclusiveInclusionTerms" : 

["exclusiveInclusionTerm1", 

"exclusiveInclusionTerm2"] 

If used, terms entered for 

"exclusiveInclusionTerms" will be removed 

from the document collection during pre-

processing.  

exclusionTerms "exclusionTerms":["Term1", 

"Term2"] 

If used, terms entered for "exclusionTerms" 

will be removed from the document collection 

during pre-processing.  

phraseReplacement 
" phraseReplacement": [ 

["phrase1","phraseReplacement"], 

["phrase2","phraseReplacement"]        

] 

Use this parameter to combine words into 

phrases that indicate a singular meaning such 

as “station wagon” which refers to a specific 

type of car rather than two distinct tokens – 

station and wagon.   

preprocessing 
"preprocessing": [ 

    "REMOVE_STOPWORDS", 

    "NORMALIZE_CASE", 

    "STEM", 

    "NORMALIZE_URL", 

    "NORMALIZE_EMAIL", 

    "NORMALIZE_NUMBER", 

    "NORMALIZE_MONEY", 

    "REMOVE_HTML_TAGS" 

], 

Use this property to replace or remove 
nonsensical terms such as HTML tags, URLs, 

Email addresses, etc. from the document 

collection.  It’s possible to remove normalized 

terms completely by including the normalized 

term (for example, “emailtoken”) in the 

Exclusion list.   

NORMALIZE_CASE – All text will be 

converted to a consistent (lower) case, so that 

Term, term, TERM, etc. are all normalized to 

a single token “term”.   

NORMALIZE_EMAIL -- Email addresses 

appearing in the document collection will be 

replaced with the term, “emailtoken”.   

NORMALIZE_MONEY -- Monetary 

amounts will be substituted with the term, 

“moneytoken”.   

NORMALIZE_NUMBER -- Numbers 

appearing in the document collection will be 

replaced with the term, “numbertoken”. 



NORMALIZE_URL -- URLs appearing in the 

document collection will be replaced with the 

term, “urltoken”.   

REMOVE_HTML_TAGS -- HTML tags will 

be removed from the document collection.  

REMOVE_STOPWORDS – Over 300 

commonly used words/terms (such as a, to, 

the, and, etc.) will be removed from the 

document collection during preprocessing.   

Additional stopwords may be added or via a 

text document (*.txt).  Terms in the text 

document can be separated by a space, a 

comma, or both.   

STEM -- If stemming reduced a term’s length 

to 2 or less characters, Text Miner will 
disregard the term.   

maxDocumentFrequency 
"maxDocumentFrequency": 95 

Text Miner will remove terms that appear in 

more than the percentage of documents 

specified.  The default percentage is 98%.   

maxVocabulary 
"maxVocabulary": 5 

This parameter reduces the number of terms in 

the final vocabulary to the most frequently 

occurring in the collection. The default is 

“1000”.   

maxTermLength 
"maxTermLength": 10 

Text Miner will remove terms that contain a 

set number of characters.  This option can be 

extremely useful for removing some parts of 

text which are not actual English words, for 

example, URLs or computer-generated tokens, 
or to exclude very rare terms such as Latin 

species or disease names, i.e. 

Pneumonoultramicroscopicsilicovolcanoconio

sis.  

moneyToken 
"moneyToken" : "moneyToken" 

If NORMALIZE_MONEY is passed for 

"preprocessing", numbers appearing in the 

document collection will be replaced with the 

term, “numbertoken”.   

minDocumentFrequency 
"minDocumentFrequency": 5 

Text Miner will remove terms that appear in 

less than the percentage of documents 

specified.  The default percentage is 2%. 

minStemmedTermLength 
"minStemmedTermLength": 2 

If stemming reduced a term’s length to 2 or 

less characters, Text Miner will disregard the 
term.   

numberToken 
"numberToken":"numberToken" If NORMALIZE_NUMBER is passed for 

"processing", then this term may be used to 

replace numbers appearing in the document 

collection with the term entered here.  If 

"numberToken" is not specified, numbers will 

be replaced with the phrase:  "numberToken".   
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startPhrase "startPhrase" : "Beginning of 

Chat Transcript" 

Text appearing before the first occurrence of 

the Start Phrase (if used) will be disregarded 

and similarly, text appearing after End Phrase 

(if used) will be disregarded. For example, if 

text mining the transcripts from a Live Chat 

service, you would not be particularly 
interested in any text appearing before the 

heading “Chat Transcript” or after the heading 

“End of Chat Transcript”.  Thus you would 

pass “Chat Transcript” for "startPhrase" and 

“End of Chat Transcript” for "endPhrase".  

stopWordsExtraTerms 
"stopWordsExtraTerms" : 

["stopwords"] 
Over 300 commonly used words/terms (such 

as a, to, the, and, etc.) will be removed from 

the document collection during preprocessing.  

Additional stop words may be added to the list 

using this parameter.   

synonyms 
"synonyms": [ 

   ["rootTerm1", "synonym1",     

   "synonym2"], 

   ["rootTerm2", "synonym1",  

   "synonym2"] 

], 

Use this parameter to replace synonyms such 

as “car”,  “automobile”, “convertible”, 
“vehicle”, “sedan”, “coupe”, “subcompact”,  

and  “jeep” with “auto”.  During pre-

processing, Text Miner will replace the terms 

“car”, “automobile”, “convertible”, “vehicle”, 

“sedan”, “coupe”, “subcompact” and “jeep” 

with the term “auto”.  It is possible to add 

synonyms from a text file.  

urlToken 
"urlToken":"urlToken" If NORMALIZE_URL is passed for 

"preprocessing", URLS appearing in the 

document collection will be replaced with the 

term, “urlToken”.   

Algorithm Parameters:  ARIMA for Time Series  

Parameters Option Settings or Example Explanation 

autoRegressiveOrder "autoRegressiveOrder" : 1  Sets the non-seasonal Autoregressive 
parameter (p). 

Difference "difference" : 1 Sets the non-seasonal Difference parameter 

(d). 

Period "period": 12 
Enter the number of periods that make up one 

season. 

maxIterations "maxIterations" : 5 Sets the maximum number of iterations.   

movingAverageOrder "movingAverageOrder" : 2 Sets the non-seasonal Moving Average 

parameter (d). 

seasonalAutoRegressiveOrder "seasonalAutoRegresiveOrder": 1  Sets the seasonal Autoregressive parameter 

(P). 

seasonalDifference "seasonalDifference" : 1 Sets the seasonal Difference parameter (D). 

seasonalMovingAverageOrder "seasonalMovingAverageOrder": 1 Sets the seasonal Moving Average parameter 

(Q).   



Algorithm Parameters:  Lag Analysis for Time Series  

Parameters Option Settings or Example Explanation 

maxLag "maxLag" : 10 Sets the maximum number of lags. 

minLag "minLag" : 4 Sets the minimum number of lags. 

nonSeasonalLag "nonSeasonalLag": 1 
Sets the nonseasonal lag. 

period "period" : 12 Sets the number of periods that make up one 

season.  

seasonalLag "seasonalLag" : 1 Sets the seasonal lag.   

Algorithm Parameters:  Smoothing Methods for Time Series  

Parameters Option Settings or Example Explanation 

interval "interval" : 2 

 

Included in Following Methods 

Moving Average 

Use this parameter to enter the window width 

for the moving average smoothing method.  

This parameter accepts a value of 1 up to N -1 

(where N is the number of observations in the 

dataset).  If a value of 5 is entered for the 
Interval, then the average of the last five 

observations for the last smoothed point or Ft = 

(Yt + Yt-1 + Yt-2 + Yt – 3 + Yt-4) /  5 will be 

used.  The default value is 2. 

levelParam "levelParam" : 0.2 

 

Included in Following Methods 

Double Exponential 

Exponential 

Holt Winters Additive 

Holt Winters Multiplicative 

Holt Winters No Trend 

 

 

Use this parameter to enter the smoothing 

parameter for exponential, double exponential, 

and holt winters smoothing methods.  This 

parameter is used in the weighted average 

calculation and can be from 0 to 1.  A value of 

1 or close to 1 will result in the most recent 

observations being assigned the largest 

weights and the earliest observations being 
assigned the smallest weights in the weighted 

average calculation.  A value of 0 or close to 0 

will result in the most recent observations 

being assigned the smallest weights and the 

earliest observations being assigned the 

largest weights in the weighted average 

calculation.  The default is 0.2.   

Optimize "optimize": true 

 

Included in Following Methods 

Double Exponential 

Exponential 

Holt Winters Additive 

Holt Winters Multiplicative 

Holt Winters No Trend 

Select this option to select the Alpha 

parameter for the Exponential smoothing 

method, the Alpha and Beta parameters for the 

Double Exponential Smoothing method, and 

the Alpha, Beta, and Gamma parameters for 
the Holt Winter Smoothing method to 

minimize the residual mean squared errors in 

the training and validation sets.  Take care 

when using this feature as this option can 

result in an over fit model.  This option is not 

turned on by default.   

Period "period" : 12 

 

Included in Following Methods 

Enter the number of periods that make up one 

season when using the Holt Winter Smoothing 

method.   
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Holt Winters Additive 

Holt Winters Multiplicative 

Holt Winters No Trend 

seasonalityParam "seasonalityParam" : 0.05 

 

Included in Following Methods 

Holt Winters Additive 

Holt Winters Multiplicative 

Holt Winters No Trend 

 

The Holt Winters Smoothing technique 

utilizes an additional seasonal parameter, 
Gamma, to manage the presence of 

seasonality in the data.  This parameter is also 

used in the weighted average calculation and 

can be from 0 to 1.  A value of 1 or close to 1 

will result in the most recent observations 

being assigned the largest weights and the 

earliest observations being assigned the 

smallest weights in the weighted average 

calculation.  A value of 0 or close to 0 will 

result in the most recent observations being 

assigned the smallest weights and the earliest 

observations being assigned the largest 
weights in the weighted average calculation.  

The default is 0.05.   

trendParam "trendParam" : 0.15 

 

Included in Following Methods 

Double Exponential 

Holt Winters Additive 

Holt Winters Multiplicative 

 

 

The Double Exponential and Holt Winters 

smoothing techniques include the parameter, 

Beta, to contend with trends in the data. This 

parameter is also used in the weighted average 

calculation and can be from 0 to 1.  A value of 

1 or close to 1 will result in the most recent 

observations being assigned the largest 

weights and the earliest observations being 

assigned the smallest weights in the weighted 
average calculation.  A value of 0 or close to 0 

will result in the most recent observations 

being assigned the smallest weights and the 

earliest observations being assigned the 

largest weights in the weighted average 

calculation.  The default is 0.15.  

Algorithm Parameters:  Binning for Transformation 

Parameters Option Settings or Example Explanation 

binValueOption 
"binValueOption": [ 

   [ "x4", "RANK" ], 

   [ "x2", "MID_VALUE" ] 

] 

 

Parameter Options 

• MEAN 

• MEDIAN 

• MID_VALUE 

• RANK 

When method = EQUAL_COUNT, use 

MEAN to replace the value of the selected 

variable with the mean of the interval for the 

assigned bin.  

When method = EQUAL_COUNT, use 
MEDIAN to replace the value of the selected 

variable value with the median of the interval 

for the assigned bin. 

When method = EQUAL_INTERVAL, use 

MID_VALUE to replace the value of the 

selected variable with the mid value of the 

interval for the assigned bin.  

When method = EQUAL_INTERVAL or 

EQUAL_COUNT,  use RANK to specify the 



Start value of the first bin and the Interval of 

each bin.  Subsequent bin values will be 

calculated as the previous bin + interval value.   

interval 
"interval": [ 

   [ "x2", "RIGHT_CLOSED" ], 

   [ "x4", "CLOSED" ] 

] 

Use this parameter to indicate whether the 

interval for each variable is CLOSED [], 

RIGHT_CLOSED (], or LEFT_CLOSED [). 

Default is:   LEFT_CLOSED [). 

method 
"method": [ 

   [ "x2", "EQUAL_INTERVAL" ], 

   [ "x4", "EQUAL_COUNT" ] 

] 

EQUAL_COUNT -- Data is binned in such a 
way that each bin contains the same number 

of records.  The options for the value of the 

binned variable for this parameter are Rank, 

Mean, and Median.   
Note:  There is a possibility that the number of records in 

a bin may not be equal due to factors such as border 

values, the number of records being divisible by the 

number of bins, etc. 

EQUAL_INTERVAL -- Binning procedure 

will assign records to bins if the record’s value 

falls in the interval of the bin.  Bin intervals 

are calculated by roughly subtracting the 

Minimum variable value from the Maximum 

variable value and dividing by the number of 

bins ((Max Value – Min Value) / # bins). The 
options for value of the binned variable for 

this process are Rank and Mid value.   

numBins 
"numBins": [ 

   [ "x2", 11 ], 

   [ "x4", 4 ] 

] 

Enter the number of desired bins for each 

selected variable using this option. 

 

rank "rank": [ 

   [ "x4", 1.0, 5.0 ] 

] 

 

This parameter is available when 

binValueOption is set to "RANK".   

Use the "rank" parameter to specify the Start 

value of the first bin and the Interval of each 

bin.  Subsequent bin values will be calculated 

as the previous bin + interval value.   

Algorithm Parameters:  Canonical Variate Analysis for Transformation 

 No Parameters are associated with this Transformation Method 

Algorithm Parameters:  Factorization for Transformation 

Parameters Option Settings or Example Explanation 

baseIndex 
"baseIndex": [ 

  [ "X1", 1 ], 

  [ "X3", 5 ] 

] 

Factorization converts a variable into a new 

numeric, categorical variable.  Use this 

parameter to specify the number with which to 

begin the categorization.  In the example to 

the left, the categorization will begin at "1" for 
"X1" (1, 2, 3, 4, 5, ) and "5" for "X3" (5, 6, 7, 

8, 9).   
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Algorithm Parameters:  Imputation for Transformation 

Parameters Option Settings or Example Explanation 

imputationStrategy 
"imputation": [ 

   ["A", "MODE"], 

   ["B", "MEAN"] 

] 

Parameter Options 

• DELETE_RECORD 

• MEAN 

• MEDIAN 

• MODE 

• VALUE 

 

Determines the strategy of the selected 

variables.     

Delete record - Deletes the entire record if a 

missing or invalid value is found for that 

variable.     

Mean - All missing values in the column for 

the variable specified will be replaced by the 

mean - the average of the values in the 

remainder of the column.   

Median - All missing values in the column for 

the variable specified will be replaced by the 

median - the number that would appear in the 

middle of the remaining column values if all 

values were written in ascending order.    

Mode - All missing values in the column for 

the variable specified will be replaced by the 
mode - the value occurring most frequently in 

the remainder of the column.   

Value – Use VALUE to enter a user defined 

value. If used, the imputation model parameter 

must be used to specify the user defined value.   

placeholder 
"placeholder" : [ 

     ["B", 1000.0], 

     ["F", "unknown"], 

     ["G", -1] 

] 

Sets the custom placeholder for missing 

values in a column.                         

Note that integer columns may not contain 

`NaN`, `null` or any other invalid value by 

default, but can still specify a manual 

placeholder for missing integer values. See 
Imputation Model Parameters below for an 

example or open the Imputation Example 

from the Editor tab at RASON Examples – 

Data Mining – Transformation – Imputation. 

Algorithm Parameters:  Linear/Logistic Wrapping for Transformation 

Parameters Option Settings or Example Explanation 

fIn "fIn" : 3.84 Used when method = 

FORWARD_SELECTION or 

STEPWISE_SELECTION 

A statistic is calculated when variables are 

added or eliminated.  For a variable to come 

into the regression, the statistic’s value must 
be greater than the value for fIn (default = 

3.84).   

fitIntercept "fitIntercept" : true Fits the Linear/Logistic Regression intercept.  

If this option is set to False, the intercept term 

is forced to 0.  



fOut "fOut" : 2.71 For use when method  = 

BACKWARD_ELIMINATION OR 

STEPWISE_SELECTION.   

A statistic is calculated when variables are 

eliminated.  For a variable to leave the 
regression, the statistic’s value must be less 

than the value of FOUT (default = 2.71).   

maxNumSubsetsExhaustive "maxNumSubsetsExhaustive" : 3 For use when method = 

EXHAUSTIVE_SEARCH. 

Enter an integer value for the maximum 

number of subsets.   

maxSubsetSize "maxSubsetSize" : 4 Enter an integer from 1 up to N where N is the 

number of variables (features) in the model.   

method "method" : 

"BACKWARD_ELIMINATION" 

 

Parameter Options 

• BACKWARD_ELIMINATION 

• EXHAUSTIVE_SEARCH 

• FORWARD_SELECTION 

• SEQUENTIAL_REPLACEMENT 

• STEPWISE_SELECTION 

Five different selection procedures are 

available for selecting the best subset of 

variables.   

Backward Elimination in which variables are 
eliminated one at a time, starting with the least 

significant.  If this procedure is selected, use 

the "fOut" parameter to set the statistic to 

determine when a variable is to be eliminated.   

Forward Selection in which variables are 

added one at a time, starting with the most 

significant.  If this procedure is selected, use 

the "fIn" parameter to set the statistic to 

determine when a variable is to come into the 

regression.   

Sequential Replacement in which variables are 
sequentially replaced and replacements that 

improve performance are weights retained.  

Stepwise selection is similar to Forward 

selection except that at each stage, variables 

that are not statistically significant may be 

dropped.  When this procedure is selected, the 

Stepwise selection options "fIn" and "fOut" 

are enabled.   

Exhaustive Search where searches of all 

combinations of variables are performed to 
observe which combination has the best fit.  

(This option can become quite time 

consuming depending on the number of input 

variables.)  If this procedure is selected, use 

"maxNumSubsetsExhaustive" to set the 

maximum number of best subsets. 

numTopFeatures "numTopFeatures" : 2 Model option only. 

Enter a value ranging from 1 to the number of 

features in the model.  
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Algorithm Parameters:  One Hot Encoding for Transformation 

Parameters Option Settings or Example Explanation 

categoricalFeaturesNames "categoricalFeaturesNames": [ 

"X1" ] 

Enter categorical variables by name using this 

parameter. 

Any non-numeric columns are automatically 

considered as categorical (nominal) variables. 

Algorithm Parameters:  PCA for Transformation 

Parameters Option Settings or Example Explanation 

matrixMethod "matrixMethod": "CORRELATION" 

 

Parameter Options 

• CORRELATION 

• COVARIANCE 

 

 

When computing Principal Components, the 
data is matrix multiplied by a transformation 

matrix. Use this option to specify the method 

used to calculate this transformation matrix.  

CORRELATION 

An alternative method is to derive the 

transformation matrix on the eigenvectors of 

the correlation matrix instead of the 

covariance matrix. The correlation matrix is 

equivalent to a covariance matrix for the data 

where each variable has been standardized to 

zero mean and unit variance. This method 
tends to equalize the influence of each 

variable, inflating the influence of variables 

with relatively small variance and reducing 

the influence of variables with high variance.  

This option is selected by default. 

COVARIANCE 

The covariance matrix is a square, symmetric 

matrix of size n x n (number of variables by 

number of variables). The diagonal elements 

are variances and the off-diagonals are 
covariances. The eigenvalues and 

eigenvectors of the covariance matrix are 

computed and the transformation matrix is 

defined as the transpose of this eigenvector 

matrix.  If the covariance method is selected, 

the dataset should first be normalized.  One 

way to organize the data is to divide each 

variable by its standard deviation.  

Normalizing gives all variables equal 

importance in terms of variability.6    

numPrincipalComponents "numPrincipalComponents": 2 

 

This option is mutually exclusive with 

varianceCutoff.  Use either 

numPrincipalComponents to select the 

number of principal components displayed in 

the output or varianceCutoff, but not both.    

 

6 Shmueli, Galit, Nitin R. Patel, and Peter C. Bruce. Data Mining for Business Intelligence. 2nd ed. New Jersey:  Wiley, 

2010 



This option specifies a fixed number of 

components.  Enter an integer value from 1 to 

n where n is the number of Input variables in 

the model. 

varianceCutoff "varianceCutoff" : 0.98 This option is mutually exclusive with 

numPrincipalComponents.  Use either 
numPrincipalComponents to select the 

number of principal components displayed in 

the output or varianceCutoff, but not both.    

Use this option to calculate the minimum 

number of principal components required to 

account for the percentage of variance entered 

for this option.  

Algorithm Parameters:  Rescaler for Transformation 

Parameters Option Settings or Example Explanation 

correction "correction": 0.01 

 

 

Sets the "correction" option when technique = 

"NORMALIZATION" or 

"ADJUSTED_NORMALIZATION".  See 

"technique" explanation below. 

excludedCols "excludedCols": ["CHAS", "MEDV"] Excludes specified columns from the data 
mining method.  (Array property) 

normType "normType":"L1" If technique = "UNIT_NORMALIZATION", 

use "normType" to set the normalization type.  

"L1" normalizes the data using the Manhattan 

Distance (L1-norm) while "L2" uses the 
Euclidean Length  (L2-norm).   

technique "technique": "STANDARDIZATION" The following methods for feature scaling are:   

•  STANDARDIZATION makes the feature  

values have zero mean and unit variance.  
(x−mean)/std.dev.  

• NORMALIZATION scales the data values to 

the [0,1] range.  (x−min)/(max−min)  

The Correction option specifies a small positive 

number ε that is applied as a correction to the 

formula. The corrected formula is widely used in 
Neural Networks when Logistic Sigmoid 

function is used to activate the neurons in hidden 
layers – it ensures that the data values never 

reach the asymptotic limits of the activation 
function. The corrected formula is 

[x−(min−ε)]/[(max+ε)−(min−ε)].   To set the 
Correction option use:  "correction".   

• ADJUSTED_NORMALIZATION scales the 

data values to the [-1,1] range. 

[2(x−min)/(max−min)]−1  

The Correction option specifies a small positive 

number ε that is applied as a correction to the 
formula. The corrected formula is widely used in 
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Neural Networks when Hyperbolic Tangent 
function is used to activate the neurons in hidden 

layers – it ensures that the data values never 
reach the asymptotic limits of the activation 

function. The corrected formula is 
{2[(x−(min−ε))/((max+ε)−(min−ε))]}−1. To set 

the Correction option use:  "correction". 

•UNIT_NORMALIZATION is another 

frequently used method to scale the data such 
that the feature vector has a unit length. This 

usually means dividing each value by the 
Euclidean length (L2-norm) of the vector. In 

some applications, it can be more practical to use 
the Manhattan Distance (L1-norm). 

Algorithm Parameters:  Univariate for Transformation  

Parameters Option Settings or Example Explanation 

binningTypeFeatures "binningTypeFeatures": 

"EQUAL_INTERVAL" 

Parameter Options 

• EQUAL_COUNT 

• EQUAL_INTERVAL 

• NONE 

This parameter transforms continuous input 

variables into categorical variables.     

Records are assigned to the bins based on the 

variable’s value.  Use EQUAL_INTERVAL, 

if the value falls within the interval of the bin, 

or EQUAL_COUNT, if there is an equal 

number of  records in each bin.  These settings 

will be applied to each continuous variable in 
the model.  If NONE is selected, the variable 

will not be discretized. 

binningTypeTarget "binningTypeTarget": 

"EQUAL_COUNT" 

Parameter Options 

• EQUAL_COUNT 

• EQUAL_INTERVAL 

• NONE 

This parameter transform a continuous output 

variable into a categorical variable.     

Records are assigned to the bins based on the 

variable’s value.  Use EQUAL_INTERVAL, 

if the value falls within the interval of the bin, 

or EQUAL_COUNT, if there is an equal 

number of  records in each bin.  If NONE is 

selected, the variable will not be discretized. 

categoricalFeaturesNames categoricalFeaturesNames: [ 'X1' 

] 

Enter categorical variables by name using this 

parameter. 

Any non-numeric columns are automatically 

considered as categorical (nominal) variables. 

categoricalTarget "categoricalTarget" : true 

 

True – Setting this option to "true" denotes 

that the Output Variable is a categorical 

variable.   

False – Setting this option to "false" denotes 

that the Output Variable is a continuous 

variable. 

metric "metric" : "CHI2" 

 

Parameter Options 

• CHI2 

Use this parameter to compute the desired 

metric for Feature Selection. 

CHI2 -- Used to assess the statistical 
independence of two events.  When applied to 



• CRAMERSV 

• FISHER 

• FTEST 

• GAINRATIO 

• GINI 

• KENDALL 

• MUTUALINFO 

• PEARSON 

• SPEARMAN 

• WELCH 

Feature Selection, it is used as a test of 

independence to assess whether the assigned 

class is independent of a particular variable.  

The minimum value for this statistic is 0.  The 

higher the Chi-Squared statistic, the more 

independent the variable. 

CRAMERSV -- Variation of the Chi-Squared 

statistic that also measures the association 

between two discrete nominal variables.  This 

statistic ranges from 0 to 1 with 0 indicating 

no association between the two variables and 

1 indicating complete association (the two 

variables are equal).   

FISHER -- Variation of the F-Statistic.  It chooses (or 

assigns higher values) to variables that assign similar 

values to samples from the same class and different 

values to samples from different classes. The larger the 
Fisher Score value, the more relevant or important the 

variable (or feature).   

FTEST -- Tests the hypothesis of at least one sample 

mean being different from other sample means 

assuming equal variances among all samples.  If the 

variance between the two samples is large with respect 

to the variance within the sample, the F statistic will be 

large.  Specifically for Feature Selection purposes, it is 

used to test if a particular feature is able to separate the 

records from different target classes by examining 

between-class and within-class variances.   

GAINRATIO -- Ranging from 0 and 1, is 

defined as the mutual information (or 

information gain) normalized by the feature 

entropy.  This normalization helps address the 

problem of overemphasizing features with 

many values but the normalization results in 

an overestimate of the relevance of features 

with low entropy.  It is a good practice to 

consider both mutual information and gain 

ratio for deciding on feature rankings.  The 

larger the gain ratio, the larger the evidence 
for the feature to be relevant in a classification 

model.   

GINI -- Measures a variable’s ability to distinguish 

between classes.  The maximum value of the index for 

binary classification is 0.5.  The smaller the Gini index, 

the more relevant the variable.   

KENDALL -- Also known as Kendall’s tau coefficient, 

is also used to  measure the level of association 

between two variables.  A tau value of +1 signifies 

perfect agreement and a -1 indicates complete 
disagreement.  If a variable and the outcome variable 

are independent, then one could expect the Kendall tau 

to be approximately zero.    
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MUTUALINFO -- The degree of a variables’ 

mutual dependence or the amount of 

uncertainty in variable 1 that can be reduced 

by incorporating knowledge about variable 

2.  Mutual Information is non-negative and is 

equal to zero if the two variables are 
statistically independent.  Mutual Info is 

always less than the entropy (amount of 

information contained) in each individual 

variable.  

PEARSON -- A widely used statistic that 

measures the closeness of the linear 

relationship between two variables, with a 

value between +1 and −1 inclusive, where 1 

indicates complete positive correlation, 0 

indicates no correlation, and −1 indicates 

complete negative correlation.  

SPEARMAN -- A nonparametric measure 

that assesses the relationship between two 

variables. This measure calculates the 

correlation coefficient between the ranked 

values of the two variables.  If data values are 

repeated, the Spearman rank correlation 

coefficient will be +1 or -1, if each of the 

variables is a perfect monotone (or non-

varying) function of the other.   

WELCH -- A two-sample test (i.e. applicable 
for binary classification problems) that is 

used to check the hypothesis that two 

populations with possibly unequal variances 

have equal means.  When used with the 

Feature Selection tool, a large T-statistic 

value (in conjunction with a small p-value) 

would provide sufficient evidence that the 

Distribution of values for each of the two 

classes are distinct and the variable may have 

enough discriminative power to be included 

in the classification model.  

numBinsFeatures  "numBinsFeatures": 5 Sets the maximum number of bins for the 
input variables.   

numBinsTarget "numBinsTarget": 3 Sets the maximum number of bins for the 

target (output) variable.   

 

Transform ("transformer") 
The "transformer" object is used to differentiate the algorithms that do not have a model, i.e. they do not 

implement the "fit" interface or extract any type of model.  Rather, these algorithms implement the "transform" 

interface (only) by operating directly on the data to produce transformed data which can serve as input to other 

data mining methods.  Since no data is stored (i.e. data in, data out), transformation algorithms are represented 

by a single object, for example:  dataFrame df = Sampler::transform(data).    



Data mining algorithms that do not "fit" a model are:  Partitioning, Sampling, Big Data (Sampling and 

Summarizing), Association Rules and Feature Selection.   

transformer: { 

    mySampler: { 

      type: 'transformation', 

      algorithm: 'sampling', 

      parameters: { 

        sampleSize: 4, 

        replaceOption: false, 

        sortIndexes: false, 

        seed: 123 

      } 

    } 

  }, 

The following properties are available for use in this section. 

 

Property Example Definition 

algorithm "algorithm": "associationRules" 

 

Available option settings will vary depending 

on the type setting.  Use this property to specify 

the algorithm to be used to perform the 

transformation.  See the chart below for all 

options.   

parameters "parameters" : { 

     method: 'M1_BREIMAN',         

     numWeakLearners: 2, 

     resamplingSeed: 10 

} 

 

Available parameter settings will vary 

depending on the algorithm setting.  Use this 

property to set parameter values or turn 

parameters on or off using "true" or "false". For 

a full list of parameters, see below. 

type "type":"transformation" 

 

Parameter Options 

• affinityAnalysis 

• bigData 

• featureSelection 

• transformation 

Use this property to specify the type of 

transformative algorithm to be applied:  affinity 

analysis, big data, feature selection, or 

transformation.     

 

The chart below contains the available options for "algorithm" based on the "type" argument. 

 

If "type" = Algorithm option settings Definition 

affinityAnalysis "algorithm" : "associationRules" Runs Association Rules method.  

bigData "algorithm" : "sampling" 

 

Parameter Options 

"sampling" – Use to sample from Big Data. 

"summarization" – Use to summarize from 

Big Data.   
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• sampling 

• summarization 

featureSelection "algorithm": "univariate " 

 

Parameter Options  

• linearWrapping 

• logisticWrapping 

• univariate 

"univariate" – Performs Feature Analysis 

by ranking variables according to one or 

more univariate measures. 

"linearWrapping" – Performs Feature 
Selection (on a continuous output variable) 

using Linear Wrapping.  

"logisticWrapping"  - Performs Feature 

Selection (on a categorical output variable) 

using Logistic Wrapping.   

transformation "algorithm" : "sampling" 

 

Parameter Options  

• categoryReduction 

• oversamplePartitioning 

• partitioning 

• sampling 

• stratifiedSampling 

"categoryReduction" – Converts a string 

variable into a new numeric, categorical 

variable. 

"oversamplePartitioning"- Partitioning 

allowing oversampling. 

"partitioning" – Partitioning where every 

observation in the main dataset has equal 

probability of being selected for the 

partition dataset. 

"sampling" – Draws a representative 

sample from a dataset.    

"stratifiedSampling" - The population is 

first divided into groups of similar items, 

called strata. Each stratum, in turn, is 

sampled using simple random sampling. 

These samples are then combined to form a 
stratified random sample.  

 

The chart below contains the available options for "parameters" based on the "algorithm" argument. 

Algorithm Parameters:  Association Rules for Affinity Analysis 

Property Example Definition 

method 
"method": "T_TREE" 

 

Parameter Options  

• APRIORI 

• T_TREE 

 

APRIORI – Use this option to use the 

APRIORI algorithm to find all frequent item 

sets in a database.   

T_TREE – Use this option to use the T-Tree 

algorithm to find all frequent item sets in a 

database.   

minSupport 
"minSupport": 0.1 

Specify the minimum number of transactions 

in which a particular item-set must appear for 
this set to qualify for inclusion in an 

association rule here.  The default value is 

10% of the total number of rows.   

Algorithm Parameters:  Common Sampling Options for Big Data 

Property Example Definition 



async "async": true Submits Big Data job asynchronously.  Get 

Job ID for later retrieval. 

awsS3 "awsS3": true If data source is Amazon S3 (AWS S3), set 

this option to true. 

awsS3AccessKey 
"awsS3AccessKey": "<AWS S3 

access key>" 
Passes the Amazon S3 access key. 

awsS3SecretKey 
"awsS3SecretKey": "<AWS S3 

secret key>" 
Passes the Amazon S3 secret key. 

 

dataFormat 
"dataFormat":"PARQUET" 

If data is in Apache Parquet format, use 

"PARQUET" for this option.  If your data is in 

Delimited Text format, USE "CSV".   

If "dataformat: "CSV", use 

"headerExists":true (the default) to specify 

that the first row in your dataset contains 

headers.  Use "delimiter" property to specify 

the delimiter used in the CSV file.     

delimiter 
"delimiter": ";" 

 

Parameter Options  

• Comma - "," 

• Other - "<other>" 

• Semicolon - ";" 

• Space - "" 

• Tab – "\t" 

Use this option to specify the delimiter used in 

the CSV file. 

fileLocation 
"fileLocation": "<file location 
URL - hdfs://..., s3n://...>" 

Enter the location of the Big Data file here.   

headerExists 

header 

"headerExists": true 

"header": true 
Set to True by default.  This option indicates 

that the first row in the CSV file includes file 

headings.   

jobID 
"jobID": '<job ID of previously 

submitted async job>' 
Enter the ID of the previously submitted async 

job.   

selectedVariables 
"selectedVariables": ['Var1', 

'Var2', 'Var3'] 
Variables passed to this parameter will be 

included in the sample.   

sparkServer 
"sparkServer": "<endpoint for 

Spark cluster>" 
Use this option to enter the endpoint for the 

Apache Spark cluster.  Note:  port for the 
Spark REST server must be 8090'. 

Algorithm Parameters:  Sampling for Big Data 

Property Example Definition 

randomSeed "randomSeed": 123 Sets the desired sorting seed here.  Setting the 

random number seed to a nonzero value 

ensures that the same sequence of random 

numbers is used each time the dataset is 

chosen for sampling. The default seed is 

12345. 
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sampleFraction "sampleFraction":0.01 

 

This is the expected size of the sample as a 

fraction of the dataset's size.   

If "withReplacement": true, the value for 

"sampleFraction" must be greater than 0.   

If "withReplacement": false, the setting for 

"sampleFraction" becomes the probability that 

each element is chosen.  As a result, 

"sampleFraction" must be between 0 and 1. 

sampleSize 
"sampleSize": 100 

Sets the desired sample size here. (Note that 

the actual sample size in the output may vary 

a little, depending on additional options 

selected.) 

samplingType 
"samplingType": APPROXIMATE 

 

Parameter Options  

• "APPROXIMATE" 

• "EXACT" 

 

 

"APPROXIMATE"  -- When this option is 

selected, the size of the resultant sample will 

be determined by the value entered for 

"sampleFraction".    

"EXACT" -- When this option is selected, a 

fixed – size sampled subset of data, 

determined by "sampleSize",  is returned.   

trackRowID 
"trackRowID":true If this option is set to "true", data records in 

the resulting sample will carry the ordinal IDs 

corresponding to the original data records. 

Note: Selecting this option may significantly 

increase running time. 

withReplacement 
"withReplacement": true 

If this option is set to "true" the data will be 

sampled with replacement. The default is 

sampling without replacement 
("withReplacement": false). 

 

 

Algorithm Parameters:  Summarization  

Property Example Definition 

aggregationType "aggregationType": "SUM" 

 

Parameter Options  

• "AVG" 

• "MAX" 

• "MIN" 

• "STDDEV" 

• "SUM" 

This option provides 5 statistics that can be 

inferred from the dataset: sum, average, 

standard deviation, minimum and maximum. 

 

computeGroupCounts "computeGroupCounts" : true Use this option when 1 or more Grouping 

Variables exist.  When this option is set to 



"true", the number of records belonging to 

each group is computed and reported.  

groupingVariables "groupingVariables": ['Var1'] Use this option to specify a grouping 

variable(s).   

Algorithm Parameters:  Linear/Logistic Wrapping for Transformation 

Parameters Option Settings or Example Explanation 

categoricalFeaturesNames categoricalFeaturesNames: [ 'X1' 

] 

Enter categorical variables by name using this 

parameter. 

Any non-numeric columns are automatically 

considered as categorical (nominal) variables. 

fIn "fIn" : 3.84 Used when method = 

FORWARD_SELECTION or 

STEPWISE_SELECTION 

A statistic is calculated when variables are 

added or eliminated.  For a variable to come 

into the regression, the statistic’s value must 
be greater than the value for FIN (default = 

3.84).   

fitIntercept "fitIntercept" : true Fits the Linear/Logistic Regression intercept.  

If this option is set to False, the intercept term 

is forced to 0.   

fOut "fOut" : 2.71 For use when method  = 

BACKWARD_ELIMINATION OR 

STEPWISE_SELECTION.   

A statistic is calculated when variables are 

eliminated.  For a variable to leave the 

regression, the statistic’s value must be less 

than the value of FOUT (default = 2.71).   

maxNumSubsetsExhaustive "maxNumSubsetsExhaustive" : 3 For use when method = 

EXHAUSTIVE_SEARCH. 

Enter an integer value for the maximum 

number of subsets.   

maxSubsetSize "maxSubsetSize" : 4 Enter an integer from 1 up to N where N is the 

number of variables (features) in the model.   

method "method" : 

"BACKWARD_ELIMINATION" 

 

Parameter Options 

• BACKWARD_ELIMINATION 

• EXHAUSTIVE_SEARCH 

• FORWARD_SELECTION 

• SEQUENTIAL_REPLACEMENT 

• STEPWISE_SELECTION 

Five different selection procedures are 

available for selecting the best subset of 

variables.   

Backward Elimination in which variables are 

eliminated one at a time, starting with the least 

significant.  If this procedure is selected, use 
the FOUT parameter to set this statistic. 

Forward Selection in which variables are 

added one at a time, starting with the most 

significant.  If this procedure is selected, use 

the fIn parameter to set this statistic. 
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Sequential Replacement in which variables are 

sequentially replaced and replacements that 

improve performance are weights retained.   

Stepwise selection is similar to Forward 

selection except that at each stage, variables 
that are not statistically significant may be 

dropped.  Use the fIn and fOut parameters to 

set these statistics.   

Exhaustive Search where searches of all 

combinations of variables are performed to 

observe which combination has the best fit.  

(This option can become quite time 

consuming depending on the number of input 

variables.)  If this procedure is selected, use 

maxSubsetSize to set the maximum subset 

size. 

maxIterations "maxIterations":5 For Logistic Wrapping Only 

Sets the maximum number of iterations.   

weights "weights": [1.0,2.1,...] Provides a weight variable allowing the user 

to allocate a weight to each record.  A record 

with a large weight will influence the model 

more than a record with a smaller weight.     

 

Algorithm Parameters:  Sampling/Stratified Sampling for Transformation 

Property Example Definition 

replaceOption "replaceOption":false Set this option to "true" to sample with 

replacement.  The default is sampling without 

replacement. 

sampleSize "sampleSize":100 Enter the desired sample size here. (Note that 

the actual sample size in the output may vary 
from the number entered here, depending on 

additional options selected.) 

Seed "seed":123 Enter the desired sorting seed here. The 

default seed is 12345. 

sortIndexes "sortIndexes":true When this option is set to "true", the data is 

sorted using the simple random sampling 

technique, taking into account the additional 

parameter settings. 

stratificationMethod "stratificationMethod":"PROPORTI

ONAL" 

 

Parameter Options  

• "EQUAL_SIZE" 

• "PROPORTIONAL" 

 

PROPORTIONAL -- Detects the proportion 

of each stratum in the dataset and maintains 

the same in sampling. At time, the sample size 

must be increased in order to maintain the 

proportionate stratum size.  

EQUAL_SIZE --   Generates a sample using 

the same number of records from each 

stratum. The number passed for 



"stratumSampleSize" automatically decides 

the desired sample size.   

stratumSampleSize "stratumSampleSize":10 Sets desired stratum sample size. 

Algorithm Parameters:  Partitioning for Transformation 

Property Example Definition 

partitionMethod "partitionMethod":"RANDOM" 

 

Parameter Options  

• MANUAL 

• RANDOM 

• SEQUENTIAL 

MANUAL – Use this option when 

partitioning the dataset using a partition 

variable.  (See partitionVariables below.)  

RANDOM – Use 

"partitionMethod":"RANDOM" to perform 

standard random sampling, where random 

observations are selected to be included in the 

training, validation, and test sets.   

SEQUENTIAL – use "partitionMethod":  

"SEQUENTIAL" to perform sequential 

partitioning.   

partitionVariable partitionVariable: ["t", "t", 

"t", "v", "v", "v", "s", "s"] 

When "partitionMethod" = "Manual", the 

partition variable specified is used to partition 

the dataset which serves as a flag for writing 

each observation to the appropriate 
partition(s). This is useful when you have 

already predetermined the observations to be 

used in the training, validation, and/or test 

sets. This partition variable takes the value: "t" 

for training, "v" for validation and "s" for test. 

Rows with any other values in the Partition 

Variable column are ignored.  

ratios 
"ratios": [ 

   [ "Training", 0.5 ], 

   [ "Validation", 0.3 ], 

   [ "Testing", 0.2 ] 

] 

Specify the percentages for the training set, 

validation set and test sets.   

seed "seed":123 Random partitioning uses the system clock as 

a default to initialize the random number seed. 

By default, this option is selected to specify a 

seed for random number generation for the 

partitioning. Setting this option will result in 
the same records being assigned to the same 

set on successive runs.  The default seed entry 

is 12345. 

Algorithm Parameters:  Oversample Partitioning for Transformation 

Property Example Definition 

seed "seed":123 Random partitioning uses the system clock as 

a default to initialize the random number seed. 

This option is not selected by default.  Setting 

this option will result in the same records 
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being assigned to the same set on successive 

runs.  The default seed entry is 12345. 

successClass "successClass":"1" Select the success value for the output 

variable here (i.e. 0 or 1 or “yes” or “no”). 

successRatioInTraining "successRatioInTraining":0.5 Sets the percentage of successes to be 

assigned to the training set.  The default is 

50%.  With the default setting, 50% of the 
successes will be assigned to the training set 

and 50% will be assigned to the validation set.   

testRatioFromValidation "testRatioFromValidation":0.1 If a test set is desired, specify the percentage 

of the validation set that should be allocated to 

the test set using this option. 

Algorithm Parameters:  SyntheticDataGenerator for Transformation 

 

Property Example Definition 

Metalog Distribution Fitting Options   

computeMetalogCurves “computeMetalogCurves”: true Set computeMetalogCurves to true to compute 

Metalog PDF curves the selected Metalog 

distribution for all columns.   

metalogAuto “metalogAuto”: true 

“metalogAuto”: false 

If False, RASON Decision Services attempts 

to fit the Metalog distribution with the 

specified number of terms.   

If True, Rason Decision Services will attempt 

to fit all possible Metalog distributions, with 

the number of terms limited by the specified 

value, and select the best Metalog distribution 

according to the chosen Goodness-of-Fit test.   

MetalogGoodnessOfFitType 
"metalogGoodnessOfFitType": [ 

   ["CRIM", "CHI_SQUARE"], 

   ["ZN","KOLMOGOROV_SMIRNOFF"], 

   ["INDUS", "ANDERSON_DARLING"], 

   ["NOX", "AIC"], 

   ["RM", "AICc"], 

   ["DIS", "BIC"], 

   ["AGE", "BICc"], 

   ["TAX", "MAX_LIKELIHOOD"], 

], 

 

Type  = CHI_SQUARE, 

KOLMOGOROV_SMIRNOV, 

ANDERSON_DARLING, AIC, BIC, AICc, 

BICc, MAX_LIKELIHOOD 

The Goodness of Fit test is used to select the 

best Metalog form for each column among the 

candidate distributions defined by a different 

number of terms, from 2 to the value passed 

for NumMetalogTerms.  The default 

Goodness-of-Fit test is Anderson-Darling.   

XLMiner SDK offers the following Goodness 

of Fit Tests:  

• Chi Square – Uses the chi-square statistic 

to rank the distributions. Sample data is 

first divided into intervals using either 

equal probability, then the number of 

points that fall into each interval are 

compared with the expected number of 



 
points in each interval. The null 

hypothesis is rejected using a 90% 

significance level, if the chi-squared test 

statistic is greater than the critical value 

statistic.  

• Kolmogorov-Smirnoff –This test 
computes the difference (D) between the 

continuous distribution function (CDF) 

and the empirical cumulative distribution 

function (ECDF). The null hypothesis is 

rejected if, at the 90% significance level, 

D is larger than the critical value statistic. 

• [Default] Anderson -Darling  –Ranks the 

fitted distributions using the Anderson 

Darling statistic, A2 . The null hypothesis 

is rejected using a 90% significance level, 
if A2 is larger than the critical value 

statistic. This test awards more weight to 

the distribution tails then the 

Kolmogorov-Smirnoff test.  

• AIC – The AIC test is a Chi Squared test 

corrected for the number of distribution 

parameters and sample size. AIC = Chi-

Square Statistic + 2 * k + 2 * k * (k + 1) / 

(n – k – 1) where k is the number of 

distribution parameters and n is the 

sample size.  

• AICc –When the sample size is small, 

there is a significant chance that the AIC 

test will select a model with many 

parameters. In other words, AIC will 

overfit the data. AICc was developed to 

reduce the possibility of overfitting by 

applying a penalty to the number of 

parameters. Assuming that the model is 

univariate, is linear in the parameters and 

has normally distributed residuals, the 

formula for AICc is: AICc = AIC + 2𝑘 

2+2𝑘 𝑛−𝑘−1 where n = sample size, k = # 

of parameters. As the sample size 

approaches infinity, the penalty on the 

number of parameters converges to 0 

resulting in AICc converging to AIC. 

• BIC – The Bayesian information criterion 

(BIC) is defined as: BIC = k ln(n) = 2 ln 

(𝐿̂) where 𝐿̂ = the maximized value of the 

likelikhood function of the model M. 𝐿̂ = 

𝑝(𝑥|𝜃, 𝑀) where 𝜃 are the parameter 

values that maximize the likelihood 

function and x is the observed data. n = 

Sample size k = Number of parameters  
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BICc – The BICc is the alternative 

version of BIC, corrected for the sample 

size BICc = BIC + 2 * p * (p + 1) / (n – p 

- 1) 

• Maximum Likelihood (ML) – The 
(negated) raw value of the estimated 

maximum log likelihood utilized in tests 

described above.   

 

metalogLowerBound[colname, 

lowerBound] 

 

"metalogLowerBound": [ 

     ["CRIM", 0.00632], 

     ["ZN", 0], 

     ["INDUS", 0.46], 

     ["NOX", 0.385], 

     ["RM", 3.561], 

     ["DIS", 1.1296], 

     ["AGE", 2.9], 

     ["TAX", 187], 

     ["PTRATIO", 12.6], 

     ["B", 0.32], 

     ["LSTAT", 1.73], 

     ["MEDV", 5] 

], 

Manually sets the lower bound for the 

Metalog distribution 

metalogUpperBound[colname, 

lowerBound] 

 

"metalogUpperBound": [ 

     ["ZN", 100], 

     ["INDUS", 27.74], 

     ["NOX", 0.871], 

     ["RM", 8.78], 

     ["DIS", 12.1265], 

     ["AGE", 100], 

     ["TAX", 711], 

     ["PTRATIO", 22], 

     ["B", 396.9], 

     ["LSTAT", 37.97], 

     ["MEDV", 50] 

], 

Manually sets the upper bound for the 

Metalog distribution 

numMetalogTerms "numMetalogTerms": [ 

    ["CRIM", 5], 

    ["ZN", 5], 

    ["INDUS", 5], 

    ["NOX", 5], 

    ["RM", 5], 

    ["DIS", 5], 

    ["AGE", 5], 

    ["TAX", 5], 

    ["PTRATIO", 5], 

    ["B", 5], 

    ["LSTAT", 5], 

    ["MEDV", 5] 

If “metalogAuto”: false, sets the number of 

terms for the Metalog Distributions 

If metalogAuto”: true, sets the max number of 

terms for the Metalog distribution for a given 

column.    

 

 



 ], 

 

UseMinMaxAsBounds 
UseMinMaxAsBounds = True 

UseMinMaxAsBounds = False 

True sets the lower/upper bounds as 

minimum/maximum of each variable. 
However, if a lower or upper bound is 

manually set, RASON Decision Services will 

give priority to the manually set bounds while 

keeping the minimum/maximum for those 

variables where the bounds were not set 

manually.  In other words, if a bound has been 

set manually, UseMinMaxAsBounds will not 

overwrite the existing bound.   

 

Correlation Fitting Options   

CorrelationType “CorrelationType”: “None” 

“CorrelationType”: “RANK” 

“CorrelationType”: “COPULA” 

 

 

Example:  The priority of the copulas given in the 

example code below is 1. Clayton, 2. Frank, 3. 

Gumbel, 4. Gauss and 5. Student (order as listed). 

“claytonCopula”: true 

“frankCopula”: true 

“gumbelCopula”: true 

“gaussCopula”: true 

“studentCopula”: true 

 

 

 

Use CorrelationType to fit a correlation 

between the variables.  If this option is set to 

“None”, then no correlation fitting will be 

performed.   

Otherwise, there are two options for 

correlation fitting:  rank and copula. 

If Rank is selected, Spearman rank order 
correlation will be used to fit a correlation 

matrix for all columns.  To select Rank use:  
“CorrelationType”: “RANK”. 

If Copula is selected, correlation will be fit 

using specified copulas.  To select a Copula 

use:  “CorrelationType”: 

“COPULA”. 

o If “CorrelationType”: 

“COPULA”, then copulas may be 

specified by setting the individual 

copula to true.  If multiple copulas are 
selected, the first successfully fit copula 

will be used in the sample generation.   

RASON Decision Services 

offers 5 types of copulas:  

• STUDENT 

• CLAYTON 

• FRANK 

• GUMBEL 

• GAUSS 
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Generating Data Options   

randomGeneratorType “randomGeneratorType”: <Type> 

Type = HDR, LECUYER_CMRG, 

MERSENNE_TWISTER, PARK_MILLER, 

WELL 

 

"randomGeneratorType": "HDR" 

"randomGeneratorType": 

"PARK_MILLER" 

"randomGeneratorType": 

"LECUYER_CMRG" 

"randomGeneratorType": "WELL" 

"randomGeneratorType": 

"MERSENNE_TWISTER" 

 

 

 

 

 

Use this option to select a random number 

generation algorithm.  RASON Decision 

Services includes an advanced set of random 

number generation capabilities.   

Computer-generated numbers are never truly 
“random,” since they are always computed by 

an algorithm – they are called pseudorandom 

numbers.  A random number generator is 

designed to quickly generate sequences of 

numbers that are as close to being statistically 

independent as possible.  Eventually, an 

algorithm will generate the same numbers 

seen sometime earlier in the sequence, and at 

this point the sequence will begin to repeat.  

The period of the random number generator is 

the number of values it can generate before 
repeating. 

A long period is desirable, but there is a 

tradeoff between the length of the period and 

the degree of statistical independence 

achieved within the period.  Hence, RASON 

Decision Services offers a choice of five 

random number generators: 

o Park-Miller (PARK_MILLER)“Minimal” 

Generator with Bayes-Durham shuffle 

and safeguards.  This generator has a 

period of 231-2.  Its properties are good, 

but the following choices are usually 

better. 

o Combined Multiple Recursive Generator 

of L’Ecuyer (LECUYER_CMRG).  This 

generator has a period of 2191, and 

excellent statistical independence of 

samples within the period. 

o Well Equidistributed Long-period Linear 

(WELL) generator of Panneton, L’Ecuyer 

and Matsumoto.  This generator combines 

a long period of 21024 with very good 

statistical independence. 

o Mersenne Twister (default setting - 

MERSENNE_TWISTER) generator of 

Matsumoto and Nishimura.  This 

generator has the longest period of 219937-

1, but the samples are not as “equidistrib-

uted” as for the WELL and L-Ecuyer-

CMRG generators.  



o The HDR Random Number Generator 

(HDR), designed by Doug Hubbard.  

Permits data generation running on 

various computer platforms to generate 

identical or independent streams of 

random numbers.  

randomSeed “randomSeed”: N, where N is any positive 

integer 

“randomSeed”: = 12345, 

 

Setting the random number seed to a nonzero 

value (any number of your choice is OK) 

ensures that the same sequence of random 

numbers is used for each simulation.  When 

the seed is zero or RandomSeed is not 

specified, the random number generator is 
initialized from the system clock, so the 

sequence of random numbers will be different 

in each simulation.  Set the seed to ensure that 

the results from one simulation to another are 

strictly comparable.   

randomStream “RandomStreamType”: <type> 

Type = INDEPENDENT or SINGLE 

"randomStreamType": "SINGLE" 

"randomStreamType": "INDEPENDENT" 

 

Use this option to select a Single Stream or an 

Independent Stream (the default) for each 

variable.   

If Single Stream is selected, a single sequence 

of random numbers is generated.  Values are 

taken consecutively from this sequence to 
obtain samples for each selected variable.  

This introduces a subtle dependence between 

the samples for all distributions in one trial.  

In many applications, the effect is too small to 

make a difference – but in some cases, better 

results are obtained if independent random 

number sequences (streams) are used for each 

distribution in the model.  RASON Decision 

Services offers this capability for Monte Carlo 

sampling and Latin Hypercube sampling; it 

does not apply to Sobol numbers.   

samplingMethod “SamplingMethodType”: <type>, 

Type = MONTE_CARLO, 

LATIN_HYPERCUBE, SOBOL_RQMC 

"samplingMethodType": 

"MONTE_CARLO" 

"samplingMethodType": 

"LATIN_HYPERCUBE" 

"samplingMethodType": "SOBOL_RQMC 

 

 

 

Use this option to select Monte Carlo, Latin 
Hypercube, or Sobol RQMC sampling.   

o Monte Carlo: In standard Monte Carlo 

sampling, numbers generated by the 

chosen random number generator are used 

directly to obtain sample values.  With 

this method, the variance or estimation 

error in computed samples is inversely 

proportional to the square root of the 

number of trials (controlled by the Sample 

Size); hence to cut the error in half, four 

times as many trials are required. 
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 RASON provides two other sampling methods 

than can significantly improve the ‘coverage’ 

of the sample space, and thus reduce the 

variance in computed samples.  This means 

that you can achieve a given level of accuracy 

(low variance or error) with fewer trials. 

o Latin Hypercube (default):  Latin 

Hypercube sampling begins with a 

stratified sample in each dimension (one 

for each selected variable), which 

constrains the random numbers drawn to 

lie in a set of subintervals from 0 to 1.  

Then these one-dimensional samples are 

combined and randomly permuted so that 

they ‘cover’ a unit hypercube in a 

stratified manner.  

o Sobol RQMC (Randomized QMC).  Sobol 

numbers are an example of so-called  

“Quasi Monte Carlo” or “low-discrepancy 

numbers,” which are generated with a 

goal of coverage of the sample space 

rather than “randomness” and statistical 

independence.  A “random shift” is added 

to Sobol numbers, which improves their 

statistical independence.   

sampleSize “sampleSize”: N, where N is any positive 

integer 

“sampleSize”: = 10 

 

 

Use this option to set the size of the generated 

sample.  The default is 100.   

 

   

Algorithm Parameters:  Category Reduction for Transformation 

Property Example Definition 

numCategories 
"numCategories":[ 

   [ 'X1', 3 ], 

   [ 'X3', 2 ] 

] 

This utility helps you create a new categorical 

variable that reduces the number of categories.  

You can reduce the number of categories “by 

frequency” or “manually”.  

Actions ("actions") 
Within the object "actions",  user-defined attributes define action objects with the following properties:  "data", 
"estimator", "model", "action", "parameters", "evaluations".  An example of the action "nnpModel" (appearing 

in the Regression – NeuralNetwork.json RASON example on RASON.com) is shown below. 

 



actions: { 

"nnpModel": { 

       "trainData": 'myTrainData', 

       "estimator": 'nnpEstimator', 

       "action": "fit", 

       "evaluations": [ 

          "trainingLog", 

          "neuronWeights", 

          "numEpochsUsed", 

          "trainingTime", 

          "stoppingReason", 

          "partitionCausedStopping" 

       ] 

     }, 

} 

 

In the code snippet above, the action, nnpModel, fits a model using the nnpEstimator to the "myTrainData" 

dataset.  The results requested are:  the training log (trainingLog), the neuron weights (neuronWeights), the 

number of epochs (numEpochsUsed), the solving time (trainingTime), the reason for stopping (stoppingReason) 

and the partition causing the stopping (partitionCausedStopping).    

Evaluation results may either be 1.  Part of the RASON response or 2. Bound to a writable datasource.  In the 

example below, "regressionSummary" and "influenceDiagnostics" are part of the RASON response while 

"anova" and "detailedCoefficients" are bound to writable datasources, expANOVA and expDetCoeff, 

respectively.   

"evaluations": [ 

 {"name": "anova", 

  "binding": "expANOVA" 

 }, 

  "regressionSummary", 

  "influenceDiagnostics", 

 { 

"name":"detailedCoefficients", 

  "binding": "expDetCoeff" 

 } 

] 

The properties for the "actions" object are:  

   Property Example Definition 
data/trainData/validData "trainData": "myTrainData" This property may be used interchangeably 

with the property, "data".  In some 

algorithms, it is possible to provide both 

"trainData" and "validData" i.e. for 

classification and regression algorithms. 

estimator "estimator": "nnpEstimator" Used to reference the estimator defined in 

the "estimator" stage.  For more information 

on this stage, see the Estimator section 

above.   

action "action":"fit" 

Parameter Options 

• forecast 

• fit 

• predict 

• transform 

Defines an "action" to be performed such as 

fit, predict, transform, or forecast.  The first 

action, fit, fits the model given an estimator 

and training data.  The remaining actions, 

predict, transform , and forecast, apply the 
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fitted model to further operations on 

partitions or new data. 

fittedModel "fittedModel":"lrModel" Used when scoring a model, this property is 

used to reference the model generated inside 

of the "model" object.  For more information 

on scoring, see the example below.   

parameters parameters: { 

        numForecasts: 7 

      } 

The selection for this property depends on 

the "model" or "estimator" selected.   

Different values for scoring may be used 

when scoring multiple datasets using the 

same model.   

evaluations "evaluations": [ 

 {"name": "anova", 

  "binding": "expANOVA" 

 }, 

  "regressionSummary", 

  "influenceDiagnostics", 

 { 

"name":"detailedCoefficients", 

  "binding": "expDetCoeff" 

 } 

] 

 

The selection for this property depends on 

the "model" or "estimator" selected.   

In the example to the left, 

"regressionSummary" and 

"influenceDiagnostics" are part of the 

RASON response while "anova" and 

"detailedCoefficients" are bound to writable 

datasources, expANOVA and expDetCoeff, 

respectively.   

 

The Model parameters described in the tables below are available for each corresponding algorithm. 

Model Parameters:  Association Rules 

   Parameter Example Definition 

minConfidence 
"minConfidence": 0.4 

A value entered for this option specifies 
the minimum confidence threshold for 

rule generation. If A is the set of 

Antecedents and C the set of 

Consequents, then only those A =>C 

("Antecedent implies Consequent") rules 

will qualify, for which the ratio (support 

of A U C) / (support of A) is greater than 

or equal to.  The default setting is 50. 

Model Parameters:  Bagging – Classification and Regression 

   Parameter Example Definition 

successClass "successClass":"1" For classification models only. 

Select the class to be considered a “success” 
or the significant class.  This option is only 

supported when the number of classes in the 

output variable is equal to 2. 

successProbability "successProbability":0.6 For classification models only. 

Enter a value between 0 and 1 for this option 

to denote the cutoff probability for success.  If 



the calculated probability for success for an 

observation is greater than or equal to this 

value, than a “success” (or a 1) will be 

predicted for that observation.  If the 

calculated probability for success for an 

observation is less than this value, then a 
“non-success” (or a 0) will be predicted for 

that observation.  The default value is 0.5.  

This option is only supported when the 

number of classes is equal to 2. 

Model Parameters:  Big Data – Sampler 

There are no model parameters associated with this feature. 

Model Parameters:  Big Data – Summarizer 

There are no model parameters associated with this feature. 

Model Parameters:  Binning  

Parameters Option Settings or Example Explanation 

binValueOption binValueOption: [ 

   [ 'x4', 'RANK' ], 

   [ 'x2', 'MID_VALUE' ] 

] 

 

Parameter Options 

• MEAN 

• MEDIAN 

• MID_VALUE 

• RANK 

When method = EQUAL_INTERVAL, 

use MID_VALUE to replace the value of 

the selected variable with the mid value 

of the interval for the assigned bin.  

When method = EQUAL_INTERVAL 

OR EQUAL_COUNT,  use RANK to 
specify the Start value of the first bin and 

the Interval of each bin.  Subsequent bin 

values will be calculated as the previous 

bin + interval value.   

When method = EQUAL_COUNT, use 

MEAN to replace the value of the 

selected variable with the mean of the 

interval for the assigned bin.  

When method = EQUAL_COUNT, use 

MEDIAN to replace the value of the 
selected variable value with the median of 

the interval for the assigned bin. 

rank rank: [ 

   [ 'x4', 1.0, 5.0 ] 

] 

 

This parameter is available when 

binValueOption is set to "RANK".   

Use the "rank" parameter to specify the 

Start value of the first bin and the Interval 

of each bin.  Subsequent bin values will 

be calculated as the previous bin + 

interval value.   

Model Parameters:  Boosting – Classification and Regression 

   Parameter Example Definition 
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successClass "successClass":"1" For classification models only. 

Select the class to be considered a “success” 

or the significant class.  This option is only 

supported when the number of classes in the 

output variable is equal to 2. 

successProbability "successProbability":0.6 For classification models only. 

Enter a value between 0 and 1 for this option 

to denote the cutoff probability for success.  If 

the calculated probability for success for an 

observation is greater than or equal to this 

value, than a “success” (or a 1) will be 

predicted for that observation.  If the 

calculated probability for success for an 

observation is less than this value, then a 

“non-success” (or a 0) will be predicted for 

that observation.  The default value is 0.5.  

This option is only supported when the 
number of classes is equal to 2. 

Model Parameters:  Canonical Variate   

There are no model parameters associated with this feature. 

Model Parameters:  Category Reduction for Transformation 

Property Example Definition 

mapping 
"mapping": [ 

  ["Y","0",5], 

  ["Y","1",10] 

] 

Assigns a specific category number to single 
or multiple categories.  

Model Parameters:  Decision Tree – Classification and Regression 

   Parameter Example Definition 

successClass "successClass":"1" For classification models only. 

Select the class to be considered a “success” 

or the significant class.  This option is only 

supported when the number of classes in the 

output variable is equal to 2. 

successProbability "successProbability":0.6 For classification models only. 

Enter a value between 0 and 1 for this option 

to denote the cutoff probability for success.  If 

the calculated probability for success for an 

observation is greater than or equal to this 
value, than a “success” (or a 1) will be 

predicted for that observation.  If the 

calculated probability for success for an 

observation is less than this value, then a 

“non-success” (or a 0) will be predicted for 

that observation.  The default value is 0.5.  



This option is only supported when the 

number of classes is equal to 2. 

Model Parameters:  Factorization 

There are no model parameters associated with this feature. 

Model Parameters:  Find Best Model – Classification and Regression 

   Parameter Example Definition 

bestLearnerMetric "bestLearnerMetric": "ACCURACY" 

Available classification 

metrics:  "ACCURACY", 

"SPECIFICITY", "SENSITIVITY", 

"PRECISION" and "F1". 

Available regression metrics:  

"SSE", "MSE", "RMSE", "MAD" and 

"R2.    

 

"trainScore": { 

  "data": "myTrainData", 

  "fittedModel": "fbmModel", 

  "parameters": {                   

    "bestLearnerMetric":  

      "ACCURACY" 

  }, 

  "action": "predict", 

  "evaluations":[ 

    "modelPerformance",     

    "bestLearner",  

    "prediction" 

  ] 

} 

Use this parameter to allow the Find Best 

Model method to select the learner, from all 

available learners, that fits the best model to 
the dataset according to the selected metric.   

Two evaluators are available for this metric:  

"modelPerformance" and "bestLearner".  

You'll need to add the evaluators, 

"modelPerformance" and "bestLearner" as 

"evaluations" to add them to the output.   

The model performance table 

("modelPerformance") contains fitting 

information pertaining to how well the 

available learners were able to fit a model to 

the dataset according to the selected metric.   

The best learner ("bestLearner) gives the 

name of the best learner for a given "predict" 

action.  Note that the best learner may not be 

the learner used to actually score the data in 

the given action, see learnerForScoring in the 

output for more information on what learner 

was selected to perform scoring.    

useForScoring "useForScoring"=true Enter this metric for one "predict" action.  

This parameter instructs the Find Best Model 

method to use the best learner found in the 

given action to score the data in all "predict" 

actions.   

1. If no "predict' action contains 

"useForScoring"=true, then the best 

learner from the first "predict" action 

containing the "bestLearnerMetric" is 
selected to score all "predict" actions.   

2. If multiple "predict" actions contain 

"useForScoring" = true, then the best 

learner from the first listed action is used 

to score all "predict" actions.   

Model Parameters:  Univariate Feature Selection 

Parameters Option Settings or Example Explanation 
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numTopFeatures "numTopFeatures" : 2 Model option only. 

Enter a value ranging from 1 to the number of 

features in the model.  This value, along with 

the "usePvalueForSelection" option setting, 

will be used to determine the variables 
included in the Top Features Table and 

Feature Importance Plot.  This option has a 

default setting of “2”.   

usePvalueForSelection "usePvalueForSelection":"true" Model option only. 

If "True", then the variables will be ranked 

from smallest to largest using the P-value of 

the measure or statistic selected.    

Model Parameters:  Logistic/Linear Wrapping Feature Selection 

Parameters Option Settings or Example Explanation 

numTopFeatures "numTopFeatures" : 2 Enter a value ranging from 1 to the number of 

features in the model.   

 

Model Parameters:  Hierarchical Clustering 

numClusters "numClusters" : 10 

 

The agglomerative method of hierarchical 
clustering continues to form clusters until only 

one cluster is left. This option lets you stop the 

process at a given number of clusters. 

numDendrogramLeaves 
"numDendrogramLeaves" : 10 Use this option to define the maximum 

number of leaves in the dendrogram tree.  

Model Parameters:  Imputation 

imputation 
"imputation": [ 

   ["F", "medium"] 

] 

Use the imputation model parameter to set the 

user defined value.   

Model Parameters:  k-Means Clustering  

There are no model parameters associated with this feature. 

Model Parameters:  Discriminant Analysis – Classification 

   Parameter Example Definition 

successClass "successClass":"1" For classification models only. 

Select the class to be considered a “success” 

or the significant class.  This option is only 

supported when the number of classes in the 

output variable is equal to 2. 

successProbability "successProbability":0.6 For classification models only. 



Enter a value between 0 and 1 for this option 

to denote the cutoff probability for success.  If 

the calculated probability for success for an 

observation is greater than or equal to this 

value, than a “success” (or a 1) will be 

predicted for that observation.  If the 
calculated probability for success for an 

observation is less than this value, then a 

“non-success” (or a 0) will be predicted for 

that observation.  The default value is 0.5.  

This option is only supported when the 

number of classes is equal to 2. 

Model Parameters:  Linear/Logistic – Classification and Regression 

   Parameter Example Definition 

successClass "successClass":"1" For classification models only. 

Select the class to be considered a “success” 

or the significant class.  This option is only 

supported when the number of classes in the 

output variable is equal to 2. 

successProbability "successProbability":0.6 For classification models only. 

Enter a value between 0 and 1 for this option 

to denote the cutoff probability for success.  If 

the calculated probability for success for an 

observation is greater than or equal to this 

value, than a “success” (or a 1) will be 

predicted for that observation.  If the 

calculated probability for success for an 

observation is less than this value, then a 

“non-success” (or a 0) will be predicted for 

that observation.  The default value is 0.5.  
This option is only supported when the 

number of classes is equal to 2. 

Model Parameters:  Latent Semantic Analysis 

There are no model parameters associated with this feature. 

Model Parameters:  Naïve Bayes – Classification 

   Parameter Example Definition 

successClass "successClass":"1" For classification models only. 

Select the class to be considered a “success” 

or the significant class.  This option is only 

supported when the number of classes in the 

output variable is equal to 2. 

successProbability "successProbability":0.6 For classification models only. 

Enter a value between 0 and 1 for this option 

to denote the cutoff probability for success.  If 
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the calculated probability for success for an 

observation is greater than or equal to this 

value, than a “success” (or a 1) will be 

predicted for that observation.  If the 

calculated probability for success for an 

observation is less than this value, then a 
“non-success” (or a 0) will be predicted for 

that observation.  The default value is 0.5.  

This option is only supported when the 

number of classes is equal to 2. 

Model Parameters:  k-Nearest Neighbors – Classification and Regression  

   Parameter Example Definition 

includeTies "includeTies": true If includeTies = True, all points with distance 

equal to kth nearest neighbor are included in 

the result. 

If includeTies = False, exactly k nearest 

neighbors are returned.  

numNeighbors "numNeighbors":3 This is the parameter k in the k-nearest 

neighbor algorithm.  

stable "stable":true 

 

If stable = true, the tied neighbors (up to kth 
neighbor) remain in the original order. 

If stable = false, the tied neighbors (up to kth 

neighbor) are in pseudo-random order.   

successClass "successClass":"1" For classification models only. 

Select the class to be considered a “success” 

or the significant class.  This option is only 

supported when the number of classes in the 

output variable is equal to 2. 

successProbability "successProbability":0.6 For classification models only. 

Enter a value between 0 and 1 for this option 

to denote the cutoff probability for success.  If 
the calculated probability for success for an 

observation is greater than or equal to this 

value, than a “success” (or a 1) will be 

predicted for that observation.  If the 

calculated probability for success for an 

observation is less than this value, then a 

“non-success” (or a 0) will be predicted for 

that observation.  The default value is 0.5.  

This option is only supported when the 

number of classes is equal to 2. 

weightingScheme "weightingScheme": 

"INVERSE_DISTANCE" 

 

Parameter Options 

• EQUAL 

• INVERSE_DISTANCE  

Use this option to select the weighting 

scheme:  equal or inverse distance.  

 

 

 



 

 

 

Model Parameters:  Neural Network – Classification and Regression  

   Parameter Example Definition 

successClass "successClass":"1" For classification models only. 

Select the class to be considered a “success” 

or the significant class.  This option is only 

supported when the number of classes in the 

output variable is equal to 2. 

successProbability "successProbability":0.6 For classification models only. 

Enter a value between 0 and 1 for this option 

to denote the cutoff probability for success.  If 

the calculated probability for success for an 

observation is greater than or equal to this 

value, than a “success” (or a 1) will be 

predicted for that observation.  If the 

calculated probability for success for an 
observation is less than this value, then a 

“non-success” (or a 0) will be predicted for 

that observation.  The default value is 0.5.  

This option is only supported when the 

number of classes is equal to 2. 

Model Parameters:  One Hot Encoder 

There are no model parameters associated with this feature. 

Model Parameters:  Partitioning 

Property Example Definition 

partition "partition": "Training" Specifies the partition to transform. 

Model Parameters:  PCA 

Parameters Option Settings or Example Explanation 

numPrincipalComponents "numPrincipalComponents": 2 

 

This option is mutually exclusive with 

varianceCutoff.  Use either 

numPrincipalComponents to select the 

number of principal components displayed in 

the output or varianceCutoff, but not both.    

This option specifies a fixed number of 

components.  Enter an integer value from 1 to 
n where n is the number of Input variables in 

the model. 
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varianceCutoff "varianceCutoff" : 0.98 This option is mutually exclusive with 

numPrincipalComponents.  Use either 

numPrincipalComponents to select the 

number of principal components displayed in 

the output or varianceCutoff, but not both.    

Use this option to calculate the minimum 

number of principal components required to 

account for the percentage of variance entered 

for this option.  

Model Parameters:  Random Trees -- Classification and Regression  

   Parameter Example Definition 

successClass "successClass":"1" For classification models only. 

Select the class to be considered a “success” 

or the significant class.  This option is only 

supported when the number of classes in the 

output variable is equal to 2. 

successProbability "successProbability":0.6 For classification models only. 

Enter a value between 0 and 1 for this option 
to denote the cutoff probability for success.  If 

the calculated probability for success for an 

observation is greater than or equal to this 

value, than a “success” (or a 1) will be 

predicted for that observation.  If the 

calculated probability for success for an 

observation is less than this value, then a 

“non-success” (or a 0) will be predicted for 

that observation.  The default value is 0.5.  

This option is only supported when the 

number of classes is equal to 2. 

Model Parameters: Sampling/Stratified Sampling 

There are no model parameters associated with this feature. 

Model Parameters: Rescaler 

There are no model parameters associated with this feature. 

Model Parameters:  Smoothing Methods:  Double Exponential, 
Exponential, Holt Winters Additive, Holt Winters Multiplicative, Holt 
Winters No Trend, Moving Average 

   Parameter Example Definition 

confidenceLevel "confidenceLevel":0.9 
Sets the desired confidence level here.  (The 

default level is 95%.) The Lower and Upper 

values of the computed confidence levels will 

be included in the output.  The forecasted 



value will be guaranteed to fall within this 

range for the specified confidence level.   

numForecasts "numForecasts": 4 Sets the number of forecasts. 

Model Parameters:  TFIDF     

Parameters Option Settings or Example Explanation 

weightingSchemeDocument "weightingSchemeDocument": 

"INVERSE" 

         

See explanation below 

weightingSchemeNormalizati

on 

"weightingSchemeNormalization": 

"NONE" 

See explanation below. 

weightingSchemeTerm "weightingSchemeTerm": 

"LOGARITHMIC", 

See explanation below.   

 

Explanation:  Using these three options, users can select their own choices for local weighting, global weighting, and 

normalization.  Please see the table below for definitions regarding options for Term Frequency, Document Frequency 

and Normalization.    

 

Local Weighting Global Weighting Normalization 

Binary 𝑙𝑤𝑡𝑑 = {
1, if  𝑡𝑓𝑡𝑑 > 0
0, if  𝑡𝑓𝑡𝑑 = 0

 None 𝑔𝑤𝑡 = 1 None 𝑛𝑑 = 1 

Raw 

Frequency 
𝑙𝑤𝑡𝑑 = 𝑡𝑓𝑡𝑑 Inverse 𝑔𝑤𝑡 = log2

𝑁

1 + 𝑑𝑓𝑡

 Cosine 

𝑛𝑑

=
1

‖𝑔𝑑̅̅ ̅‖2

 

Logarithmic 𝑙𝑤𝑡𝑑 = log(1 +  𝑡𝑓𝑡𝑑) Normal 𝑔𝑤𝑡 =
1

√∑ 𝑡𝑓𝑡𝑑
2

𝑑

 
  

Augnorm 

𝑙𝑤𝑡𝑑

=

(
 𝑡𝑓𝑡𝑑

max
𝑡

 𝑡𝑓𝑡𝑑
) + 1

2
 

GF-IDF 𝑔𝑤𝑡 =
𝑐𝑓𝑡

𝑑𝑓𝑡

 

  

  

Entropy 

𝑔𝑤𝑡

= 1 + ∑
𝑝𝑡𝑑 log 𝑝𝑡𝑑

log 𝑁𝑑
 

  

  IDF 
probability 

𝑔𝑤𝑡 = log2

𝑁

1 + 𝑑𝑓𝑡

 
  

 

Notations: 

• 𝒕𝒇𝒕𝒅 – frequency of term 𝒕 in a document 𝒅; 

• 𝒅𝒇𝒕 – document frequency of term 𝒕; 

• 𝒍𝒘𝒕𝒅 – local weighting of term 𝒕 in a document 𝒅; 

• 𝒈𝒘𝒕𝒅 – global weighting of term 𝒕 in a document 𝒅; 

• 𝒏𝒅 – normalization of vector of terms representing the document 𝒅; 

• 𝑵 – total number of documents in the collection; 
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• 𝒄𝒇𝒕 – collection frequency of term 𝒕; 

• 𝒑𝒕𝒅 – estimated probability of term 𝒕 to appear in a document 𝒅 

(𝒑𝒕𝒅 =  
𝒕𝒇𝒕𝒅

𝒄𝒇𝒕
⁄ ); 

• 𝒈𝒅̅̅ ̅̅  – vector of terms representing the document 𝒅. 

Finally, the element 𝑇𝑡𝑑 of Term-Document Matrix is computed as 𝑇𝑡𝑑 = 𝑙𝑤𝑡𝑑 ∗
𝑔𝑤𝑡 ∗ 𝑛𝑑 , ∀𝑡, 𝑑 

Model Parameters: Time Series 

   Parameter Example Definition 

confidenceLevel "confidenceLevel":0.9 
Sets the desired confidence level here.  (The 

default level is 95%.) The Lower and Upper 

values of the computed confidence levels will 

be included in the output.  The forecasted 

value will be guaranteed to fall within this 
range for the specified confidence level.   

numForecasts "numForecasts": 4 Sets the number of forecasts. 

 

The "evaluations", or quantities to be computed and reported back, described in the tables below are available 

for each corresponding algorithm. 

Evaluations Common to All Rason DM Methods and Algorithms 

 

   Evaluation Action Definition 

fittedModeljson Fit Returns the data mining model in JSON 

format. 

Evaluations: Big Data Common Evaluations    

   Evaluation Action Definition 

clusterInfo Transform Returns the Apache Spark REST Server URL. 

durationInfo Transform Returns the elapsed time since job submission 

if the job is still RUNNING and the cluster 

total compute time if the job is FINISHED.   

jobID Transform Returns the ID from a previous submission.  

Use this evaluation when submitting a 

sampling job, not for obtaining results. 

schema Transform Returns the full and sampled data schema.  

solverDatasets Transform 
Lists the preloaded datasets on Frontline 

Systems cluster.  

transformation Transform Returns the final transformation (transformed 

dataset).   



Evaluations:  Binning 

   Evaluation Action Definition 

breakPoints Fit Returns the breakpoint (largest value) for each 

bin.   

frequencyTable Transform Returns the frequency table information 

including the the lower and upper values for 

each bin and the records assigned to each bin.    

numBins Fit Returns the number of bins. 

transformation Transform Returns the final transformation (transformed 
dataset).   

Evaluations:  Canonical Variates 

   Evaluation Action Definition 

canonicalVariates Fit/Transform Returns the canonical variates for the data 

based on an orthogonal representation of the 

original variates.  

transformation Transform Returns the final transformation (transformed 

dataset).   

Evaluations:  Classification – Common Parameters 

   Evaluation Action Definition 

accuracy Predict Returns the accuracy metric (# correct) 

auc Predict Returns the AUC for the ROC Curve 

confusionMatrix Predict Returns the confusion matrix for a 

classification method. 

decileChart Predict Returns the decile chart for a classification 

method. 

f1 Predict Returns the F1 Score. 

liftChart Predict Returns the lift chart information for a 

classification method. 

metrics Predict Returns the following metrics for a 

classification model:  accuracy, specificity, 

sensitivity,  precision, the F1 score, and AUC.  

posteriorProbability Predict Returns the posterior probability 

precision Predict Returns the precision matrix.  Precision is the 

probability of correctly identifying a randomly 

selected record as one belonging to the 

Success class.  TP/(TP + FP) 

prediction Predict Returns the prediction label for each record in 

the dataset.   

recall Predict Returns the Recall (Sensitivity) metric.  Recall 

(or Sensitivity) measures the percentage of 
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actual positives which are correctly identified 

as positive. TP/(TP+FN) 

rocCurve Predict Returns the ROC Curve information 

sensitivity Predict Returns the sensitivity metric. 

specificity Predict Returns the Specificity metric.  Specificity 

(SPC) or True Negative Rate =TN / (FP + TN)  

Evaluations:  Classification – Decision Trees 

   Evaluation Action Definition 

categoricalFeaturesInf

o 

Fit Returns information on the categorical features 

included in the model.   

featureImportance Fit Returns the variables that are included in the model 

along with their Importance value.   

pruningLog Fit Returns the prune log.   

trainingLog 
Fit Returns the training log.   

treeDiagram Fit Returns the tree diagram. 

treeRules Fit Returns the tree rules. 

Evaluations:  Classification – Ensemble Methods Common Options 

   Evaluation Action Definition 

categoricalFeaturesInf

o 

Fit Returns information on the categorical features 

included in the model.   

numWeakLearners Fit Returns the number of weak learners 

weakLearnerModels Fit Returns the weak learner models. 

Evaluations:  Classification -- Discriminant Analysis 

   Evaluation Action Definition 

linearDiscriminantFunctions Fit Returns the Linear Discriminant Functions 

table.  In this table, there will be a function for 

each class.  Each variable will be assigned to 

the class that contains the higher function 

value.   

quadraticDiscriminantFunctions  Returns the Quadratic Discriminant Functions 

tables.  One table per class will be returned in 

the results, i.e. if there are two classes in the 

model, two quadratic functions tables will be 

returned.  Each variable will be assigned to 
the class that contains the higher function 

value.   

   



Evaluations:  Classification – Logistic Regression 

   Evaluation Action Definition 

categoricalFeaturesInfo 
Fit Returns information on the categorical features 

included in the model.   

coefficients Fit Returns the coefficient estimates.   

detailedCoefficients Fit Returns  the coefficient estimate, the standard 

error of the coefficient, the p-value, the odds 

ratio for each variable (which is simply ex 

where x is the value of the coefficient) and 
confidence interval for the odds.   (Note for the 

Intercept term, the Odds Ratio is calculated as 

exp^0.) 

entranceTolerance 
Fit Returns the tolerance threshold.  All predictors 

eligible to enter the model must pass this 

threshold.   

multicollinearityDiagnostics Fit Returns Collinearity Diagnostics which help 

assess whether two or more variables so closely 

track one another as to provide essentially the 

same information.  

The columns represent the variance 

components (related to principal components in 

multivariate analysis), while the rows represent 
the variance proportion decomposition 

explained by each variable in the model. The 

eigenvalues are those associated with the 

singular value decomposition of the variance-

covariance matrix of the coefficients, while the 

condition numbers are the ratios of the square 

root of the largest eigenvalue to all the rest. In 

general, multicollinearity is likely to be a 

problem with a high condition number (more 

than 20 or 30), and high variance 

decomposition proportions (say more than 0.5) 
for two or more variables.  

multipleR2 Fit  

numIterations Fit  

predictorScreeningInfo Fit A preprocessing feature selection step is 

included to take advantage of automatic 

variable screening and elimination using Rank-

Revealing QR Decomposition.  This allows the 

identification of variables causing 

multicollinearity, rank deficiencies and 

otherproblems that would otherwise cause the 

algorithm to fail.  Information about “bad” 

variables is used in Variable Selection and 

Multicollinearity Diagnostics and in computing 
other reported statistics.    

Included and excluded predictors are returned 

for this command.  All predictors must meet 

the tolerance threshold to be eligible to enter 

the model.  This denotes a tolerance beyond 
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which a variance – covariance matrix is not 

exactly singular to within machine precision.  

The test is based on the diagonal elements of 

the triangular factor R resulting from Rank-

Revealing QR Decomposition.  Predictors that 

do not pass the test are excluded. 

Note:  If a predictor is excluded, the 

corresponding coefficient estimates will be 0 in 

the regression model and the variable – 

covariance matrix will contain all zeros in the 

rows and columns that correspond to the 

excluded predictor.  Multicollinearity 

diagnostics, variable selection and other 

remaining output will be calculated for the 

reduced model.   

The design matrix may be rank-deficient for 

several reasons.  The most common cause of an 
ill-conditioned regression problem is the 

presence of feature(s) that can be exactly or 

approximately represented by a linear 

combination of other feature(s).  For example, 

assume that among predictors you have 3 input 

variables X, Y, and Z where Z = a * X + b * Y 

where a and b are constants.  This will cause 

the design matrix to not have a full rank.  

Therefore, one of these 3 variables will not 

pass the threshold for entrance and will be 

excluded from the final regression model.   

regressionSummary Fit Returns the the residual degrees of freedom 
(#observations - #predictors), a standard 

deviation type measure for the model (which 

typically has a chi-square distribution), the 

number of iterations required to fit the model, 

and the Multiple R-squared value.  

The multiple R-squared is the r-squared value 

for a logistic regression model , defined as - R2 

= (D0-D)/D0 , where D is the Deviance based 

on the fitted model and D0 is the deviance 

based on the null model. The null model is 

defined as the model containing no predictor 
variables apart from the constant.  

residuals Fit  

residualDeviance Fit  

residualDF Fit  

varianceCovariance Fit Returns the Variance – Covariance matrix.   

Evaluations:  Classification – Naïve Bayes 

   Evaluation Action Definition 

classFrequency Fit Returns the total predicted number of cases 

assigned to each class.   



dataFrequency Fit Returns the Prior Conditional Probabilities by 

feature (column) for the Training dataset. 

logDensity 
Predict Returns the Log Densities for each partition.    

Log PDF, or Logarithm of Unconditional 

Probability Density, is the distribution of the 

predictors marginalized over the classes and is 

computed using:     

log[𝑃{𝑋1, … , 𝑋𝑛}] = log [∑ 𝑃{𝑋1, … , 𝑋𝑛, 𝑌

𝐶

𝑐=1

= 𝑐} ]

= log [∑ 𝜋{ 𝑦  

𝐶

𝑐=1

= 𝑐} 𝑃{𝑋1, … , 𝑋𝑛|𝑌 = 𝑐} ] 

where𝜋{𝑌 = 𝑐} is a prior class probability  

 

priorConditionalProbability Fit Returns the Prior Conditional Probabilities for 

each case by variable. 

Evaluations:  Classification – Neural Networks 

   Evaluation Action Definition 

categoricalFeaturesInfo 
Fit Returns information on the categorical 

features included in the model.   

neuronWeights Fit Returns the interlayer connections' weights 

table.   

numEpochsUsed Fit Returns the number of epochs performed. 

partitionCausedStopping 
Fit Returns the partition used for error 

computation. 

stoppingReason Fit Returns the reason for stopping. 

trainingLog Fit Returns the neural network training log. 

trainingTime Fit Returns the time taken to train the network.   

Evaluations:  Classification – Random Trees 

   Evaluation Action Definition 

categoricalFeaturesInf

o 

Fit Returns information on the categorical features 

included in the model.   

featureImportance Fit Returns the variables that are included in the model 

along with their Importance value.   

numWeakLearners Fit Returns the number of weak learners 

weakLearnerModels Fit Returns the weak learner models. 
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Evaluations:  Clustering – Hierarchical  

   Evaluation Action Definition 

dendrogram Predict Returns the dendrogram information 

dendrogramChart Predict Returns the dendrogram information in chart 

format.   

mergingHistory Fit Returns the history of the cluster formation. 

Initially, each individual case is considered its own 

cluster (single member in each cluster) beginning 

with # clusters = # cases.   

prediction Predict Returns the predicted values 

subclusterLegend Predict Returns the subclusters.     

Evaluations:  Clustering – kMeans 

   Evaluation Action Definition 

clusterCenters Fit Displays detailed information about the clusters 

formed by the k-Means Clustering algorithm:  

the final centroids.  If the input data was 

normalized, information is displayed in original 

and normalized coordinates.   

clustersSummary Predict Displays the number of records (observations) 

included in each cluster and the within-cluster 

average distance.  This information can be used 

to better understand the data partitioning: how 

large and how sparse the resulting clusters are.   

interclusterDistances Fit Returns the inter-cluster distances.   

prediction Predict Returns the predicted values. 

randomCentersSummary Fit Returns the information about the initial search 

for the best centroid assignment. The assignment 

marked by “Best Start” is used as the initial 

assignment of the centroids. 

recordToClusterDistance Predict Returns the distance between each record and 

it's assigned cluster.   

Evaluations:  Factoring 

   Evaluation Action Definition 

frequencyTable Transform Returns the frequency table information for 

the factored variable(s).      

transformation Transform Returns the final transformation (transformed 

dataset).   

Evaluations:  Feature Selection - Linear/Logistic Wrapping 

   Evaluation  Definition 



bestSubsets Fit Returns the best subsets as determined by 

various error values and the probability.  Use 

"bestSubsetsDetails" to view these error 

values and probability. 

bestSubsetsDetails Fit Returns the number of predictors, the residual 

sum of squares (RSS), Mallows CP, and the 
Probability for each subset.  RSS is the 

residual sum of squares, or the sum of squared 

deviations between the predicted probability 

of success and the actual value (1 or 0). 

"Mallows Cp" is a measure of the error in the 

best subset model, relative to the error 

incorporating all variables. Adequate models 

are those for which Cp is roughly equal to the 

number of parameters in the model (including 

the constant), and/or Cp is at a minimum. 

"Probability" is a quasi hypothesis test of the 
proposition that a given subset is acceptable; 

if Probability < .05 we can rule out that 

subset.  

transformation Transform Returns the final transformation (transformed 

dataset).   

Evaluations:  Feature Selection - Univariate 

   Evaluation Action Definition 

fsPlot Transform Plots the top most important or relevant 

features as determined by the value entered 

for "numTopFeatures" parameter setting. 

statistics Fit Returns the value for the requested statistic (as 

set using the "metric" estimator parameter).   

topFeaturesInfo Transform Produces a table containing the top number of 

features as determined by "numTopFeatures" 

parameter setting.    

transformation Transform Returns the final transformation (transformed 

dataset).   

Evaluations:  Find Best Model – Classification and Regression 

   Evaluation Action Definition 

bestLearner 
Predict 
 

"trainScore": { 

  "data": "myTrainData", 

  "fittedModel": "fbmModel", 

  "parameters": {                 

    "bestLearnerMetric":  

    "ACCURACY" 

  }, 

  "action": "predict", 

This evaluation is available when the 

"bestLearnerMetric" parameter is present in 

the "predict" action.    

This evaluation returns the best learner, for the 

given "predict" action, according to the 

"bestLearnerMetric".    
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  "evaluations": [ 

    "modelPerformance",     

    "bestLearner",  

    "learnerForScoring",  

    "prediction" 

  ] 

}, 

learnerForScoring 
Predict 

 
"trainScore": { 

  "data": "myTrainData", 

  "fittedModel": "fbmModel", 

  "parameters": {                 

    "bestLearnerMetric":  

    "ACCURACY", 

  }, 

  "action": "predict", 

  "evaluations": [ 

    "modelPerformance",     

    "bestLearner",  

    "learnerForScoring",  

    "prediction" 

  ] 

}, 

This evaluation returns the learner used to 

score all "action": "predict" methods in the 

RASON model.  All "predict" methods will 

contain this output.   

   

 

Messages 
Fit 

The Find Best Model "fit" action has only one 

possible evaluation, "messages".  This 

evaluation reports the fitting log which is 

where any warnings/failures that occur during 

the fitting process will be reported.   

modelPerformance 
Predict 

 
"trainScore": { 

  "data": "myTrainData", 

  "fittedModel": "fbmModel", 

  "parameters": {                 

    "bestLearnerMetric":  

    "ACCURACY" 

  }, 

  "action": "predict", 

  "evaluations": [ 

    "modelPerformance",     

    "bestLearner",  

    "learnerForScoring",  

    "prediction" 

  ] 

}, 

This evaluation is available when the 

"bestLearnerMetric" parameter is present in 

the "predict" action.   

This evaluation returns a table containing the 

model performance metrics for the given 
"predict" action,  for each available learner in 

the Find Best Model method.   

For classification models, the returned metrics 

are:  Accuracy, Specificity, Sensitivity, 

Precision and F1 score.   

For regression models, the returned metrics 

are:  SSE, MSE, RMSE, MAD and R2.   

Evaluations:  Forecasts – Common Parameters 

   Evaluation Action Definition 

Cfe Forecast, Transform Returns the cumulative forecast error   

coefficientsInfo Fit Returns the coefficient for each term in the 

ARIMA model. 



forecast Forecast Returns the forecasted values.   

mad Forecast, Transform Returns MAD (Mean Absolute Deviation). 

mfe Forecast, Transform Returns the MFE (Mean Forecast Error). 

mape Forecast, Transform Returns the Mean Absolute Percentage Error 

(MAPE). 

metrics Forecast Returns the following metrics:  SSE, MSE, 

MAPE, MAD, CFE, MFE and TSE. 

mse Transform Returns MSE (Mean Squared Error). 

residuals Transform Returns the residuals calculated by subtracting 
the predicted value by the actual value.   

sse Forecast, Transform Returns the Sum of Squared Error (SSE). 

transformation Transform Returns the final transformation (transformed 

dataset). 

tse Forecast, Transform Returns the Tacking Signal Error. 

tsPlot Forecast, Transform Returns the time series plot: Actual vs 

Forecast. 

Evaluations:  Regression – Common Parameters 

   Evaluation Action Definition 

aoc Predict Returns the area Over the Curve (AOC) in an 

RROC Curve. 

decileChart Predict Retuns the decilewise lift curve which is 

drawn as the decile number versus the 

cumulative actual output variable value 

divided by the decile's mean output variable 
value.  The bars in this chart indicate the 

factor by which the predicted model 

outperforms a random assignment, one decile 

at a time.   

liftChart Predict Returns information for both Original and 

Alternative Lift Charts. 

prediction Predict Returns predicted values. 

mad Predict Returns MAD (Mean Absolute Deviation). 

metrics Predict Returns various metrics such as MSE, R2, 

RMSE, etc.   

mse Predict Returns MSE (Mean Squared Error). 

r2 Predict Returns Coefficient of Determination (R2) 

residuals Predict Returns the residuals calculated by subtracting 

the predicted value by the actual value.   

rmse Predict Returns Root Mean Squared Error (RMSE). 

rrocCurve Predict Returns RROC Curve information.   

ss Predict Returns the Sum of Squares (SS). 
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sse Predict Returns the Sum of Squared Error (SSE). 

sst Predict Returns the Sum of Squares Total (SST). 

Evaluations:  Regression – Linear Regression    

   Evaluation Action Definition 

anova Fit Returns the Analysis of Variance 

(ANOVA) 

coefficients Fit Returns the variable coefficients 

detailedCoefficients Fit Returns  the coefficient estimate, the 

standard error of the coefficient, the T-
statistic, the p-value, and confidence 

interval.   

detailedResiduals Fit Returns the raw, standardized, studentized 

and deleted residuals.   

entranceTolerance 
Fit Returns the tolerance threshold.  All 

predictors eligible to enter the model must 

pass this threshold.   

influenceDiagnostics Fit Returns Cook's Distance, DFFits, 

Covariance ratio, Leverage, and Delete-1 

Variance metrics 

multicollinearityDiagnostics Fit Returns Collinearity Diagnostics which 

help assess whether two or more variables 

so closely track one another as to provide 

essentially the same information.  

The columns represent the variance 

components (related to principal 

components in multivariate analysis), 

while the rows represent the variance 

proportion decomposition explained by 

each variable in the model. The 

eigenvalues are those associated with the 

singular value decomposition of the 

variance-covariance matrix of the 

coefficients, while the condition numbers 

are the ratios of the square root of the 
largest eigenvalue to all the rest. In 

general, multicollinearity is likely to be a 

problem with a high condition number 

(more than 20 or 30), and high variance 

decomposition proportions (say more than 

0.5) for two or more variables. 

predictorScreeningInfo Fit A preprocessing feature selection step is 

included to take advantage of automatic 

variable screening and elimination using 

Rank-Revealing QR Decomposition.  

This allows the identification of variables 

causing multicollinearity, rank 
deficiencies and otherproblems that 

would otherwise cause the algorithm to 



fail.  Information about “bad” variables is 

used in Variable Selection and 

Multicollinearity Diagnostics and in 

computing other reported statistics.    

Included and excluded predictors are 

returned for this command.  All predictors 
must meet the tolerance threshold to be 

eligible to enter the model.  This denotes 

a tolerance beyond which a variance – 

covariance matrix is not exactly singular 

to within machine precision.  The test is 

based on the diagonal elements of the 

triangular factor R resulting from Rank-

Revealing QR Decomposition.  Predictors 

that do not pass the test are excluded. 

Note:  If a predictor is excluded, the 

corresponding coefficient estimates will 
be 0 in the regression model and the 

variable – covariance matrix will contain 

all zeros in the rows and columns that 

correspond to the excluded predictor.  

Multicollinearity diagnostics, variable 

selection and other remaining output will 

be calculated for the reduced model.   

The design matrix may be rank-deficient 

for several reasons.  The most common 

cause of an ill-conditioned regression 

problem is the presence of feature(s) that 
can be exactly or approximately 

represented by a linear combination of 

other feature(s).  For example, assume 

that among predictors you have 3 input 

variables X, Y, and Z where Z = a * X + b 

* Y where a and b are constants.  This 

will cause the design matrix to not have a 

full rank.  Therefore, one of these 3 

variables will not pass the threshold for 

entrance and will be excluded from the 

final regression model. 

newIntervals Predict Returns the lower and upper confidence 
and prediction intervals for the predicted 

values.   

regressionSummary Fit Returns the the residual degrees of 

freedom (#observations - #predictors), a 

standard deviation type measure for the 

model (which typically has a chi-square 

distribution), the number of iterations 

required to fit the model, and the Multiple 

R-squared value.  

The multiple R-squared is the r-squared 

value for a logistic regression model , 
defined as - R2 = (D0-D)/D0 , where D is 

the Deviance based on the fitted model 
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and D0 is the deviance based on the null 

model. The null model is defined as the 

model containing no predictor variables 

apart from the constant. 

trainingIntervals Fit Returns the lower and upper confidence 

and prediction intervals for the training 

partition. 

varianceCovariance Fit Returns the variance-covariance matrix. 

 

 

  

  



Evaluations: SyntheticDataGenerator 
Evaluation Action Definition 

Synthetic Data Generation    

bestMetalog "bestMetalog" Use BestMetalog to obtain the number of terms for the 

best fitted Metalog distribution for each column.   

metalogCoefficients "metalogCoefficients" Obtains the coefficients for fitted Metalog Distributions 

for all or specific columns.   

metalogFitted "metalogFitted" Checks whether there was at least one feasible Metalog 

distribution fitted for all or specific columns.   

metalogGOF "MetalogGOF" Gets the detailed report of Goodness of Fit tests for fitted 

Metalog Distributions for all or specific columns. 

Correlation Evaluations   

correlationFitted "correlationFitted" Obtains information on the correlation fitting.   

"selectedCopula" – Determines what copula was 

selected if copua fitting was requested. 

"correlationSigma" – Obtains the correlation 

matrix , when applicable – i.e. if rank correlation or 

Gauss/Student Copula was used.    

"copulaTheta" – Use this result to obtain the fitted 

correlation theta value when selected copula is Clayton, 
Frank or Grumbel.   

"copulaDF" – Use this result to obtain the degrees of 

freedom when copula is Student.    

Example code above first checks if the correlations have 

been fitted, and then, depending on the correlation type, 

(rank or copula), reports applicable results.   

Evaluations:  Summarizer  
 

Summary “summary” 

 

All statistics generated using the Summarizer 

ealuations are briefly described below. 

 

Mean, the average of all the values.   

Standard Deviation, the square root of variance.  

Variance, the spread of the distribution of values.   

Skewness, which describes the asymmetry of the 

distribution of values.  

Kurtosis, which describes the peakedness of the 

distribution of values.  

Mode, the most frequently occurring single value.  
Minimum, the minimum value attained.  

Maximum, the maximum value attained.   

Range, the difference between the maximum and 

minimum values.  

advancedSummary “advancedSummary” 

 

Advanced Summary 

Mean Abs. Deviation, returns the average of the 

absolute deviations.   

SemiVariance, measure of the dispersion of values. 

SemiDeviation, one-sided measure of dispersion of 

values.   
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Value at Risk 95%, the maximum loss that can occur 

at a given confidence level.   

Cond. Value at Risk, is defined as the expected value 

of a loss given that a loss at the specified percentile 

occurs.   

Mean Confidence, returns the confidence “half-
interval” for the estimated mean value (returned by 

the PsiMean() function.  

Std. Dev. Confidence 95%, returns the confidence 

‘half-interval’ for the estimated standard deviation of 

the simulation trials (returned by the PsiStdDev() 

function).  

Coefficient of Variation, is defined as the ratio of the 

standard deviation to the mean.   

Standard Error, defined as the standard deviation of 

the sample mean.  

Expected Loss, returns the average of all negative data 

multiplied by the percentrank of 0 among all data.  
Expected Loss Ratio, returns the expected loss ratio. 

Expected Gain returns the average of all positive data 

multiplied by 1 -  percentrank of 0 among all data.  

Expected Gain Ratio, returns the expected gain ratio.  

Expected Value Margin, returns the expected value 

margin 

percentiles “percentiles” 

 
Generates numeric percentile values (from 1% to 

99%) computed using all values for the variable.  For 

example, the 75th Percentile value is a number such 

that three-quarters of the values occurring in the last 

simulation are less than or equal to this value. 

sixSigma “sixSigma” 

 
Generates various computed Six Sigma measures, 
described below.  These functions compute values 

related to the Six Sigma indices used in 

manufacturing and process control.  

 

SigmaCP:  SixSigmaCP 

(cell,lower_limit,upper_limit) 

A Six Sigma index, SixSigmaCP predicts what the 

process is capable of producing if the process mean is 

centered between the lower and upper limits.  This 

index assumes the process output is normally 

distributed.   

𝐶𝑝 =
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

6𝜎̂
  

where 𝜎̂ is the estimated standard deviation of the 

process. 

 

SigmaCPK:  SixSigmaCPK 

(cell,lower_limit,upper_limit) 

A Six Sigma index, SixSigmaCPK predicts what the 

process is capable of producing if the process mean is 

not centered between the lower and upper limits.  This 



index assumes the process output is normally 

distributed and will be negative if the process mean 

falls outside of the lower and upper specification 

limits. 

𝐶𝑝𝑘 =
𝑀𝐼𝑁(𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂,𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡)

3𝜎̂
  

where 𝜇̂ is the process mean and 𝜎̂ is the standard 

deviation of the process.   

 

SigmaCPKLower:  

SixSigmaCPKLower(cell,lower_limit) 

A Six Sigma index, SixSigmaCPKLower calculates 

the one-sided Process Capability Index based on the 

lower specification limit.   This index assumes the 
process output is normally distributed. 

𝐶𝑝, 𝑙𝑜𝑤𝑒𝑟 =
𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

3𝜎̂
  

where 𝜇̂ is the process mean and 𝜎̂ is the standard 

deviation of the process.   

 

SigmaCPKUpper:  

SixSigmaCPKUpper(cell,upper_limit) 

A Six Sigma index, SixSigmaCPKUpper calculates 
the one-sided Process Capability Index based on the 

upper specification limit.   This index assumes the 

process output is normally distributed. 

𝐶𝑝, 𝑢𝑝𝑝𝑒𝑟 =
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

3𝜎̂
  

where 𝜇̂ is the process mean and 𝜎̂ is the standard 

deviation of the process.   

 

SigmaCPM:  
SixSigmaCPM(cell,lower_limit,upper_limit,target) 

A Six Sigma index, SixSigmaCPM calculates the 

capability of the process around a target value.  This 

index is referred to as the Taguchi Capability Index.   

This index assumes the process output is normally 

distributed and is always positive. 

𝐶𝑝𝑚 =
𝐶̂𝑝

√1+(
𝜇̂−𝑇

𝜎̂
)2

  

where 𝐶̂𝑝 is the process capability (SigmaCP),  𝜇̂ is 

the process mean, 𝜎̂ is the standard deviation of the 

process and T is the target process mean.  

  
SigmaDefectPPM:  

SixSigmaDefectPPM(cell,lower_limit,upper_limit) 

A Six Sigma index, SixSigmaDefectPPM calculates 

the Defective Parts per Million.   

𝐷𝑃𝑀𝑂 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
) + 1 −

𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
)) ∗ 1000000 

where𝜇̂ is the process mean, 𝜎̂ is the standard 

deviation of the process and 𝛿−1 is the standard 

normal inverse cumulative distribution function.  
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SigmaDefectShiftPPM: 

SixSigmaDefectPPM(cell,lower_limit,upper_limit) 

A Six Sigma index, SixSigmaDefectShiftPPM 

calculates the Defective Parts per Million with an 

added shift.   

𝐷𝑃𝑀𝑂𝑆ℎ𝑖𝑓𝑡 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
−

𝑆ℎ𝑖𝑓𝑡) +  

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)) ∗

1000000  

where𝜇̂ is the process mean, 𝜎̂ is the standard 

deviation of the process and 𝛿−1 is the standard 

normal inverse cumulative distribution function.  

    

SigmaDefectShiftPPMLower:  

SixSigmaDefectShiftPPMLower(cell,lower_limit,shift

) 

A Six Sigma index, SixSigmaDefectShiftPPMLower 

calculates the Defective Parts per Million, with a shift, 

below the lower specification limit.   

𝐷𝑃𝑀𝑂𝑠ℎ𝑖𝑓𝑡, 𝑙𝑜𝑤𝑒𝑟 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂
−

𝑆ℎ𝑖𝑓𝑡) ∗ 1000000  

Where 𝜎̂ is the standard deviation of the process and 

𝛿−1 is the standard normal inverse cumulative 

distribution function.    

 

SigmaDefectShiftPPMUpper:  

SixSigmaCPKUpper(cell,upper_limit) 

A Six Sigma index, SixSigmaDefectShiftPPMUpper 

calculates the Defective Parts per Million, with a shift, 

above the lower specification limit.   

𝐷𝑃𝑀𝑂𝑠ℎ𝑖𝑓𝑡, 𝑢𝑝𝑝𝑒𝑟 = (𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂
−

𝑆ℎ𝑖𝑓𝑡) ∗ 1000000  

where𝜎̂ is the standard deviation of the process and 

𝛿−1 is the standard normal inverse cumulative 

distribution function.        

 

SigmaK:  SixSigmaK(cell,lower_limit,upper_limit) 

A Six Sigma index, SixSigmaK calculates the 

Measure of Process Center and is defined as: 

1 −
2∗𝑀𝐼𝑁(𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂,𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡)

𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡
  

where𝜇̂ is the process mean. 
 

SigmaLowerBound:  

SixSigmaLowerBound(cell,number_stdev) 

A Six Sigma index, SixSigmaLowerBound calculates 

the Lower Bound as a specific number of standard 

deviations below the mean and is defined as:   

𝜇̂ − 𝜎̂ ∗ #𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠  

where𝜇̂ is the process mean and 𝜎̂ is the standard 

deviation of the process.   



 

SigmaProbDefectShift:  

SixSigmaProbDefectShift(cell,lower_limit, 

upper_limit,shift) 

A Six Sigma index, SixSigmaProbDefectShift 

calculates the Probability of Defect, with a shift, 
outside of the upper and lower limits.  This statistic is 

defined as:     

𝛿−1 (
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) +   

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)  

where 𝜇̂ is the process mean ,𝜎̂ is the standard 

deviation of the process and 𝛿−1 is the standard 

normal inverse cumulative distribution function.   

  
SigmaProbDefectShiftLower:  

SixSigmaProbDefectShiftLower(cell,lower_limit, 

shift) 

A Six Sigma index, SixSigmaProbDefectShiftLower 

calculates the Probability of Defect, with a shift, 

outside of the lower limit.  This statistic is defined as:     

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)  

where𝜇̂ is the process mean ,𝜎̂ is the standard 

deviation of the process and 𝛿−1 is the standard 

normal inverse cumulative distribution function.    
  
SigmaProbDefectShiftUpper:  

SixSigmaProbDefectShiftUpper(cell,upper_limit, 

shift) 

A Six Sigma index, SixSigmaProbDefectShiftUpper 

calculates the Probability of Defect, with a shift, 

outside of the upper limit.  This statistic is defined as:     

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)  

where𝜇̂ is the process mean ,𝜎̂ is the standard 

deviation of the process and 𝛿−1 is the standard 
normal inverse cumulative distribution function.    

 

SigmaSigmaLevel:  

SixSigmaSigmaLevel(cell,lower_limit,upper_limit, 

shift) 

A Six Sigma index, SixSigmaSigmaLevel calculates 

the Process Sigma Level with a shift.  This statistic is 

defined as:     

−𝛿(𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) +  

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡))  

where 𝜇̂ is the process mean ,𝜎̂ is the standard 

deviation of the process 𝛿is the standard normal 

cumulative distribution function,  and 𝛿−1 is the 

standard normal inverse cumulative distribution 

function.     
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SigmaUpperBound:  

SixSigmaUpperBound(cell,number_stdev) 

A Six Sigma index, SixSigmaUpperBound calculates 

the Upper Bound as a specific number of standard 

deviations above the mean and is defined as:   

𝜇̂ − 𝜎̂ ∗ #𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠  

where𝜇̂ is the process mean and 𝜎̂ is the standard 

deviation of the process.   

 

SigmaYield:  

SixSigmaYield(cell,lower_limit,upper_limit,shift) 

A Six Sigma index, SixSigmaYield calculates the Six 

Sigma Yield with a shift, or the fraction of the process 

that is free of defects.   This statistic is defined as:     

𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) −  

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)  

where 𝜇̂ is the process mean, 𝜎̂ is the standard 

deviation of the process and 𝛿−1 is the standard 

normal inverse cumulative distribution function. 

       

SigmaZLower:  SixSigmaZLower(cell,lower_limit) 

A Six Sigma index, SixSigmaZLower calculates the 
number of standard deviations of the process that the 

lower limit is below the mean of the process.  This 

statistic is defined as:     
𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂
  

where𝜇̂ is the process mean and 𝜎̂ is the standard 

deviation of the process. 

       

SigmaZMin:  

SixSigmaZMin(cell,lower_limit,upper_limit) 

A Six Sigma index, SixSigmaZMin calculates the 

minimum of SigmaZLower and SigmaZUpper.  This 

statistic is defined as:     
𝑀𝐼𝑁(𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡,𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂)

𝜎̂
  

where𝜇̂ is the process mean and 𝜎̂ is the standard 

deviation of the process.   

 

SigmaZUpper:  SixSigmaZUpper(cell,upper_limit) 

SixSigmaZUpper(cell,upper_limit,simulation) 

A Six Sigma index, SigmaZUpper calculates the 

number of standard deviations of the process that the 

upper limit is above the mean of the process.  This 

statistic is defined as:     
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
  

Where 𝜇̂ is the process mean and 𝜎̂ is the standard 

deviation of the process.   

 

 



Evaluations:  Text Mining TFIDF Evaluations    

   Evaluation Action Definition 

detailedVocabulary Fit Returns the number of times the terms, 

included in the Final List of Terms, appears in 

the document collection and the number of 

documents that include each term. 

docInfo Fit Returns the # Characters and the # Terms per 

document.   

termCountInfo Fit Returns the number of total terms, the % 
Reduction in Terms, the Final number of 

terms after preprocessing or reduction, and the 

setting for "maxVocabulary".   

vocabulary Fit Returns the final list of terms.  The number of 

terms included in this list is determined by the 

"maxVocabulary" parameter setting.   

zipfPlot Fit Returns information to construct the Zipf Plot.  

This plots the number of times a term appears 

in the document collection.   

Evaluations:  Text Mining – Latent Semantic Analysis    

   Evaluation Action Definition 

conceptImportance Fit Returns the Concept Importance table which 

lists each concept, its singular value, the 

cumulative singular value and the % singular 
value explained.   (The number of concepts 

extracted is the minimum of the number of 

documents and the number of terms.) These 

values are used to determine which concepts 

should be used in the Concept – Document 

Matrix, Concept – Term Matrix and the Scree 

Plot according to the Users selection on the 

Representation tab. 

screePlot Fit Returns information for constructing a Scree 

Plot 

termconceptMatrix Transform 
Lists the most important concepts along the 

top of the matrix and most frequently 

appearing terms down the side of the matrix.    

termImportance Transform Returns the most frequently appearing terms 
along with their Importance factor.   

vocabulary Fit Returns terms contained in the input Term-

Concept Matrix   

Evaluations:  Time Series – ARIMA and Lag Analysis 

   Evaluation Action Definition 

acfPlot 
Forecast Lag Analysis:  Plots the ACF 

(Autocorrelation). 
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acvfPlot Forecast Lag Analysis:  Plots the ACVF 

(Autocovariance). 

autocorrelation Forecast Lag Analysis:  Returns the autocorrelation 

function 

autoCovariance Forecast Lag Analysis:  Returns the autocovariance 

function 

coefficientsInfo Fit ARIMA:  Returns the coefficients of the 
ARMA model.   

difference Forecast Lag Analysis:  Returns the differenced data.   

ljungBoxInfo Fit ARIMA:  Returns the Ljung-Box Test for 

Residuals information.   

loglikelihood Fit ARIMA:  Returns the LogLiklihood 

pacfPlot Forecast Lag Analysis:  Plots the PACF. 

partialAutocorrelation Forecast Lag Analysis:  Returns the partial 

autocorrelation function 

numIterations Fit ARIMA:  Returns the number of iterations 

completed. 

Residuals Transform ARIMA: Returns the difference between the 

actual and predicted values.retur 

transformation Transform ARIMA: Returns the predicted values using 

the fitted model when applied to a dataset. 

tsPlot Transform Returns the time series plot: Actual vs 

Forecast. 

varCovarMatrix Fit ARIMA:  Returns the variance-covariance 

matrix.   

Evaluations:  Transformation Common Evaluations    

   Evaluation Action Definition 

transformation Transform Returns the transformed dataset. 

Evaluations:  Transformation -- Summarization 

   Evaluation Action Definition 

histogram Transform Returns information of summarization as a 

histogram. 

summary Transform Returns summary information for Big Data. 

Evaluations:  Transformation -- Imputer    

   Evaluation Action Definition 

recordsWithMissingValues Transform Returns records with missing values 

recordsToDelete Transform Returns records that were deleted.   



Evaluations:  Transformation – Principal Components    

   Evaluation Action Definition 

principalComponents Transform Returns the principal components 

principalEigenvalues Transform Returns the eigenvalues. 

principalVariance Transform Returns the Explained Variance percentage. 

tSquaredStatistic Transform Returns Hotelling's t-squared statistic per 

record. 

qStatistic Transform Returns the QStatistic per record. 

Evaluations:  Transformation -- Rescaler    

   Evaluation Action Definition 

statistics Fit Returns the fitted statistics (shift and scale) for 

each rescaled variable.     

transformation Transform Returns the transformed dataset. 

Fitted Model ("fittedModel") 
Used (only) when scoring a model.  This section is similar to "datasets" but rather than refining imported data, 

this section defines a model that you can bind to when performing an "action" such as "forecast", "predict", 

"fit" or  "transform".     

In the example below, a previously fit linear regression model saved in PMML format (regression-linear-

model.xml) is imported into RASON as "pmmlModelSrc", then bound to the model, "mlrModel", which is 

used to score the Boston Housing dataset (which was imported into RASON as "dataSrc" and then bound to 

"myData").     
{ 

  comment: 'regression: linear model scoring from pmml', 

  datasources: { 

    dataSrc: { 

      type: 'csv', 

      connection: 'BostonHousingReg.txt' 

    }, 

    pmmlModelSrc: { 

      type: 'xml', 

      content: 'pmml-model', 

      connection: 'PMML\\regression-linear-model.xml' 

    } 

  }, 

  datasets: { 

    myData: { 

      binding: 'dataSrc' 

    } 

  }, 

  fittedModel: { 

    mlrModel: { 

      binding: 'pmmlModelSrc' 

    } 

  }, 

  actions: { 
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    myDataPrediction: { 

      data: 'myData', 

      fittedModel: 'mlrModel', 

      action: 'predict', 

      evaluations: [ 

        'prediction' 

      ] 

    } 

  } 

} 

 This section includes only one property, "binding".   

 

Model Property Example Explanation 

binding "binding":"mySrc" 

 

Binds to a previously fit model saved 

in either PMML or JSON format.     

(String property) 
 

PreProcessor ("preProcessor") 
This optional section may be used for preliminarily data preparation or to compute values of some properties, 

which are passed later, at parse-time, to the RASON DM engine.  This section is parsed once, before the model 
is parsed.   

In the example below, "numLeafRecords, is defined within the "preprocessor" section and is then referenced 

within the estimator, "treeEstimator", to set the parameter, "minNumRecordsInLeaves".    

  preProcessor: { 

    numLeafRecords: { 

      formula: 'INT(MAX(1, ROWS(myTrainData) / 10))' 

    } 

  }, 

  estimator: { 

    treeEstimator: { 

      type: 'classification', 

      algorithm: 'decisionTree', 

      parameters: { 

        priorProbMethod: 'EMPIRICAL', 

        minNumRecordsInLeaves: 'numLeafRecords', 

        maxNumNodes: 5, 

        maxNumLevels: 3, 

        maxNumSplits: 10, 

        categoricalFeaturesNames: [ 'X1' ], 

        prunedTreeType: 'MIN_ERROR' 

      } 

    } 

  }, 

See the table below for the properties available in the formula section of your RASON model.   

Data Property Type Explanation 

name "name": "parts" Use this property to define the array name. 

dimensions "dimensions": [3,1]               

"dimensions": [3] 

Defines a 1 – dimensional vertical array with 3 

elements.  



"dimensions": [1,3]  

"dimensions": [3,2] 

Defines a 1-dimensional vertical array with 3 

elements.   

Defines a 2 – dimensional horizontal array with 3 

elements. 

Defines a 2 – dimensional array with 3 rows and 2 
columns. 

All arrays are 1 – based.  If missing, array shape will 

be defined by the shape of the value property; 

however, for easier readability of the code, the use of 

the dimensions property is recommended.   

value "value": [1, 1, 1] Sets the value of the array. While it is unlikely that 

this property would be required within formulas, 

as typically the value of an object will be computed 

by formula, it is permissible.  See the example 

model, RGSpace2.json for an example.   

If dimensions property is missing, the shape of the 
variable array will be determined by the shape of the 

value property.  However, it is recommended that the 

dimensions property be used for readability 

purposes.   

formula "formula": "5 + 2.5*temp2" 

"formula": "MATOP(Supply, 

'min', '+', 

transpose(Demand))" 

Enter a formula to calculate a result or array which 

will be used in a constraint, uncertain function or in 

the objective function.   

 

comment "comment": "partsReq array 

holds the number of parts 

required to produce each 

product" 

Enter a comment here to describe the data.  

JSON/XML Formats for DataFrames 
As mentioned earlier, a DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with 
labeled axes (rows and columns).  RASON DM extends the definition of a DataFrame to mark one or more columns as 
index. 

XLMinerSDK: XLMiner::DataFrame; SolverSDK: SolverPlatform::Data::CMemoryDataFrame 

We’ll use the following example of DataFrame: 

MyDF (2 x 3) 

 integer    double     wstring 

 IntCol (i)  DoubleCol  StringCol 

Row1     1           1.5        A 

Row2     2           2.5        B  

This is DataFrame “MyDF” containing 2 rows and 3 columns. Column types are integer, double and wide string. Column 
names are “IntCol”, “DoubleCol”, “StringCol.” “IntCol” is an index column. Row names are “Row1”, “Row2.” 

Note:   Currently, Row Names are directly available only in XLMinerSDK and not in SolverSDK. It can be considered as an 
explicit index column for most commonly used case of 2D tables, where 2 dimensions are uniquely defined by Row Names 



 
 
 

229 

and Col Names (or their ordinal indices). The purpose is to allow quick get-set operations such as 
DF[<row_name>,<col_name>] 

JSON 
 
The most complete format for a JSON DataFrame with all optional and required fields explicitly provided may be found 
below. 
 
{ 

 "name": "MyDF", 

 "colNames": ["IntCol","DoubleCol","StringCol"], 

 "rowNames": ["Row1","Row2"], 

 "colTypes": ["integer","double","wstring"], 

 "indexCols": ["IntCol"], 

 "order": "col", 

 "data": [[1,2],[1.5,2.5],["A","B"]] 

} 

The most minimal format for JSON DataFrame with all optional fields omitted and defaulted may be found below: 

[[1,2],[1.5,2.5],["A","B"]] 

The same data can be equivalently stored in a row-wise order: 

 

{ 

 … 

 "order": "row", 

 "data": [[1,1.5,"A"],[2,2.5,"B"]] 

} 

The table below lists the available fields for a JSON DataFrame.   

Field Optional? Type Possible Values Default Description 

name Yes String  “DataFrame” Name 

colNames Yes Array  [“Col1”,…,”ColN”] Column 
Names 

rowNames Yes Array  [“Row1”,…,”RowN”] Row 
Names 

colTypes Yes Array {“integer”,”double”,“wstring”} 
for each column 

“wstring” for each 
column 

Column 
Types 

indexCols Yes Array Valid column names [] or null Index 
Columns 

order Yes String {“row”,”col”} “col” Whether 
“data” is 
stored row- 
or column-
wise 

data No 2D 
Array 

  Data 

 
Note: Currently, if the “colTypes” field is omitted, we assume string columns.  



XML 
 
The most complete format for an XML DataFrame with all optional and required fields explicitly provided: 

Column-wise order: 
 
<?xml version="1.0" encoding="utf-8"?> 
<DataFrame name="MyDF" order="col"> 
    <Rows> 
        <Row name="Row1"/> 
        <Row name="Row2"/> 
    </Rows> 
    <Columns> 
        <Column index="true" name="IntCol" type="integer"> 
            <Value>1</Value> 
            <Value>2</Value> 
        </Column> 
        <Column index="false" name="DoubleCol" type="double"> 
            <Value>1.5</Value> 
            <Value>2.5</Value> 
        </Column> 
        <Column index="false" name="StringCol" type="wstring"> 
            <Value>A</Value> 
            <Value>B</Value> 
        </Column> 
    </Columns> 
</DataFrame> 

Row-wise order: 
 
<?xml version="1.0" encoding="utf-8"?> 
<DataFrame name="MyDF" order="row"> 
    <Rows> 
        <Row name="Row1"> 
            <Value>1</Value> 
            <Value>1.5</Value> 
            <Value>A</Value> 
        </Row> 
        <Row name="Row2"> 
            <Value>2</Value> 
            <Value>2.5</Value> 
            <Value>B</Value> 
        </Row> 
    </Rows> 
    <Columns> 
        <Column index="true" name="IntCol" type="integer"/> 
        <Column index="false" name="DoubleCol" type="double"/> 
        <Column index="false" name="StringCol" type="wstring"/> 
    </Columns> 
</DataFrame> 
 

The most minimal formal for JSON DataFrame with all optional fields omitted and defaulted: 

Column-wise order: 
 
<?xml version="1.0" encoding="utf-8"?> 
<DataFrame> 
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    <Columns> 
        <Column> 
            <Value>1</Value> 
            <Value>2</Value> 
        </Column> 
        <Column> 
            <Value>1.5</Value> 
            <Value>2.5</Value> 
        </Column> 
        <Column> 
            <Value>A</Value> 
            <Value>B</Value> 
        </Column> 
    </Columns> 
</DataFrame> 

Row-wise order: 
 
<?xml version="1.0" encoding="utf-8"?> 
<DataFrame order="row"> 
    <Rows> 
        <Row> 
            <Value>1</Value> 
            <Value>1.5</Value> 
            <Value>A</Value> 
        </Row> 
        <Row> 
            <Value>2</Value> 
            <Value>2.5</Value> 
            <Value>B</Value> 
        </Row> 
    </Rows> 
</DataFrame> 

XSD Schema Definition: 

Note: It’s possible to infer the “order” (“col”/”order”) property directly from the XML given the structure of 
“Rows”/”Columns” elements  

<?xml version="1.0" encoding="UTF-8"?> 
<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified" 
xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
  <xs:simpleType name="orderType"> 
    <xs:restriction base="xs:string"> 
      <xs:enumeration value="col"/> 
      <xs:enumeration value="row"/> 
    </xs:restriction> 
  </xs:simpleType> 
  <xs:simpleType name="colType"> 
    <xs:restriction base="xs:string"> 
      <xs:enumeration value="integer"/> 
      <xs:enumeration value="double"/> 
      <xs:enumeration value="wstring"/> 
    </xs:restriction> 
  </xs:simpleType> 
  <xs:element name="DataFrame"> 
    <xs:complexType> 
      <xs:sequence> 
        <xs:element maxOccurs="unbounded" minOccurs="0" name="Rows"> 
          <xs:complexType> 
            <xs:sequence> 
              <xs:element maxOccurs="unbounded" minOccurs="0" name="Row"> 



                <xs:complexType> 
                  <xs:sequence> 
                    <xs:element maxOccurs="unbounded" minOccurs="0" name="Value" type="xs:string"/> 
                  </xs:sequence> 
                  <xs:attribute name="name" type="xs:string"/> 
                </xs:complexType> 
              </xs:element> 
            </xs:sequence> 
          </xs:complexType> 
        </xs:element> 
        <xs:element maxOccurs="unbounded" minOccurs="0" name="Columns"> 
          <xs:complexType> 
            <xs:sequence> 
              <xs:element maxOccurs="unbounded" minOccurs="0" name="Column"> 
                <xs:complexType> 
                  <xs:sequence> 
                    <xs:element maxOccurs="unbounded" minOccurs="0" name="Value" type="xs:string"/> 
                  </xs:sequence> 
                  <xs:attribute name="index" type="xs:boolean"/> 
                  <xs:attribute name="name" type="xs:string"/> 
                  <xs:attribute name="type" type="colType"/> 
                </xs:complexType> 
              </xs:element> 
            </xs:sequence> 
          </xs:complexType> 
        </xs:element> 
      </xs:sequence> 
      <xs:attribute name="name" type="xs:string"/> 
      <xs:attribute name="order" type="orderType"/> 
    </xs:complexType> 
  </xs:element> 
</xs:schema> 

RASON 

Import 

We use our regular syntax for RASON “datasources” with the {"type":"json"} and {"type":"xml"}: 

{ 

  "datasources": { 

    "jsonSrc": { 

      "type": "json", // "xml" 

      "connection": "df.json", // "df.xml" 

      "selection": "object1.object2",  

      "content": "json-model", // "pmml-model" 

    } 

  }, 

  "datasets": { 

    "myData": { 

      "binding": "jsonSrc" 

    } 

  } 

} 

 

Fields: 

• "selection" property is optional and serves to access nested JSON/XML objects – see the example below. By 

default, we assume non-nested JSON/XML structure. 
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{ 

  "x": { 

    "y": {…df…} 

  } 

} 

• "content" property is optional and serves to distinguish different objects that JSON/XML files can hold. If 

omitted, “table” is assumed. 

 

The data source with the {"type":"json"} can contain the following serialized objects: 

o "content": "table" [DEFAULT] – table/dataframe in JSON format 

o "content": "json-model"– fitted DM model in JSON format 

 

The data source with the {"type":"xml"} can contain the following serialized objects: 

o "content": "table" [DEFAULT] – table/dataframe in XML format 

o "content": "pmml-model"– fitted DM model in JSON format 

 

RASON DM has additional types “content”, which are not supported in any domain of RASON other than DM: 

o "content": "corpus" – text mining, corpus of documents 

o "content": "time-series" – single-variable time series data 

o "content": "itemset" – association rules, transactions in the itemset format 

  



Rason Decision Flow 
Components  

Introduction 
Users can easily create multi-stage decision flows, with business rules, optimization, simulation and machine 

learning models.  Decision flow stages can execute the full range of predictive and prescriptive analytics: 

DMN-compatible decision tables, Excel calculations, SQL operations, Monte Carlo simulations, mathematical 

optimizations, or machine learning training or prediction steps. Multi-dimensional data is automatically passed 

between stages in a standard, general "indexed data frame" form that maintains a dimensional information 

across statistic and machine learning transformations.  Users can choose to run only the stages that need 

updating, easily determine the outcome of each stage and obtain results in JSON or OData form, at each stage 

or at the final stage.  Each stage can be written inline or can invoke a reusable model via its interface.  

Models can be written in RASON or Excel with Analytic Solver and may be used in multiple decision flows. 

Using automatic scheduling, users can schedule a decision flow to run at fixed intervals or specify how 
recently updated they want each stage to be.  RASON will automatically determine when to run each stage.   

Decision Flow Components 
The following components may be used when formulating either an inline decision flow or a decision flow 

invoking reusable models. 

 
flow/flowName "flow":"optDMWorkflow" 

"flowName":"optDMWorkflow" 

Assigns a name to the decision 

flow.   
inputParameters  

"inputParameters":{ 

 "Number_to_build": { 

   "type": "array", 

   "value": "optStage.           

             Number_to_build.          

             finalValue, 

   "comment": "description" 

 } 

}   

Section heading where the 

input results from the stage are 

passed to the decision flow 

stage.   
     type The "type" property is used to 

inform RASON of the type of 
data being passed for the given 

input parameter.  Supported 

properties are:  number, string 

or text, Boolean, array or 

dataset (for data mining flows 

only). 
     value Use this property to pass the 

input value.   
     comment Use this component to provide 

a brief description of the input.   
invokeModel "invokeModel":"rescaling-

reusable" 

 

"invokeModel": 

Use this property to invoke a 

resuable model from within a 

decision flow.   
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"Name=MyExcelConnection" 

 

 

 

Use 

"Name=MyExcelConnection" 

when the model is saved on a 

OneDrive account where 

MyExcelConnection is a 

named data connection on the 
user's MyAccount page.  For 

more information on Data 

Connections in RASON, see 

the Data Connections section 

in the Rason User Guide.   
modelDescription "modelDescription":"This is 

a description of the 

decision flow." 

Use this component to provide 

a brief description of the 

decision flow. 
modelType "modelType":"optimization" Use this component to specify 

the problem type of the 

invoked model in a decision 

flow stage.  Model Type can 

be "optimization", 

"simulation", "datamining" or 
"calculation". For more 

information on this 

component, see More on the 

Model Type Property within 

the RASON User Guide.    
outputResults "outputResults": { 

  "Number_to_build":{ 

    "evaluations": ["finalValue"], 

    "type": "array", 

    "comment": "This is a comment" 

  } 

} 

Section heading where the 

output results from the stage 

are reported.   
    evaluations Use this component within 

"outputResults" to pass the 

output results within the 

decision flow stage. 
    type The "type" property is used to 

inform RASON of the type of 
data being passed for the given 

input parameter.  Supported 

properties are:  number, string 

or text, Boolean, array or 

dataset (for data mining flows 

only). 
    comment Use this component to provide 

a brief description of the 

output.   

 

 

  



Solver Result Messages 

Introduction 
This chapter documents the Solver Result Messages that can be returned when you 
optimize a model or run a simulation, and discusses some of the characteristics and 

limitations of the Solver Engines.   

Result Messages and Codes 
When the solution process completes, a Solver Result Message will be returned.  If 

you are using the RASON.com Web ID, the result will appear at the bottom of the 

screen in the answer field next to "status".   

 

If you are using the RASON desktop IDE, the answer will appear on the right, also 

net to "status".   
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Values returned for "variables" and "objective" (and "constraints" if used) are the 

decision variable values and the objective function value for the best solution found. 

Each Solver Result Message has a corresponding integer result code, (denoted as 

"code") as documented in this chapter.  If you are using the REST API to call the 

RASON server, the endpoint GET rason.net/api/model/id/result (or 

QuickSolve endpoints POST rason.net/api/optimize or POST 

rason.net/api/simulation) will return this code and any final values 

specified by finalValue: [].   

The RASON Server returns the integer result codes and displays the Solver Result 

Messages described in this section.  The meanings of these messages have been 

generalized for the LP/Quadratic Solver, SOCP Barrier Solver, nonlinear GRG 

Solver, and Evolutionary Solver, and the conditions they may return.  Please see the 

explanations of each message, especially for return code 0, “Solver found a 

solution.” 

Plug-in Solver engines return the same codes and display the same messages as the 
built-in Solver engines whenever possible, but they can also return custom result 

codes (starting with 1000) and display custom messages, as described in their 

individual documentation.   

Interval Global Solver 

The Interval Global Solver is only available when an Excel file is loaded directly 

into the Solver SDK Platform using prob.load when called through a 

programming language or the desktop IDE.  The Interval Global Solver is not 

available when called through the WEB IDE or the REST API.  This engine can 

return three of these custom result codes and messages, described at the end of this 

section. 
{"Exception": "You have 10757 variables. Your license allows 200 variables."} 

This result is returned if you have not upgraded to the Pro or Platform tiers or if your 

license has expired.  For further information about this exception, please call 

Frontline Systems at (775) 831-0300, or send an email to us at info@solver.com. 
{"The remote server returned an error:  (401) Unauthorized."} 

This result is returned if your validation token is invalid.  If, for any reason, you 
would like to be issued a new token, you can invalidate your existing authorization 

token by clicking the My Account link in the top right corner and then "invalidate".  

To obtain a new authorization token you must first log out.  A new authorization 

token will be issued the next time you log in.  
0.  Solver found a solution.  All constraints and optimality conditions are satisfied. 

This means that the Solver has found the optimal or “best” solution under the 

circumstances.  The exact meaning depends on whether you are solving a linear or 

quadratic, smooth nonlinear, global optimization, or integer programming problem, 

as outlined below.  Solvers for non-smooth problems rarely if ever display this 

message, because they have no way of testing the solution for true optimality. 

mailto:info@solver.com


If you are solving a linear programming problem or a convex quadratic 

programming problem, the Solver has found the globally optimal solution:  There is 

no other solution satisfying the constraints that has a better value for the objective.  It 

is possible that there are other solutions with the same objective value, but all such 

solutions are linear combinations of the current decision variable values. 

If you are solving a linear (LP), convex quadratic (QP) or quadratically constrained 

(QCP), or second order cone programming (SOCP) problem, the Solver has found 

the globally optimal solution:  There is no other solution satisfying the constraints 

that has a better value for the objective.  It’s possible that there are other solutions 

with the same objective value, but all such solutions are linear combinations of the 

current decision variable values. 

If you are solving a smooth nonlinear optimization problem with no integer 

constraints, Solver has found a locally optimal solution:  There is no other set of 

values for the decision variables close to the current values and satisfying the 

constraints that yields a better value for the objective.  In general, there may be other 

sets of values for the variables, far away from the current values, which yield better 
values for the objective and still satisfy the constraints. 

If you are using the Interval Global Solver for global optimization of a smooth 

nonlinear problem with no integer constraints, this means that the Solver has found 

the globally optimal solution: There is no other solution satisfying the constraints 

that has a better value for the objective. But this is subject to limitations due to the 

finite precision of computer arithmetic that can, in rare cases, cause the Solver to 

“miss” a feasible solution with an even better objective value. 

If you are solving a mixed-integer programming problem (any problem with integer 

constraints, this message means that the Branch & Bound method has found a 

solution satisfying the constraints (including the integer constraints) with the “best 
possible” objective value (but see the next paragraph).  If the problem is linear or 

quadratic, the true integer optimal solution has been found.  If the problem is smooth 

nonlinear, the Branch & Bound process has found the best of the locally optimal 

solutions found for subproblems by the nonlinear Solver. 
1.  Solver has converged to the current solution.  All constraints are satisfied. 

This means that Solver has found a series of “best” solutions that satisfy the 

constraints, and that have very similar objective function values; however, no single 

solution strictly satisfies the Solver’s test for optimality.  The exact meaning depends 

on whether you are solving a smooth nonlinear problem with the LSGRG Solver or 

the Interval Global Solver, or a non-smooth problem with the Evolutionary Solver. 

When the LSGRG Solver or the Interval Global Solver is being used, this message 

means that the objective function value is changing very slowly as the Solver 

progresses from point to point. More precisely, the Solver stops if the absolute value 
of the relative (i.e. percentage) change in the objective function, in the last few 

iterations, is less than the Convergence tolerance on the Task Pane Engine tab.  A 

poorly scaled model is more likely to trigger this stopping condition, even if scaling 

= True in engineSettings.  If you are sure that your model is well scaled, you 

should consider why it is that the objective function is changing so slowly.   

When the Evolutionary Solver is being used to solve a nonsmooth model, this 

message means that the “fitness” of members of the current population of candidate 

solutions is changing very slowly.  More precisely, the Evolutionary Solver stops if 

99% or more of the members of the population have “fitness” values whose relative 

(i.e. percentage) difference is less than the Convergence tolerance on the Task Pane 

Engine tab.  The “fitness” values incorporate both the objective function and a 

penalty for infeasibility, but since the Solver has found some feasible solutions, this 

test is heavily weighted towards the objective function values.  If you believe that the 
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Solver is stopping prematurely when this test is satisfied, you can make the 

Convergence tolerance smaller, but you may also want to increase the Mutation Rate 

and/or the Population Size, in order to increase the diversity of the population of trial 

solutions.   
2.  Solver cannot improve the current solution.  All constraints are satisfied. 

This means that the Solver has found solutions that satisfy the constraints, but it has 

been unable to further improve the objective, even though the tests for optimality 
(“Solver found a solution”) and convergence (“Solver converged to the current 

solution”) have not yet been satisfied.  The exact meaning depends on whether you 

are solving a smooth nonlinear problem with the Standard LSGRG Solver, a global 

optimization problem with the Interval Global Solver, or a non-smooth problem with 

the Evolutionary Solver. 

When the LSGRG Solver is being used, this message occurs very rarely.  It means 

that the model is degenerate and the Solver is probably cycling. One possibility 

worth checking is that some of your constraints are redundant, and should be 

removed.  

When the Interval Global Solver is being used, this message is more common.  It 

means that the Solver has not found an “improved global solution” (a feasible 
solution with an objective value better than the currently best known solution), in the 

amount of time specified for the maxTimeNoImprove: True within 

engineSettings.  The reported solution is the best one found so far, but the 

search space has not been fully explored. If you receive this message, and you are 

willing to spend more solution time to have a better chance of “proving” global 

optimality, increase the value of maxTimeNoImprove. 

When the Evolutionary Solver is being used, this message is much more common.  It 

means that the Solver has been unable to find a new, better member of the population 

whose “fitness” represents a relative (percentage) improvement over the current best 

member’s fitness of more than the intTolerance option setting in 

engineSettings, in the amount of time specified by the maxTimeNoImp 

option also within engineSettings.  Since the Evolutionary Solver has no way 

of testing for optimality, it will normally stop with either “Solver converged to the 

current solution” or “Solver cannot improve the current solution” if you let it run for 

long enough.  If you believe that this message is appearing prematurely, you can 

either decrease the setting for intTolerance (even setting it to zero), or increase 

the value for maxTimeNoImp .   
3.  Stop chosen when the maximum iteration limit was reached. 

This result is returned when the Solver has completed the maximum number of 

iterations, or trial solutions, set for iterations in engineSettings .  The 

default setting for this option is unlimited.   

If you are solving a mixed-integer programming problem (any problem with integer 

constraints), this message is relatively unlikely to appear.  The Evolutionary Solver 

uses maxSubproblems and maxIntegerSols specified in 

engineSettings, and the Branch & Bound method (employed by the other 

Solver engines on problems with integer constraints) uses maxSubproblems and 

maxIntegerSols options also within engineSettings, to control the overall 

solution process.   The count of iterations against which the Iteration limit is 

compared is reset on each new subproblem, so this limit usually is not reached. 

If you are using Stochastic Decomposition to solve for a stochastic linear model, this 

status will be returned if the algorithm performs over 5,000 iterations.   
4.  The objective (Set Cell) values do not converge. 



This result is returned when the Solver is able to increase (if you are trying to 

Maximize) or decrease (for Minimize) without limit the value calculated by the 

objective, while still satisfying the constraints. Remember that, if you’ve set 

type:  "Minimize" within objective, the objective may take on negative 

values without limit unless this is prevented by the constraints or bounds on the 

variables.  Set the assumeNonneg: True within engineSettings to impose 

>= 0 bounds on all variables.  

If the objective is a linear function of the decision variables, it can always be 

increased or decreased without limit (picture it as a straight line), so the Solver will 

seek the extreme value that still satisfies the constraints. If the objective is a 
nonlinear function of the variables, it may have a “natural” maximum or minimum 

(for example, =A1*A1 has a minimum at zero), or no such limit (for example, 

=LOG(A1) increases without limit). 

If you receive this message, you may have forgotten a constraint, or failed to 

anticipate values for the variables that allow the objective to increase or decrease 

without limit. The final values for the variable cells, the constraint left hand sides 

and the objective should provide a strong clue about what happened. 

The Evolutionary Solver never displays this message, because it has no way of 

systematically increasing (or decreasing) the objective function, which may be non-

smooth.  If you have forgotten a constraint, the Evolutionary Solver may find 

solutions with very large (or small) values for the objective – thereby making you 
aware of the omission – but this is not guaranteed. 

5.  Solver could not find a feasible solution. 

This result is returned when the Solver could not find any combination of values for 

the decision variables that allows all of the constraints to be satisfied simultaneously.  

If you are using the LP/Quadratic Solver or the SOCP Barrier Solver, and the model 

is well scaled, the Solver has determined for certain that there is no feasible solution. 

If you are using the standard LSGRG Solver, the GRG method (which always starts 

from the initial values of the variables) was unable to find a feasible solution; but 

there could be a feasible solution far away from these initial values, which the Solver 

might find if you run it with different initial values for the variables.  To set initial 

values for the variables, use the value property.  In the example below the initial 

values of all three variables contained in the x array are being set to "1" via the 

value property.   

 
variables: { 

        x: { 

            dimensions: [3], 

            value: 0, 

            lower: 0, 

            finalValue: [] 

        } 

Alternatively, the initial values of each variable could also have been set using  

value: [0, 0, 0].   

If you are using the Interval Global Solver, this message means that the Solver could 

find no feasible solutions after a systematic exploration of the search space. The 

Interval Global Solver is designed to “prove feasibility” as well as global optimality, 

and there is very likely no feasible solution; but this is subject to limitations due to 

the finite precision of computer arithmetic that can, in rare cases, cause the Solver to 
“miss” a solution. 
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If you are using the Evolutionary Solver, the evolutionary algorithm was unable to 

find a feasible solution; it might succeed in finding one if you run it with different 

initial values for the variables (see above for an example) and/or increase the setting 

for precision within engineSettings (which reduces the infeasibility 

penalty, thereby allowing the evolutionary algorithm to explore more “nearly 

feasible” points). 

If you are solving a problem with chance constraints using simulation optimization, 

this message means that the Solver could find no solution that satisfies these 

constraints to the chance measures (such as 95%) that you specified.  If you ‘relax’ 

the chance measures (to say 90%) and solve again, it’s possible that a feasible 
solution will be found.  For robust optimization, see result codes 26 through 29. 

In any case, you should first look for conflicting constraints, i.e. conditions that 

cannot be satisfied simultaneously. Most often this is due to choosing the wrong 

relation (e.g. <= instead of >=) on an otherwise appropriate constraint.   
6.  Solver stopped at user’s request. 

This result is returned only when the REST API endpoint, POST 

RASON.net/api/model/id/stop is called.    
7.  The linearity conditions required by this Solver engine are not satisfied. 

This result is returned if you’ve selected the LP/Quadratic Solver and the Solver’s 

tests determine that the constraints are not linear functions of the variables or the 

objective is not a linear or convex quadratic function of the variables; or if you’ve 

selected the SOCP Barrier Solver and the Solver’s tests determine that the 

constraints or the objective are not linear or convex quadratic functions of the 

variables.   

If you receive this message, examine the formulas for the objective and constraints 
for nonlinear or non-smooth functions or operators applied to the decision variables 

or set transformNonsmooth: True within modelSettings to have Solver 

attempt to transform your nonlinear or nonsmooth model into a linear model. For 

more information on Nonsmooth Model Transformation see this option in the 

modelSettings explanation above.   
8.  {"Exception": "You have _____ variables. Your license allows _____ variables."} 

This result is returned when the Solver determines that your model is too large for 

the selected Solver engine within your Account tier.  You’ll have to select – or 

possibly upgrade to – another Solver engine appropriate for your problem, or else 

reduce the number of variables, constraints, or integer variables to proceed. 
9.  Solver encountered an error value in a target or constraint cell. 

This message appears when the Solver SDK Platform (on the RASON server or on 

your desktop) evaluates the formulas in your RASON model and discovers an error 

value while  calculating the objective function, uncertain function or one of your 

constraints.  Most often, a more specific message will appear instead of “Solver 
encountered an error value in a (nonspecific) target or constraint cell.”  At a 

minimum, the message will say “Error value returned at line number,” where line 

number tells you exactly where the error was encountered. Other messages may tell 

you more about the error. The general form of the message is: 

Error condition at line number.  Edit your formulas.  Error condition is one of the 

following: 

Floating point overflow Invalid token 

Runtime stack overflow Decision variable with formula 

Runtime stack empty Decision variable defined more than once 

String overflow Missing Diagnostic/Memory evaluation 

Division by zero Unknown function 



Unfeasible argument Unsupported Excel function 

Type mismatch Excel error value returned 

Invalid operation Non-smooth special function 

See also result code 21, “Solver encountered an error computing derivatives,” and 

result code 12, with messages that can appear when the Interpreter first analyzes the 

formulas in your model. 

“Floating point overflow” indicates that the computed value is too large to represent 

with computer arithmetic; “String overflow” indicates that a string is too long to be 
stored in a cell.  “Division by zero” would yield #DIV/0! on the worksheet, and 

“Unfeasible argument” means that an argument is outside the domain of a function, 

such as =SQRT(A1) where A1 is negative. 

“Unknown function” appears for functions whose names are not recognized by the 

Interpreter, such as user-written functions.  “Unsupported Excel function”  appears 

for the few functions that the Interpreter recognizes but does not support. 

The Evolutionary Solver rarely, if ever, display this message – since they maintain a 

population of candidate solutions and can generate more candidates without relying 

on derivatives, they can simply discard trial solutions that result in error values in the 

objective or the constraints.  If you have a model that frequently yields error values 

for trial solutions generated by the Solver, and you are unable to correct or avoid 
these error values by altering your formulas or by imposing additional constraints, 

you can still use the Evolutionary Solver to find (or make progress towards) a 

“good” solution. 
10.  Stop chosen when the maximum time limit was reached. 

This result is returned when Solver has run for the maximum time (number of 

seconds) specified for  maxTime  within engineSettings. The default setting 

for this option is unlimited.   
11.  There is not enough memory available to solve the problem. 

This message appears when the Solver could not allocate the memory it needs to 
solve the problem.  If you are calling the Solver SDK through the RASON modeling 

language to solve your model, you are likely to notice that solution times have 

greatly slowed down, and the hard disk activity light in your PC has started to flicker 

before you see this result. 

You can save some memory by closing any Windows applications other than the 

programming language you are using or the Desktop IDE and closing programs that 

run in the System Tray 
No model inputs defined. 

This message means that the internal “model” (information about the variable cells, 

objective, constraints, Solver options, etc.) is not in a valid form. An “empty” or 

incomplete Solver model, perhaps one with no objective and no constraints other 

than bounds on the variables, can cause this message to appear.  
14.  Solver found an integer solution within tolerance.  All constraints are satisfied. 

If you are solving a mixed-integer programming problem (any problem with integer 

constraints) with a non-zero value for the intTolerance within 

engineSettings, the Branch & Bound method has found a solution satisfying 

the constraints (including the integer constraints) where the relative difference of this 

solution’s objective value from the true optimal objective value does not exceed the 

integer Tolerance setting.  (For more information, see the explanation for Integer 

Tolerance in the Engine Options section within the chapter, "Rason Model  

Components").   This may actually be the true integer optimal solution; however, the 

Branch & Bound method did not take the extra time to search all possible remaining 

subproblems to “prove optimality” for this solution.  If all subproblems were 
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explored (which can happen even with a non-zero intTolerance setting in some 

cases), the result “Solver found a solution.  All constraints are satisfied” (result code 

0, shown earlier in this section) will be returned. 
15.  Stop chosen when the maximum number of feasible [integer] solutions was reached. 

If you are using the Evolutionary Solver, this result is returned when the Solver has 

found the maximum number of feasible solutions (values for the variables that 

satisfy all constraints) allowed by the maxFeasibleSols option setting within 

engineSettings. You may increase the value for maxFeasibleSols or leave 

this setting at the default, unlimited.   

If you are using one of the other Solver engines on a problem with integer con-

straints, this result is returned when the Solver has found the maximum number of 

integer solutions (values for the variables that satisfy all constraints, including the 

integer constraints) allowed by the maxIntegerSols option setting within 

engineSettings.  You may increase the value for maxIntegerSols or leave 

the option setting at the default, unlimited.  But you should also consider whether the 

problem is formulated correctly, and whether you can add constraints to “tighten” the 

formulation.   
16.  Stop chosen when the max number of feasible [integer] subproblems was reached. 

If you are using the Evolutionary Solver, this result is returned when the Solver has 

explored the maximum number of subproblems specified for maxSubproblems 

within engineSettings. You may increase the value for the 

maxSubproblems, leave the option setting at its default, unlimited. 

If you are using one of the other Solver engines on a problem with integer con-

straints, this result is returned when the Solver has explored the maximum number of 

integer subproblems (each one is a “regular” Solver problem with additional bounds 

on the variables) specified for maxSubproblems within engineSettings.  

You may increase the value for maxSubproblems or leave the options setting at 

its default, unlimited.  But you should also consider whether the problem is 

formulated correctly, and whether you can add constraints to “tighten” the formula-

tion.   
17.  Solver converged in probability to a global solution. 

If you are using the multistart methods for global optimization, with the standard 

LSGRG solver, or a field-installable nonlinear Solver engine, this result is returned 
when the multistart method’s Bayesian test has determined that all of the locally 

optimal solutions have probably been found; the solution displayed on the worksheet 

is the best of these locally optimal solutions, and is probably the globally optimal 

solution to the problem. 

The Bayesian test initially assumes that the number of locally optimal solutions to be 

found is equally likely to be 1, 2, 3, … etc. up to infinity, and that the relative sizes 

of the regions containing each locally optimal solution follow a uniform distribution.  

After each run of the standard LSGRG Solver or field-installable Solver engine, an 

updated estimate of the most probable total number of locally optimal solutions is 

computed, based on the number of subproblems solved and the number of locally 

optimal solutions found so far.  When the number of locally optimal solutions 
actually found so far is within one unit of the most probable total number of locally 

optimal solutions, the multistart method stops and displays this message. 
18.  All variables must have both upper and lower bounds. 

If you are using the Interval Global Solver, this message is returned if you have not 

defined lower and upper bounds on all of the decision variables in the problem.  You 

must define bounds on all variables in order to use this engine. You should add the 

missing bounds using the lower and upper properties within your variable array 

definition, and try again.    



If you are using the Evolutionary Solver or the multistart methods for global 

optimization, and you have not set requireBounds: False within 

engineSettings  (it is set to True by default), this message will also appear.  

You should add the missing bounds using the lower and upper properties within 

your variable array definition, and try again.   

In the example code below, lower bounds of 1 and upper bounds of 10 are applied to 

each of the three elements in the x array.   

 
variables: { 

        x: { 

            dimensions: [3], 

            value: 1, 

            lower: 10, 

            finalValue: [] 

        } 

Alternatively, unique lower and upper bounds for each variable could be specified 

using:    
 

lower: [1, 2, 3], 

upper:  [10, 11, 12],  

Lower bounds of zero can be applied to all unbounded variables by using the 

assumeNonneg option within engineSettings.  For the Evolutionary Solver 

or the multistart methods, such bounds are not absolutely required (you can set 

requireBounds:  False), but they are a practical necessity if you want the 

Solver to find good solutions in a reasonable amount of time. 
19.  Variable bounds conflict in binary or alldifferent constraint. 

This result is returned if you have both a binary or alldifferent constraint on a 

decision variable and a <= or >= constraint on the same variable (that is inconsistent 

with the binary or alldifferent specification), or if two or more of the same decision 

variables appear in more than one alldifferent constraint.  Binary integer variables 

always have a lower bound of 0 and an upper bound of 1; variables in an alldifferent 

group always have a lower bound of 1 and an upper bound of N, where N is the 
number of variables in the group.  You should check that the binary or alldifferent 

constraint is correct, and ensure that alldifferent constraints apply to non-overlapping 

groups of variables.  If a <= or >= constraint causes the conflict, remove it if possible 

and try to solve again. 
20.  Lower and upper bounds on variables allow no feasible solution. 

This result is returned if you’ve defined lower and upper bounds on a decision 

variable, where the lower bound is greater than the upper bound.  This (obviously) 

means there can be no feasible solution, but most Solver engines will detect this 

condition before even starting the solution process, and display this message instead 

of “Solver could not find a feasible solution” to help you more quickly identify the 

source of the problem.   
21.  Solver encountered an error computing derivatives.   

This message appears when the Interpreter in Solver SDK Platform encounters an 

error when computing derivatives via automatic differentiation.  The most common 

cause of this message is a non-smooth function in your objective, uncertain function 

or constraints, for which the derivative is undefined.  But in general, automatic 
differentiation is somewhat more strict than finite differencing:  As a simple 

example, =SQRT(test) evaluated at test=0 will yield this error message when the 

Solver is using automatic differentiation (since the derivative of the SQRT function 

is algebraically undefined at zero). 
22.  Variable appears in more than one cone constraint. 
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This result is returned if the same decision variable appears in more than one cone 

constraint.  You can define as many cone constraints as you want, but each one must 

contain a different group of decision variables. 
23.  Formula depends on uncertainties, must be summarized or transformed. Learn more using the Solver Model dialog 
Diagnosis tab. 

This result is returned if you've defined constraints or an objective computed by 

formulas that depend on uncertain parameters.  Each such formula represents an 

array of sample values, one for each realization of the uncertainties.  For your model 

to be well-defined, the objective or constraint must either be summarized to a single 

value (such as a mean or percentile value) or transformed into a set of single-valued 
constraints (through an automatic transformation in the Solver Model dialog). 

To correct the problem, you can (i) use the chanceType property to define the 

constraint as a chance constraint or the objective as an expected value or risk 

measure objective (for more information see the Constraints and Objective sections 

within the Rason Model Components chapter), or (ii) edit the formula so that the 
objective formula value is computed by a PSI Statistics function such as PsiMean() 

or PsiPercentile().   
25.  Simulation optimization doesn't handle models with recourse decisions. 

This result is returned if you’ve defined a recourse decision variable, but you’ve set 

simulationOptimization:  True within modelSettings.  Simulation 

optimization, as defined in the academic literature and as implemented by Frontline 

Systems doesn’t support the concept of recourse decision variables.  To solve a 
problem with recourse decisions, you'll need to solve using stochastic programming 

and robust optimization methods, both of which do support recourse decision 

variables.   
26.  Solver could not find a feasible solution to the robust chance constrained problem. 

This result is returned when you solve a model with uncertainty and chance 

constraints using robust optimization.  When you do this, the Solver transforms your 

original model with uncertainty into a robust counterpart model that is a conven-

tional optimization problem without uncertainty. 

This message means that the Solver could not find a feasible solution to the robust 

counterpart problem.  It does not necessarily mean that there is no feasible solution 

to the original problem; the robust counterpart is an approximation to the problem 

defined by your chance constraints that may yield conservative solutions which over-

satisfy the chance constraints. 

When this result is returned, try setting chanceAutoAdjust: True within 

modelSettings and resolving.  The Solver will then re-solve the problem, 

automatically adjusting the sizes of robust optimization uncertainty sets created for 

the chance constraints, in an effort to find a feasible solution. 

If the same result is returned, you should proceed as described for result code 5, 

“Solver could not find a feasible solution:” Look for conflicting constraints, i.e. 

conditions that cannot be satisfied simultaneously, perhaps due to choosing the 

wrong relation (e.g. <= instead of >=) on an otherwise appropriate constraint. 
27.  Solver found a conservative solution to the robust chance constrained problem. All constraints are satisfied. 

This result may be returned when you solve a model with uncertainty and chance 

constraints using robust optimization.  When you do this, the Solver transforms your 

original model with uncertainty into a robust counterpart model that is a conven-

tional optimization model without uncertainty. 

The message means that the Solver found an optimal solution to the robust counter-

part model, but when this solution was tested against your original model (using 

Monte Carlo simulation to test satisfaction of the chance constraints), the solution 



over-satisfied the chance constraints; this normally means that the solution is 

‘conservative’ and the objective function value can be further improved. 

When this result is returned, try setting chanceAutoAdjust: True within 

modelSettings and resolving.  The Solver will then re-solve the problem, 

automatically adjusting the sizes of robust optimization uncertainty sets created for 
the chance constraints, in an effort to find a feasible solution. 

An alternative course of action is to manually adjust the Chance measures of selected 

chance constraints, and re-solve the problem.  The automatic improvement algorithm 

uses general-purpose methods to find an improved solution; you may be able to do 

better by adjusting Chance measures based on your knowledge of the problem. 
28.  Solver has converged to the current solution of the robust chance constrained problem. All constraints are satisfied. 

This result may be returned when you solve a model with uncertainty and chance 

constraints using robust optimization, and you’ve set chanceAutoAdjust: 

True within modelSettings.  It means that the Solver has found the best 

‘improved solution’ it can; the normal constraints are satisfied, and the chance 

constraints are satisfied to the Chance level that you specified in the Solver 

Parameters dialog. 

This is usually a very good solution, but it does not rule out the possibility that you 

may be able to find an even better solution by manually adjusting Chance measures 

based on your knowledge of the problem, and re-solving. 
999.  Unexpected error.  Please contact Technical Support.     

This status signifies that an unexpected exception has occurred within Solver.  If this 

status is returned, please contact our technical support team at support@solver.com.  

Interval Global Solver Result Messages 

The Interval Global Solver can return many of the standard result codes and Solver 

Result Messages described above, but it can also return one of three custom result 

codes and messages, as described below. 
1000.  Interval Solver requires strictly smooth functions.       

The Interval Global Solver considers the ‘special’ functions ABS, IF, MAX, MIN or 

SIGN nonsmooth.  If this message is returned, either reformulate model so that these 

functions are not used or select a different engine.   

1001. Function cannot be evaluated for given real or interval arguments. 

This message may appear (instead of “Solver encountered an error value…”) if the 

Interval Global Solver encounters an arithmetic operation or function that it cannot 

evaluate for the current values of the decision variables. Recall that the Interval 

Global Solver evaluates formulas over intervals such as [1, 2] as well as real 

numbers. In the course of seeking a solution, the Solver may have to evaluate a 

formula that (for example) involves division by an interval containing zero, or the 

square root of an interval containing negative values, which yield errors. If you 

receive this message, try adding constraints, or adjusting the right hand sides of 
existing constraints to eliminate the problem. 

For example, if you have trouble with a constraint (within your Excel model) such as 

$A$1 >= 0, try a constraint such as $A$1 >= 0.0001 instead. 

1002. Solution found, but not proven globally optimal. 

This message indicates that the Interval Global Solver has systematically explored 

the solution space and has found a solution that is very probably the global optimum, 

but it has not been able to “prove global optimality.” Most often, this means that 

there is more than a tiny difference between this solution’s objective value and the 

mailto:support@solver.com
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best bound on the global optimum’s objective value that the Solver has been able to 

find.  

 

 

  



RASON DMN/FEEL at 
Conformance Level 3 

 

Introduction 
The latest version of RASON Decision Services supports DMN at Conformance Level 3 (CL3).   

Creating independent DMN/Feel models 
In the latest version of RASON Decision Services, DMN/Feel functionality no longer requires Excel formulas 

when representing a DMN decision model. The entire model may now be represented using only FEEL 

formulas, which are referred to as literal expressions.  Such models are entirely independent of Excel syntax.  

These models are referred to as pure DMN models. Notice that pure DMN models can only be 

decision/calculation models. Currently, Rason Decision Services does not support optimization, simulation or 

data mining models as pure DMN models.   

The main consequence of avoiding Excel formulas is to preserve the authentic DMN/Feel types in formula 

assignments.  

For example, 

dt: { feelFormula: “date(‘05-05-2021’)” } 

preserves the specific Feel type ‘feel date’ in the variable dt, so we may use in a later feelFormula: “dt.day”. 

Download DMN examples from the Editor tab at www.RASON.com by clicking the "Download Example 

Data" icon on the ribbon.   

List data and related functions 

A list of elements is a data structure that holds multiple elements.   

For example:   

D1: { value: [1, 5, 2] } is a list of 3 scalar elements, which is exactly the same as a 1D array in RASON 

Decision Services. 

D2: { value: [[1,5], [7,3], [9,4]] } is a list of 3 list elements. Every element of the list D2 is another list of length 
2. Because all list elements of D2 are identical (the same length), the structure D2 is exactly the same as the 2D 

array in RASON Decision Services. 

DMN requires that all elements of a list must be of the same type. A "custom" type offers more flexibility.  For 

more information on Custom Types in RASON, see the chapter Custom Type Definitions in the RASON User 

Guide.  Lists may be simple 1D or 2D arrays or have custom types attached to them. 

The goal of this example is to add a new record to the existing list using the append function.   

http://www.rason.com/
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{ 

  "comment": "Example of a list with typeDef collection", 

  "typeDefs": { 

    "tLoan": {  

      "language": 'feel', 

      "components": ['principal', 'rate', 'termMonths'],  

      "types": ['number', 'number', 'number'] 

    }, 

    "tLoanList: {  

      "language": 'feel',  

      "isCollection": true,  

      "typeRef": 'tLoan'  

    } 

        }, 

        "data: { 

          "loan": {  

      "type": 'tLoan',  

      "value": [300000, 0.02, 360],  

      "binding": 'get'  

    }, 

    "loanList": {  

      "type": 'tLoanList',  

      "value": [[600000, 0.0275, 360], [300000, 0.03, 360]]  

    } 

        }, 

        "formulas": { 

          "result": {  

      "feelFormula": "append(loanList, loan)",  

      "finalValue": [] } 

    } 

        }  

      } 

The collection of records tLoanList is a collection of records of the custom component type tLoan. The 

variable loan is of type tLoan and is used to represent a single record in the list variable. Though the value of 

the variable loan is initialized as [300000, 0.02, 360] and looks like a list it is not a list but a component 

structure/record of type tLoan. By default, this vector will be used in computations unless a new vector of 

values is passed as query parameters to the RASON model.   

Since the list variable of type tLoanList is a collection of records of type tLoan, it represents a table with 

records. It’s important to understand that each element of the list loanList is not another list, but an element of 

the custom type tLoan. 

The full list is returned for result: { finalValue: [] }. 

Because the custom type is preserved in the variable result, future formulas may utilize result[1], result.rate, or 

result[1].rate to extract specific information. 

• result[1] will return the first record as tLoan.   

• result.rate will return the entire rate column as a vertical 1D array without custom type. 

• result[1].rate will return the rate of the first record as a scalar number. 

See the listed example functions below implemented for DMN CL3 for both type and non-typed lists.  These 

functions and restricted to 1D and 2D array structures.  

count(list) returns integer    count([1,2,5]) = 3 

max(list) returns list elem type   max([1,2,5]) = 5 



max(num1, num2,…) returns number  max(1,2,5) = 5 

min(list) returns list elem type   min([1,2,5]) = 1 

min(num1, num2,…) returns number  min(1,2,5) = 1 

sum(list) returns number    sum([1,2,5]) = 8 

sum(num1, num2,…) returns number  sum(1,2,5) = 8 

roundUp(n, scale) returns number   Returns n with given scale, rounded up.     

      roundup(5.5, 0) = 6; roundUp(-5.5, 0) = -6 

      roundUp(1.121, 2) = 1.13; roundUp(-1.126, 2) = -1.13.   

roundDown(n, scale) returns number  Returns n with given scale, rounded down. 

rounddown(5.5, 0) = 5; rounddown(-5.5, 0) = -5 

      rounddown(1.121, 2) = 1.12; rounddown(-1.126, 2) = -1.12.   

roundHalfUp(n, scale) returns number  Returns n with given scale; rounded up. 

      roundHalfUp(5.5, 0) = 6; round HalfUp(-5.5, 0) = -6 

      roundHalfUp(1.121, 2) = 1.12; roundHalfUp(-1.126, 2) = -1.13 

roundHalfDown(n, scale) returns number  Returns n with given scale; rounded down. 

      roundHalfDown(5.5, 0) = 5; round HalfUp(-5.5, 0) = -5 

      roundHalfUp(1.121, 2) = 1.12; roundHalfUp(-1.126, 2) = -1.13 

 

Signatures for other statistics functions, such as mean, median, mode, product, stdev, are the same as sum, i.e. 

mean(num1, num2, …). 

and(list), all(list) returns Boolean 

and(bool1, bool2,…), all(bool1, bool2,…) returns Boolean 

or(list), any(list) returns Boolean 

or(bool1, bool2,…), any(bool1, bool2,…) returns Boolean 

 

sublist(list, start pos, [length]) returns list  sublist([1,2,5], 2) = [2,5] 

append(list, elem1, elem2,…) returns list  append([1,2,5], 0) = [1,2,5,0] 

concatenate(list1, list2,…) returns list  concatenate([1,2,5], [3,4]) = [1,2,5,3,4] 

insertBefore(list, pos, elem) returns list  insertBefore([1,2,5], 3, 0) = [1,2,0,5] 

listContains(list, elem) returns Boolean  listContains([1,2,5], 0) = false 

remove(list, pos) returns list   removes([1,2,5], 3) = [1,2] 

reverse(list) returns list    reverse([1,2,5]) = [5,2,1] 

indexOf(list, match) returns list   indexOf([1,2,1,2,3], 2) = [2,4] 

union(list1, list2,…) returns list   union([1,2,3], [1,2,5]) = [1,2,3,5] 

distinctValues(list) returns list   distinctValues([1,2,1,2,3]) = [1,2,3] 

flatten(list) returns list    flatten([1,2], [2,3]) = [1,2,2,3] 

listReplace(list, position/match, newItem) returns  listReplace ([2,4,7,8],3,6) = [2,4,6,8] 
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list, number or Boolean function(item, newItem),  listReplace([2,4,7,8,function(item, newItem item < 

newItem,5) = [5,5,7,8] 

any element including null 

 

Formatting results of box objects as custom types 

Decision tables are key box objects in decision modeling. A decision table may have one or more outputs.  

• If the result is a single successful rule evaluation, depending on the single or many outputs, we 

currently return either a scalar value or a horizontal vector.  

• If the result is multiple successful rule evaluations (with the Collect hit policy) and the output is single, 

we return a vertical vector.  

• In case of many outputs and many successful rule evaluations, we return a 2D array which resembles a 

table with columns for each output and records for each success. In any case, the result is either scalar 

or pure array and we can reference this information in later formulas by the standard rules: scalars as 

scalars and arrays by whole names or by the index operator. 

DMN CL3 introduces a way of formatting the results of decision tables and box functions through custom 

types. This approach allows users to reference the result more efficiently.  Here is an example in which a 

decision table result is formatted.  

{ 

  "typeDefs": { 

    "tParkingFee": { 

      "language": "FEEL",  

      "components": ['parkingFee','durVal'],  

      "types": ['number','duration'] 

    } 

  }, 

  "decisionTables": { 

    "tblParkingFee": { 

      "inputs": ["dtDuration"],  

      "outputs": ["durVal", "parkingFee"], 

 "refTypes": ["duration", "duration", "number"], 

      "rules": [ 

        ["<'PT20M'", "duration(dtDuration)", 0],  

        ["['PT20M'..'PT1H')", "duration(dtDuration)",  

            "2 *ceiling(duration(dtDuration)/duration('PT20M'))"],     

        ["['PT1H'..'PT4H')", "duration(dtDuration)", "6  

        *ceiling(duration(dtDuration)/duration('PT1H'))"],  

        [">='PT4H'", "duration(dtDuration)",  

        "30*ceiling(duration(dtDuration)/duration('P1D'))"]], 

 "hitPolicy": "U", 

 "resultType": "tParkingFee" 

    } 

  }, 

  "data": { 

    "dur": { value: "PT25M", comment: "period" } 

  }, 

  "formulas": { 

    "fee": { feelFormula: "tblParkingFee(,,dur)", finalValue: [] }, 

    "res": { feelFormula: "fee.durVal.minutes", finalValue: [] } 

  } 

} 



The decision table (tblParkingFee) has two outputs (durVal and parkingFee) and a hit policy of ‘U’. The 

result is a single record with two columns. We define a custom component type tParkingFee with the same 

component names as the outputs of the decision table. Then we set the table property resultType: 

“tParkingFee” to that custom type. The results, durVal and parkingFee are formatted using refTypes, 

"duration" and "number", respectively.   

This example uses only feelFormulas in order to preserve the Feel types. The first formula assigns the decision 

result to the variable “fee”, which is a 1D array of 2 elements – the outputs. However, this time “fee” has the 

tParkingFee custom type attached to it. Without the custom type, the variable “fee” may be referenced only by 

its name or through the index operator. 

With the more flexible custom type and reference, only the desired component in the next formula fee.durVal 

is required. Since feel formulas preserve Feel types, the component fee.durVal is of type duration.  The 

number of minutes that the car was parked can be extracted from the duration:  feelFormula: 

“fee.durVal.minutes”. 

See the chapter Defining Decision Tables in RASON within the RASON User Guide for more information on 

Decision Tables.   

Appendix: List of Examples 

DMN Feel Date Time. json 

DMN List example. json 

DMN List with typeDef collection. json 

DMN DT with typeDef result. json 

DMN Box Fun with typeDef result. json 

DMN Context example. Json 
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Appendix 

Microsoft LET Function 
The newly introduced Micorsoft Excel LET is supported in RASON Decision Services models.   

In Excel, the LET function assigns a name to a calculation result which allows for the storage of intermediary 

calculations, values or defined names within a formula. See Microsoft's Office Support for a complete 

documentation of this function.    

LET Function 

To use this function, pairs of names and associated values are defined, up to 126 pairs.  The last argument is a 

calculation that uses all defined names, for example:  =LET(x, 2, x + 9)  where LET evaluates to 11.  In the 

example below, this function is used in an intermediary formula within the "formulas" section of the RASON 

model. 

"formulas": { 

    "form1": { formula: "LET(x, 1+1, LET(y, 2, A5+x+y))" } 

} 

This function can also be used to formulate an uncertain function in a simulation or stochastic optimization 

model or an objective function or constraint in an optimization or stochastic/simulation optimization model.  

 "uncertainFunctions": { 

    "uncFunc1": { formula: "LET(x, 1+1, LET(y, 2, A5+x+y))" } 

} 

To see this function used in conjunction with the LAMBDA fuction, see the Box Functions section within the 

first chapter of this guide.  See Microsoft's Office Support for a complete documentation of this function.  See 

below for an example of how to use this function in conjunction with RASON. 

Psi Distribution Functions 
The PSI Distribution functions are used to define the ‘nature of the uncertainty’ assumed by uncertain variables.  

They can be broadly classified into four groups: 

• Continuous analytic distributions such as PsiUniform() and PsiNormal() 

• Discrete analytic distributions such as PsiBinomial() and PsiGeometric() 

• Custom distributions such as PsiCumul() and PsiGeneral() 

• Special distributions such as PsiSip() and PsiSlurp() 

On each trial of a simulation, Risk Solver Engine (RSE) draws a random sample value from each PSI 

Distribution function you use.  PsiSip() and PsiSlurp() operate differently:  On each trial, RSE draws the next 

sequential value listed in the SIP or SLURP for that uncertain variable.  Then Risk Solver uses these sample 

values to calculate your model and its uncertain functions 

https://support.microsoft.com/en-us/office/let-function-34842dd8-b92b-4d3f-b325-b8b8f9908999
https://support.microsoft.com/en-us/office/let-function-34842dd8-b92b-4d3f-b325-b8b8f9908999


The sample values drawn for PSI Distribution functions other than PsiSip() and PsiSlurp() depend on the type of 

distribution function, the parameters of the distribution (for example, mean and variance for the PsiNormal 

distribution), and the property functions that you pass as additional arguments to the distribution function call, 

which can shift, truncate, or lock the distribution, or correlate its sample values with samples drawn for other 

uncertain variables.   

To learn more about the analytic probability distributions supported by the RASON modeling language, see the 

Appendix.  , you can consult standard reference texts on probability, statistics, and Monte Carlo simulation, 

such as Simulation Modeling and Analysis, 4th Ed. by Averill Law, Statistical Distributions, 3rd Ed. by Merran 

Evans, Nicholas Hastings and Brian Peacock, Univariate Discrete Distributions, 3rd Ed. by Norman Johnson, 

Adrienne Kemp and Samuel Kotz, or Continuous Univariate Distributions, Vol. 1 & 2 , 2nd Ed. by Norman 

Johnson, Samuel Kotz and N. Balakrishnan. 

Continuous Analytic Distributions 
All continuous analytic distributions supported in RASON may be found below.   

PsiBeta 

PsiBeta (1,2,...) 

PsiBeta (α1,α2) is a flexible distribution for modeling probabilities based on Bayesian statistics. The Beta 

distribution can be used as an approximation in the absence of specific distribution information. Typical uses 

include modeling time to complete a task in project networks and Bayesian Statistics. 

The Beta distribution can take on a variety of shapes depending on the values of the two parameters α1 and α2. 

The Beta distribution with α1 = α2 = 1 is the Uniform (0,1) distribution. The Beta distribution with α1 = 1, α2 = 2 
is the Left Triangular distribution. The beta distribution with α1 = 2, α2 = 1 is the Right Triangular distribution. 

A random variable X is defined by PsiBeta (α1,α2) if and only if 1 – X is defined by Beta (α2,α1). 

Parameters 
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





 

 

 

−−

−

−

 −


= 



= −

 



 
 
 

255 

Cumulative Distribution Function 
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PsiBetaGen 

PsiBetaGen (1,2,a,b,...) 

PsiBetaGen (α1,α2,a,b) is a rescaled and relocated Beta distribution, with lower and upper bounds given 
respectively by a and b. The shape parameters α1,α2 play the same role as in the PsiBeta function. If X is a Beta 

random variable with support in [0,1], then a + (b – a) X is a Beta random variable with support in [a,b]. 



Parameters 
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a b
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Mode 
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PsiBetaSubj 

PsiBetaSubj (a,c,μ,b,...) 

PsiBetaSubj is a flexible distribution like PsiBetaGen, but with parameters you choose for the minimum (a), 

most likely (c), mean (µ) and maximum (b) values.  These parameters are used to compute the shape parameters 

α1,α2 used in the PsiBeta function. 
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Cumulative Distribution Function 
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PsiCauchy 

PsiCauchy (λ,...) 

PsiCauchy (λ) is a distribution with a central peak, with very heavy tails and no finite moments; it has no 
moments such as mean, variance, etc. defined, but its mode and median are both equal to zero. The ratio of two 

independent standard Normal random variables is a Cauchy distribution with parameter λ = 1. 

Parameters 
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Probability Density Function 
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PsiChiSquare 

PsiChiSquare (df,...) 

PsiChiSquare (df) is a distribution with a finite lower bound of zero, and an infinite upper bound. It is usually 

used in statistical significance tests. 

The Chi Square distribution is a special case of the Gamma distribution. A Chi Square random variable with 

parameter df = 2 is the same as an Exponential random variable with mean 0.5. As the parameter df approaches 

infinity, the Chi Square distribution tends to a Normal distribution. 

Parameters 
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PsiErf 

PsiErf (h,...) 

PsiErf is a distribution based on the “error function” ERF(x). Its shape is closely related to the Normal 

distribution. 

Parameters 

0h   
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Range of Function Values 
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PsiErlang 

PsiErlang (k,β,...) 

PsiErlang (k,β) is a distribution with a finite lower bound, closely related  to the Gamma and Exponential 

distributions. It has applications in reliability and queuing models. When the parameter k = 1, the Erlang 

distribution is the same as an Exponential distribution. 

Parameters 
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PsiExponential 

PsiExponential (β,...) 

PsiExponential (β) is a distribution with a finite lower bound and rapidly decreasing values.  It can be used to 

represent time between random occurrences in queuing and reliability engineering applications. 

The minimum of a set of independent exponential random variables is also an exponentially distributed random 

variable. 

Parameters 

0   

Range of Function Values 
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Probability Density Function 
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PsiGamma 

PsiGamma (,β,...) 

PsiGamma (α,β) is a flexible distribution with a finite lower bound and decreasing values.  PsiExponential, 

PsiErlang, and PsiChiSquare are special cases of PsiGamma, as explained below.  The Gamma distribution is 

often used to model the time between events that occur with a constant average rate. 

When α = 1, the Gamma distribution is the same as an Exponential distribution. If the parameter α is integer, 

then the Gamma distribution is the same as the Erlang distribution. The Gamma distribution with α = a/2, β = 2 

is the same as a Chi Square distribution with parameter a (a degrees of freedom). 

If X1, X2, …Xm are independent random variables with Xi  ~ PsiGamma (αi,β), then their sum also has a Gamma 

distribution with parameters (α1 + α2 + …+ αm ,β). Additionally, the Gamma distribution approaches a normal 

distribution with the same mean and standard deviation as the parameter α approaches infinity. 

Parameters 
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PsiInvNormal 

PsiInvNormal (μ,λ,...) 

PsiInvNormal (µ,λ) is a distribution with a finite lower bound, where it is zero.  The Inverse Normal 

distribution is used to model Brownian motion and other diffusion processes.  As the parameter λ tends 

to infinity, the Inverse Normal distribution approaches a Normal distribution. 

Parameters 
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      
=  − +  − +         

      



 

Mean 

  

Variance 

3


 

Skewness 

3



 

Kurtosis 

15 3



+  

Median 

Not defined 

Mode 

1
2 2

2

9 3
1

4 2

 


 

   
+ −  

   

 

PsiLaplace 

PsiLaplace (β,...) 

PsiLaplace (β) is an unbounded, fat-tailed distribution that describes the difference between two 
independent exponentials.  If a random variable X has a Laplace distribution, then |X| has an 

Exponential distribution. 

Parameters 

0   

Range of Function Values 

( ),−   



Probability Density Function 

( )
2

x

e
f x





 
− 

 

=  

Cumulative Distribution Function 

( )

1
1  if 0

2

1
 otherwise

2

x

x

e x

F x

e





−
− 

= 



 

Mean 

0 

Variance 

22  

Skewness 

0 

Kurtosis 

3 

Median 

0 

Mode 

0 

PsiLogistic 

PsiLogistic (μ,s,...) 

PsiLogistic (µ,s) is an unbounded distribution, symmetric around its mean, with broader tails than the 

Normal distribution.  The Logistic distribution is often used to model growth processes. 

Parameters 

0s




 

Range of Function Values 

( ),−   

Probability Density Function 

( )

( )

( )
2

1

x
s

x
s

e
f x

s e





− −

− −
=

 
+ 

 
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Cumulative Distribution Function 

( ) ( )

1

1
x

s

F x

e
− −

=

+

 

Mean 

  

Variance 

2 2

3

s
 

Skewness 

0 

Kurtosis 

6/5 

Median 

  

Mode 

  

PsiLogLogistic 

PsiLogLogistic (γ,β,,...) 

PsiLogLogistic (γ,β,α) is a distribution with a finite lower bound.  The natural log of PsiLogLogistic is a 

Logistic random variable.  The Log-Logistic distribution can be used to model the time to perform a job or task. 

Parameters 

, 0 




 

Range of Function Values 

 ),   

Probability Density Function 

( )

1

2

1

x

f x

x















−

 −
 
 =

  −
+  

   

 



Cumulative Distribution Function 

( )
1

1

F x

x






=
 

+  
− 

 

Mean 

cos

 for 1

ec





 


 
 
 

+   

Variance 

2 22
2cos cos

 for 2

ec ec
  

 
  




    
−    

       

Skewness 

2
3

2

3
2

2

3 6 2 2
3cosec cos cos cos

 for 3

2
2cos cos

ec ec ec

ec ec

     

     


   

   

        
− +        

         
      

−      
     

 

Kurtosis 

Not defined 

Median 

Not defined 

Mode 

1

1
  for 1

1

0 otherwise


  



 − 
 +   + 



 

PsiLogNormal 

PsiLogNormal (μ,σ,...) 

PsiLogNormal (µ,σ) is a distribution with a finite lower bound and has mean µ and standard deviation σ.  The 

LogNormal distribution can be used to model quantities that are products of many small independent variables.  

The natural log of PsiLogNormal is a Normal random variable. 

Parameters 

, 0    

Range of Function Values 

 )0,  
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Probability Density Function 

( )

2
ln '

'

1

2

'

2 2
' '

2 2 2

2

ln 1 , ln

x

e
f x

x







 
 

  

− 
−   

 

=

  
 = + =   +   

 

Cumulative Distribution Function 

( )

( )

'

'

ln

 is the Error Function

x
F x

a





 −
=  

 



 

Mean 

  

Variance 

2  

Skewness 

3

3

3 

 
+  

Kurtosis 

6

4 3 2

1 2 1 3 1 3
  

  

     
+ + + + + −     

     

 

Median 

2

2 2



 +

 

Mode 

( )

4

3
2 2 2



 +

 

PsiLogNorm2 

PsiLogNorm2 (μ,σ,...) 

PsiLogNorm2 (µ,σ) is a distribution with a finite lower bound.  It can be used to model quantities that are 

products of many small independent variables.  The natural log of PsiLogNorm2 is a Normal random variable.  

In contrast to PsiLogNormal(), the parameters µ and σ of PsiLogNorm2() are the mean and standard deviation 

of the corresponding Normal distribution. 



Parameters 

0



 
 

Range of Function Values 

 )0,  

Probability Density Function 

( )

2
ln1

2

2

x

e
f x

x







− 
−   

 

=  

Cumulative Distribution Function 

( )

( )

ln

 is the Error Function

x
F x

a





− 
=  

 



 

Mean 

2

2e
+

 

Variance 

( )
2 221e e  +−  

Skewness 

( )
2 2

2 1e e + −  

Kurtosis 

6

2 2 24 3 22 3 3e e e  + + −  

Median 

e
 

Mode 

2

e −
 

PsiMaxExtreme 

PsiMaxExtreme (m,s,...) 

PsiMaxExtreme (m,s) is the positively skewed form of the Extreme Value distribution, which is the limiting 

distribution of a very large collection of random observations. 
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Parameters 

0

m

s 
 

Range of Function Values 

( ),−   

Probability Density Function 

( )
( )

,

x m

z s
z

f x e z e
s

− −

−= =  

Cumulative Distribution Function 

Not defined 

Mean 

Not defined 

Variance 

Not defined 

Skewness 

Not defined 

Kurtosis 

Not defined 

Median 

Not defined 

Mode 

Not defined 

PsiMinExtreme 

PsiMinExtreme (m,s,...) 

PsiMinExtreme is the negatively skewed form of the Extreme Value distribution, which is the limiting 

distribution of a very large collection of random observations. 

Parameters 

0

m

s 
 

Range of Function Values 

( ),−   

Probability Density Function 

( )
( )

,

x m

z s
z

f x e z e
s

−

−= =  



Cumulative Distribution Function 

Not defined 

Mean 

Not defined 

Variance 

Not defined 

Skewness 

Not defined 

Kurtosis 

Not defined 

Median 

Not defined 

Mode 

Not defined 

PsiMyerson 

PsiMyerson (a,b,c,t,...) 

PsiMyerson (a,b,c,t) is a generalized LogNormal/Normal distribution, specified using the bottom percentile (a), 

50th percentile (b), top percentile (c) and optional tail percentage parameter (t). This distribution is bounded on 

the side of the narrower percentile range; when both the bottom and top percentile ranges are equal, then this 

distribution is unbounded. 

If the t parameter (tail percentage) is present then the a and c parameters (bottom and top percentiles) are used 

to construct a distribution PDF in such a way that the left and right tails (remaining equal) sum up to the desired 

t parameter value.  The top percentile is always symmetric to the bottom percentile.  For example, if the bottom 

percentile equals the 20th percentile, the top percentile will be equal to the 80th percentile.   

The default option for parameter t is 0.50 which means that the left tail and the right tail each equal 0.25.  As a 

result, parameter a (bottom percentile) is the 25th percentile and parameter c (top percentile) is the 75th 

percentile.  

This distribution, developed by Dr. Roger Myerson, is used to model random variables when the only 

information available is the percentile values, and optionally, a tail percentage parameter indicating the 

probability of values being within the specified percentiles. If the specified percentiles are equidistant 

(measured by the parameter b’ below), then the Myerson distribution is equivalent to a Normal distribution. 

When the 50th percentile is equal to the geometric mean of the top and bottom percentiles, then the Myerson 

distribution is equivalent to the LogNormal distribution. 

Parameters 

( )0,1

If  is omitted, it is given a default value of 0.5

a c b

t

t

 

  
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Range of Function Values 

 )

( )

( )

,

where,

,  if 1

,  if 1
1

,  if 1
1

and,

LB UB

LB UB b

b c
LB c UB b

b

b c
LB UB c b

b

b c
b

c a

= − =  =

−
= − =  

 −

−
= − = − 

 −

−
 =

−

 

Probability Density Function 

( )
( )

( )

( ) ( )( )( ) ( ) ( ) ( )

( ) ( )

( )

( )( )
( )

( )

( )

( )

( )

( )

2

2

1
2

0,1

0,1

t1-
2

2

1
2

If 1,

1

1 ln

where

 is the PDF of the Standard Normal distribution,

1
ln 1

q = Z
ln

If 1,

1

2

where

a

t

N

N

x

t

b

z b

f x f q
b c x c b b

f q

x c b

b c

b

b

f x e

c

b c

Z





 





−

 −
 −
 
 

−

 

 −

=
 − + − −

  − −
+   −  

 
 

 
 

 =

=

=

−
=

x

nd

Z CDFInverse of the Standard Normal distribution at x=

 



Cumulative Distribution Function 

( ) ( ) ( )

( ) ( )

( )

( )

( )( )
( )

( )

( )

2

0,1

0,1

0

t1-
2

If 1,

1
1

2 2

where

 is the CDF of the Standard Normal distribution

2
 is the Error function

1
ln 1

q = Z
ln

If 1,

1
1

2

N

N

x

t

b

q
F x F q

F q

x e dt

x c b

b c

b

b

x
F x erf



−

 

  
= =  +  

  

 =

  − −
+   −  

 
 

 
 

 =

−
= +



( )

( )

( )1
2

x

2

where

 is the Error Function, and

and

Z CDFInverse of the Standard Normal distribution at x

t

erf y

c

b c

Z









−

  
  

  

=

−
=

=

 

Mean 

No closed form 

Variance 

No closed form 

Skewness 

No closed form 

Kurtosis 

No closed form 

Median 

No closed form 

Mode 

No closed form 
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PsiNormal 

PsiNormal (μ,σ,...) 

PsiNormal (µ,σ) is an unbounded, symmetric distribution with the familiar bell curve, also called a Gaussian 

distribution.  The Normal distribution is widely used in many different kinds of applications.  A normal 

distribution with mean zero and standard deviation one is called a Standard normal distribution. 

The sum of independent random variables of any shape tends to the Normal distribution. 

Parameters 

0



 
 

Range of Function Values 

( ),−   

Probability Density Function 

( )

( )
2

221

2

x

f x e





 

 −
 −
 
 =  

Cumulative Distribution Function 

( )

( )

1
1

2 2

 is the Error Function

x
F x erf

erf y





 − 
= +  

    

Mean 

  

Variance 

2  

Skewness 

0 

Kurtosis 

0 

Median 

  

Mode 

  

PsiNormalSkew 

PsiNormalSkew(a,b,c,...) 

PsiNormalSkew (a,b,c) is a generalized Normal distribution with lower bound a, upper bound b, and  skew 

value c.  Lower and upper bound values describe +/- 3rd standard deviation.  The skew value c can take on 



values between (but not including) -1 and 1.  While the Normal distribution is symmetric, the Normal Skew 

distribution is skewed either to the left with a positive skew parameter or to the right with a negative skew 

parameter.    

Both the Myerson distribution (described above) and the PsiNormalSkew distribution have recently emerged in 

practice.  Both distributions are generalizations of the Normal distribution but rather than using the mean and 
standard deviation as arguments, these distributions are calculated using an upper and lower bound along with 

either likely and tail arguments (such as with the Myerson distribution) or a skew argument (such as with the 

NormalSkew distribution).  When the skew argument is equidistant from the upper and lower bounds, the 

NormalSkew distribution equals the Myerson distribution.     

In the PsiNormalSkew distribution, the lower and upper bounds are exactly the same as in the Myerson 

distribution.  The tail argument is missing in the Normal Skew distribution as it remains at the constant value of 

0.002699796146511.  

Parameters 

a < b 

-1< c <1 

If c is omitted, it is given a default value of 0.  In this case, the PsiNormalSkew distribution will equal 

the PsiMyerson distribution. 

Range of Function Values 

[ , ]
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Probability Density Function  
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2

(1 )
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d
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Z
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
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

−


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−
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−
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Cumulative Distribution Function 
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 is the CDF of the Standard Normal distribution
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1
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x
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b
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

−

 
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−
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
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 is the Error Function, and
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2
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d
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Z

b
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The d parameter hereequals the c parameter in the PsiMyerson distribution









−

  
  
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=
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Mean 

No closed form 

Variance 

No closed form 

Skewness 

No closed form 

Kurtosis 

No closed form 

Median 

No closed form 
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Mode 

No closed form 

PsiPareto 

PsiPareto (θ,a,...) 

PsiPareto (θ,a) is a distribution with a finite lower bound a, and shape parameter θ.  The Pareto distribution can 

be used to describe or model wealth distribution, sizes of particles, etc.  It is the exponential of an Exponential 

random variable. 

Parameters 

, 0a   

Range of Function Values 

 ),a   

Probability Density Function 

( ) 1

a
f x

x






+

=  

Cumulative Distribution Function 

( ) 1
a

F x
x


 

= −  
 

 

Mean 

 for 1
1

a





−
 

Variance 

( ) ( )

2

2
 for 2

1 2

a


 


− −

 

Skewness 

( )

( )

( )2 1 2
 for 3

3

 


 

+ −


−
 

Kurtosis 

( )( )
( )( )

23 2 3 2
 for 4

3 4

  


  

− + +


− −
 

Median 

1

2a 
 



Mode 

a  

PsiPareto2 

PsiPareto2 (b,q,...) 

PsiPareto2 is an alternate form of the Pareto distribution with a finite lower bound of 0, and a shape parameter 

q.  Like PsiPareto (θ,a), it can be used to describe or model wealth distribution, sizes of particles, etc.  It is the 

exponential of an Exponential random variable. 

Parameters 

, 0b q   

Range of Function Values 

 )0,  

Probability Density Function 

( )
( )

1

q

q

qb
f x

x b
+

=
+

 

Cumulative Distribution Function 

( ) 1

q
b

F x
x b

 
= −  

+ 
 

Mean 

 for q 1
1

b

q


−
 

Variance 

( ) ( )

2

2
 for q 2

1 2

qb

q q


− −

 

Skewness 

( )

( )

( )2 1 2
 for q 3

3

q q

q q

+ −


−
 

Kurtosis 

Not defined 

Median 

1

2 qb

q
 

Mode 

0 
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PsiPearson5 

PsiPearson5 (,β,...) 

PsiPearson5 (α,β) is a distribution with a lower bound of 0, and density similar to that of the LogNormal 

distribution.  The Pearson5 distribution is sometimes called the Inverse Gamma distribution.  It can be used to 

model time delays when these can possibly take on unbounded (or very large) values. 

Parameters 

, 0    

Range of Function Values 

 )0,  

Probability Density Function 

( )
( )

( )

1 xx e
f x




 

−− +

−
=


 

Cumulative Distribution Function 
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1
1

1 is the Distribution function of a Gamma ,

random variable

G

G

F x F
x

F y 


 
= −  

 

 

Mean 

 for 1
1







−
 

Variance 

( ) ( )

2

2
 for 2

1 2




 


− −

 

Skewness 

4 2
 for 3

3






−


−
 

Kurtosis 

( )( )

( )( )

3 5 2
 for 4

3 4

 


 

+ −


− −
 

Median 

Not defined 



Mode 

1



 +
 

PsiPearson6 

PsiPearson6 (1,2,β,...) 

PsiPearson6 (α1, α2, β) is a distribution with a lower bound of 0, and a mode just beyond the lower bound.  The 

Pearson6 distribution is sometimes called the Beta distribution of the second kind. 

If X1 ~ Gamma (α1,β) and X2 ~ Gamma (α2,1) are independent random variables, then X1/X2 has a Pearson6 

distribution.   If X is a random variable with a Pearson6 (α1,α2,1) distribution, then X/(1+X) has a Beta (α1, α2) 

distribution. 

Parameters 

1 2, , 0     

Range of Function Values 

 )0,  

Probability Density Function 

( )
( )

( ) ( )
( )

1

1 2

1

1 2

1 2

, 1

,  is the Beta function

x

f x

xB

B



 



  


 

−

+
=

 +
  

 

Cumulative Distribution Function 

( )

( ) ( )1̀ 2 is the Distribution function of a Beta ,

random variable

B

B

x
F x F

x

F y



 

 
=  

+ 

 

Mean 

1
2

2

 for 1
1







−
 

Variance 

( )

( ) ( )

2

1 1 2 1

22

2 2

 for 2
1 2

   


 

−+


− −
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Skewness 

( )
2 1 2

2

1 1 2 2

2 4 2 2
 for 3

1 3

  


   

 − + −
 

+ − − 

 

Kurtosis 

( )

( )( )

( ) ( )( )

( )

2

2 2 1 1 2 2

2

2 2 1 1 2

3 2 2 1 1 5
 for 4

3 4 1

     


    

 − − + + − +
 

− − + −  

 

Median 

Not defined 

Mode 

( )1

1

2

1
 if 1

1

0 otherwise

 




 −


+



 

PsiPert 

PsiPert (a,c,b,...) 

PsiPert (a,c,b) is a form of the Beta distribution, often used to estimate project completion times in the 

Program Evaluation and Review Technique, where a is the minimum time, b is the maximum time, and 

c is the most likely time.  These parameters are used to compute the shape parameters α1,α2 used in the 

PsiBeta function, as shown below. 

Parameters 

( )

( )

1 2

1

2

The shape parameters ,  can be defined as

5 4

6

5 4

6

a c b

a b c

b a

a b c

b a

 





 

− + +
=

−

− + −
=

−

 

Range of Function Values 

 ,a b  

Probability Density Function 

( )
( ) ( )

( )( )

( )

1 2

1 2

1 1

1

1 2

1 2

,

,  is the Beta function

x a b x
f x

B b a

B

 

 
 

 

− −

+ −

− −
=

−  



Cumulative Distribution Function 

( )

( )

( )

( )

( )

1 2

1 2

1 2

1 2

,

,

,  is the Beta function

,  is the Incomplete Beta function

x a

b a

x

B

F x
B

B

B

 

 

 

 

− 
 

− =

 

Mean 

4

6

a b c+ +
 

Variance 

( )
2

1 2

252

b a  −
 

Skewness 

( ) 1 2

4 7a b c

b a  

+ −

−
 

Kurtosis 

( ) ( ) ( )

( )( )

2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

3 1 2 6

3 2

       

     

 + + + + + −
 

+ + + +
 

Median 

Not defined 

Mode 

c  

PsiRayleigh 

PsiRayleigh (β,...) 

PsiRayleigh (β) is a distribution with a finite lower bound of 0, a special case of a Weibull distribution.  The 

Rayleigh distribution can be used to model component lifetimes. 

If X is a random variable with Rayleigh distribution with parameter β = 1, then X2 has a Chi Square distribution 

with parameter 2 (two degrees of freedom). If X and Y are independent normally distributed random variables 
with mean zero and variance σ2, then (X2+Y2)1/2 has a Rayleigh distribution with parameter σ. Thus, a Rayleigh 

distribution may be used to model the length of a two-dimensional vector whose components are independent 

and normally distributed. 

Parameters 

0   

Range of Function Values 

 )0,  
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Probability Density Function 

( )

2

22

2

x

xe
f x





 −
 
 

=  

Cumulative Distribution Function 

( )
2

22
1

x

F x e


 −
 
 = −  

Mean 

2


  

Variance 

( ) 24

2

 −
 

Skewness 

( )

( )
3

2

2 3

4

 



−

−

 

Kurtosis 

( )

2

2

3 32

4





− +

−

 

Median 

( )ln 4  

Mode 

  

PsiStudent 

PsiStudent (df,…) 

PsiStudent (df) is an unbounded distribution, symmetric about zero, with a shape similar to that of a Standard 

Normal distribution, and it approaches the Standard Normal distribution as the degrees of freedom (parameter 

df) increases.  It is also known as the t-distribution, or Student’s t-distribution. 

The Student or t-distribution frequently arises when estimating the mean of a normally distributed population 

when the sample size is small. It is also used when the population variance is unknown, and is estimated from a 
small sample. 

Parameters 

0,  integerdf   



Range of Function Values 

( ),−   

Probability Density Function 

( )

( )

1

2

2

1

2

2

 is the Gamma function

dfdf

df
f x

df x df
df

x



++ 
    =  

+    
 



 

Cumulative Distribution Function 

( )

( )

2

2

1
1 ,

2 2

2

,  is the Incomplete Beta function

x

x df

a

df
B

F x

B x y

 
  + 

 
+  

 
=  

Mean 

0 if df > 1

undefined if df = 1
 

Variance 

 if 2
2

df
df

df


−
 

Skewness 

0 if 3df   

Kurtosis 

3 6
 if 4

- 4

df
df

df

−
  

Median 

0 

Mode 

0 

PsiTriangGen 

PsiTriangGen (ap,m,br,p,r…) 

PsiTriangGen (ap,m,br,p,r…) is a Triangular distribution where the lower and upper bounds are not given as 

fixed values, but are specified using percentiles.  This distribution is usually used to create rough models in 

situations where little or no data is available.  The distribution has a most likely value of m, the p (lower) 

percentile value is ap, and the r (upper) percentile value is br. Given these values, a PsiTriangGen (ap,m,br,p,r…) 
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distribution corresponds to a PsiTriangular (a,c,b) distribution with values for the bounds (a and b), and the 

most likely value (c) computed as shown below. 

Parameters 

( )

( )

( )

, 0,1

The parameters of the Triangular distribution are defined as

1

1

1

1
1

1

Here  is a solution to the following equation

1
1

1

1

p r

p r

p

r

p

r

p r

p r

a b

a m b

p
a m

q
a

p

q

c m

r
b m

q
b

r

q

q

r
m a

q
q

p
b m m

q







 

−

=

−

=

−
−

−
=

−
−

−

 −
− − 

− =
 

− − + − 
 

( )
1

1
1

p

r
a

q

 −
− 

− 

 

Range of Function Values 

 ,a b  

Probability Density Function 

( )

( )

( )( )

( )

( )( )

2
 if 

2
 if 

x a
a x c

c a b a
f x

b x
c x b

b c b a

 −
 

− −
= 

−  
 − −

 



Cumulative Distribution Function 

( )

( )

( )( )

( )

( )( )

2

2

 if 

1  if 

x a
a x c

c a b a
F x

b x
c x b

b c b a

 −
 

− −
= 

−
−  

− −

 

Mean 

3

a b c+ +  

Variance 

2 2 2

18

a b c ab ac bc+ + − − −
 

Skewness 

( )( )( )

( )
3

2 2 2 2

2 2 2 2

5

a b c a b c a b c

a b c ab ac bc

+ − − − − +

+ + − − −

 

Kurtosis 

12/5 

Median 

( )( )

( )( )

 if 
2 2

 otherwise
2

b a c a b a
a c

b a b c
b

 − − −
 + 



− −
−



 

Mode 

c  

PsiTriangular 

PsiTriangular (a,c,b,...) 

PsiTriangular (a,c,b) is a distribution with lower bound a, upper bound b, and most likely value c.  This 

distribution is usually used to create rough models in situations where little or no data is available.  If the 
parameter c = b, then the distribution is also known as a Right Triangular distribution.  If the parameter c = a, 

then the distribution is also known as a Left Triangular distribution. If X1 and X2 are independent Uniform (0,1) 

random variables, then (X1+X2)/2 has a Triangular (0,0.5,1) distribution. 

Parameters 

a c b

a b

 


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Range of Function Values 

 ,a b  

Probability Density Function 

( )

( )

( )( )

( )

( )( )

2
 if 

2
 if 

x a
a x c

c a b a
f x

b x
c x b

b c b a

 −
 

− −
= 

−  
 − −

 

Cumulative Distribution Function 

( )

( )

( )( )

( )

( )( )

2

2

 if 

1  if 

x a
a x c

c a b a
F x

b x
c x b

b c b a

 −
 

− −
= 

−
−  

− −

 

Mean 

3

a b c+ +  

Variance 

2 2 2

18

a b c ab ac bc+ + − − −
 

Skewness 

( )( )( )

( )
3

2 2 2 2

2 2 2 2

5

a b c a b c a b c

a b c ab ac bc

+ − − − − +

+ + − − −

 

Kurtosis 

12/5 

Median 

( )( )

( )( )

 if 
2 2

 otherwise
2

b a c a b a
a c

b a b c
b

 − − −
 + 



− −
−



 

Mode 

c  



PsiUniform 

PsiUniform (a,b,...) 

PsiUniform (a,b) is a flat, bounded distribution with lower bound a and upper bound b.  It is used to represent a 

random variable that is equally likely to take on any value between a lower and upper bound.  A Uniform (0,1) 

distribution is also known as a Standard Uniform distribution, and is used to generate many other random 

variables.  If X is a random variable with a Standard Uniform distribution, then a + (b – a)X has a Uniform (a,b) 

distribution, and (1 – X) has a Standard Uniform distribution. 

Parameters 

a b  

Range of Function Values 

 ,a b  

Probability Density Function 

( )
1

 if 

0 otherwise

a x b
f x b a


 

= −



 

Cumulative Distribution Function 

( )

0 if 

 if 

1 if 

x a

x a
F x a x b

b a

x b




−
=  

−


 

Mean 

2

a b+  

Variance 

( )
2

12

b a−
 

Skewness 

0 

Kurtosis 

9/5 

Median 

2

a b+  

Mode 

Any value in [a,b] 
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PsiWeibull 

PsiWeibull (,β,...) 

PsiWeibull (α,β) is a distribution with a finite lower bound of 0.  The Weibull distribution is quite flexible and 

can be used to model weather patterns, material strength, processing and delivery times, and in a variety of 

reliability engineering applications. 

If X is a random variable with Weibull (1,β) distribution, then it also has the Exponential (β) distribution. In 

fact, a random variable X ~Weibull (α,β) if and only if Xα ~ Exponential (βα). Also, if X is a random variable 

with Weibull (2,β) distribution, then it also has the Rayleigh (β) distribution. 

Parameters 

, 0    

Range of Function Values 

 )0,  

Probability Density Function 

( )
( )1

x

f x x e



 
−

− −=  

Cumulative Distribution Function 

( )
( )

1
x

F x e




−

= −  

Mean 

( )

1

 is the Gamma functionx



 

 
 

 



 

Variance 

2
22 1 1

2


   

    
 −     

    
 

Skewness 

3

2 3

3
2

2

2

3 3 6 2 1 2 1

2 2 1 1

      

   

       
 +   +        

       

    
 −     

    

 

Kurtosis 

2 2

2

2

2

6 1 24 1 2 2 1 3 4
12 12 4

2 1 1
2


        

  

−              
 +   −  −   +              

             

    
 −     

    

 



Median 

( )( )
1

ln 2   

Mode 

1

1
 if 1

0 otherwise


 



− 
 

   

Discrete Analytic Distributions 
See below for a list of all supported Discrete Analytic Distributions.   

PsiBernoulli 

PsiBernoulli (p,...) 

PsiBernoulli (p) is a discrete distribution that takes on a value of 1 with probability p, and a value of 0 with 

probability (1-p). A Bernoulli random variable is usually considered as an outcome of an experiment with only 

two possible outcomes (0 and 1); each experiment is called a ‘Bernoulli Trial’. 

Parameters 

 0,1p   

Range of Function Values 

 0,1  

Probability Mass Function 

( )

1   if 0

       if 1

0        otherwise   

p x

p x p x

− =


= =



 

Cumulative Distribution Function 

( )

0        if 0

1   if 0 1

1        if x 1   

x

F x p x




= −  
 

 

Mean 

p  

Variance 

( )1p p−  
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Skewness 

( )

1 2

1

p

p p

−

−
 

Kurtosis 

( )

26 6 1

1

p p

p p

− +

−
 

Median 

Not defined 

Mode 

1
0 if 

2

1
1 if 

2

1
0 and 1 if 

2

p

p

p











=


 

PsiBinomial 

PsiBinomial (n,p,...) 

PsiBinomial (n,p) is a discrete distribution of the number of successes in n independent ‘Bernoulli Trials’ 

(experiments with exactly two possible outcomes), where p is the success probability in each trial.  The 
Binomial distribution can be used to model the number of winning trades in a trading system, or the number of 

defective items in a batch. 

A random variable X is defined by X ~ PsiBinomial (n,p) if and only if n-X ~ PsiBinomial (n,1-p). 

The Poisson distribution with parameter λ is a good approximation of the PsiBinomial (n,p) distribution when 

n →   and 0p →  , with np = . 

Parameters 

 

0,  integer

0,1

n

p




 

Range of Function Values 

 0,1, ,n  



Probability Mass Function 

( )
( )  

( )

-
1-   if 0,1, ,

0        otherwise   

where  is the binomial coefficient,

!

! !

n xx
n

p p x n
p x x

n

x

n n

x x n x

 
 

=  



 
 
 

 
= 

− 

 

Cumulative Distribution Function 

( ) ( )
-

0

0        if 0

1-   if 0

1        if 

x
n ii

i

x

n
F x p p x n

i

x n

  

=




 
=    

 
 

  

Mean 

np  

Variance 

( )1np p−  

Skewness 

( )

1 2

1

p

np p

−

−
 

Kurtosis 

( )

26 6 1

1

p p

np p

− +

−
 

Median 

 one of , 1, 1np np np− +            

Mode 

( ) ( ) ( )

( )

1  and 1 1 if 1  is integer

1  otherwise

p n p n p n

p n

 + + − +


 + 

 

PsiGeometric 

PsiGeometric (p,...) 

PsiGeometric (p) is a discrete distribution of the number of failures before the first success in a sequence of 
independent ‘Bernoulli Trials’ (experiments with exactly two possible outcomes), where p is the success 
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probability in each trial. The Geometric distribution can be used to model the number of losing trades before the 

first winning trade, the number of items passing inspection before the first defective item appears in a batch, etc. 

PsiGeometric (p) can be considered as a discrete analog of the (continuous) Exponential distribution. If X1, X2, 

…, Xn are independent geometrically distributed random variables with parameters p1, p2, …,pn, then X = min 

(X1, X2, …, Xn) is also a Geometrically distributed random variable with parameter p = 1 – [(1-p1)(1-p2)…(1-
pn)].  Additionally, if X1, X2, …, Xn are Geometrically distributed random variables with parameter p, then their 

sum is Negative Binomially distributed with parameters n, p. 

Parameters 

 0,1p   

Range of Function Values 

 0,1,  

Probability Mass Function 

( )
( )  1-  if 0,1,

0 otherwise

x
p p x

p x
 

= 


 

Cumulative Distribution Function 

( )
( )

1
1 1-  if 0

1 otherwise

x
p x

F x

+   − 
= 


 

Mean 

1 p

p

−
 

Variance 

2

1 p

p

−
 

Skewness 

( )

2

1

p

p

−

−
 

Kurtosis 

( )

2

2

9 17 9

1

p p

p

− +

−

 

Median 

( )

( )

ln 0.5
1

ln 1 p
−

−
 



Mode 

0 

PsiHyperGeo 

PsiHyperGeo (n,D,M,...) 

PsiHyperGeo (n,D,M) is a discrete distribution of the number of successes in n successive trials drawn without 

replacement from a finite population of size M, when it is known that there are exactly D failures in the 

population.  The Hypergeometric distribution can be used to model ‘good’ and defective parts in a 
manufacturing process. 

A Hypergeometric distribution can be approximated by a Binomial distribution with parameters n, p = D/M, 

when M is very large as compared to n. 

Parameters 

 

 

0,1,

, 0,1, ,

M

n D M

 


 

Range of Function Values 

( ) ( ) max 0, , ,min ,n M D D n− +  

Probability Mass Function 

( )

D M D

x n x
p x

M

n

−  
  

−  =
 
 
 

 

Cumulative Distribution Function 

( )
1

x

i

D M D

i n i
F x

M

n

=

−  
  

−  =
 
 
 

  

Mean 

nD

M
 

Variance 

( )( )( )1

1

D Dn M n
M M

M

− −

−
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Skewness 

( )( ) ( )

( )( )

2 2 1

2

M D M n M

M nD M D M n

− − −

− − −
 

Kurtosis 

( )

( )( )( )

( ) ( )

( )

( )( )2

2

1 1 6 3 6
6

2 3

M M M M M M n n M n N

n M M M n D M D M

   − + − − − +
+ −   

− − − −      
 

Median 

Not defined 

Mode 

( )( ) ( )( ) ( )( )

( )( )

1 1 1 1 1 1
 and 1 if  is integral

2 2 2

1 1
 otherwise

2

n D n D n D

M M M

n D

M

+ + + + + +
−

+ + +

 + +
 

+ 

 

PsiIntUniform 

PsiIntUniform (a,b,...) 

PsiIntUniform (a,b) is a discrete distribution with equal probability at each integer value between the lower and 
upper bounds (a and b). It is used as a rough estimate of the true distribution when the only information we have 

is that the random variable takes integer values between a and b, and each of these values are equally likely. 

Parameters 

,  integers

a<b

a b  

Range of Function Values 

 , 1, , 1,a a b b+ −  

Probability Mass Function 

( )
1

if , and  integer
- 1

0 otherwise

a x b x
p x b a


 

= +



 

Cumulative Distribution Function 

( )

0 if 

1
 if 

1

1 if 

x a

x a
F x a x b

b a

x b




− +  =  
− +




 



Mean 

2

a b+  

Variance 

( )
2

1 1

12

b a− + −
 

Skewness 

0 

Kurtosis 

( ) 
( ) 

2

2

6 1 1

5 1 1

b a

b a

− + +
−

− + −
 

Median 

2

a b+  

Mode 

Net defined 

PsiLogarithmic 

PsiLogarithmic (p,...) 

PsiLogarithmic is a discrete distribution with a lower bound of 1.  It is used to describe the diversity of a 

sample. 

Parameters 

( )0,1p   

Range of Function Values 

 1,2,3,  

Probability Mass Function 

( ) ( )
1

 if 1
ln 1

0 otherwise

xp
x

p xp x

 −


−= 


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Cumulative Distribution Function 

( )
( )

( )
( )

( ) ( )
11

0

1,0
1 , ,  is the incomplete beta function

ln 1

, 1

p

p

p
ba

p

B x
F x B a b

p

B a b t t dt
−−

+
= +

−

= −

 

Mean 

( ) ( )1 ln 1

p

p p

−

− −
 

Variance 

( )

( ) ( )
2 2

ln 1

1 ln 1

p p
p

p p

+ −
−

− −

 

Skewness 

Not defined 

Kurtosis 

Not defined 

Median 

Not defined 

Mode 

1 

PsiNegBinomial 

PsiNegBinomial (s,p,...) 

PsiNegBinomial (s,p) is a discrete distribution that describes the number of failures that will occur 

before a given number of successes, where each trial is successful with probability p.  The Negative 

Binomial distribution can be used to describe the number of items that pass inspection before the sth 

defective item is found. 

If X1, X2,…,Xs are independent Geometrically distributed random variables each with parameter p, 

then their sum is Negative Binomially distributed, with parameters s and p. Additionally, the 

Geometric distribution with parameter p is the same as a Negative Binomial distribution with 

parameters s = 1 and p; hence, the Geometric distribution is a special case of a Negative Binomial 
distribution. 

Parameters 

 0,1

0,  integer

p

s




 

Range of Function Values 

 0,1,2,3,  



Probability Mass Function 

( )
( )  

1
1  if 0,1,

     

0 otherwise

xs
s x

p p x
p x x

 + − 
−  

=  



 

Cumulative Distribution Function 

( )
( )

0

1
1  if 0

0 otherwise

x
is

i

s i
p p x

F x i

  

=

 − + 
−   

=   




 

Mean 

( )1s p

p

−
 

Variance 

( )
2

1s p

p

−
 

Skewness 

( )

2

1

p

s p

−

−
 

Kurtosis 

( )

2 6 1
3

1

p p

s p

− +
+

−
 

Median 

Not defined 

Mode 

( ) ( ) ( )

( )

1 1 1 1 1 1
 and 1 if  is integer

1 1
1 otherwise

s p s p s p

p p p

s p

p

  − − − − − −
+  

  


 − −
+ 

 

 

PsiPoisson 

PsiPoisson (λ,...) 

PsiPoisson (λ) is a discrete distribution of the number of events that occur in an interval of time, when the 
events occur at a known average rate, and each occurrence is independent of the time of occurrence of the 

previous event. 
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The Poisson distribution with parameter λ can be approximated by a Normal distribution with mean λ and 

variance λ, for large values of λ. If X1, X2,…,Xn are independent Poisson random variables with parameters λ1, 

λ2,… λn, then their sum is also a Poisson random variable with parameter λ1 +λ2+…+λn. 

Parameters 

>0  

Range of Function Values 

 0,1,  

Probability Mass Function 

( )
 if 0,1,

!

0 otherwise

xe
x

p x x

−


= 



 

Cumulative Distribution Function 

( ) i

0

0 if 0

 if 0
!

x

i

x

F x
e x

i

   
−

=




= 





 

Mean 

  

Variance 

  

Skewness 

1


 

Kurtosis 

1
3


+  

Median 

Not applicable 

Mode 

 and 1 if  is integer

 otherwise

  



−


  
 



Custom Distributions 

PsiCumul 

PsiCumul (a,b, {x1,x2,…,xn}, {p1,p2,…,pn},...) 

PsiCumul (a,b, {x1,x2,…,xn},{p1,p2,…,pn},…) is a custom continuous distribution with lower and upper bounds 

equal to a and b respectively, and with user specified values , x1,x2,…,xn and corresponding cumulative 

probabilities p1,p2,…,pn. 

Parameters 

1

1

0 1 0 1

1,2, ,

0 1 1,2, ,

1,2, , 1

1,2, , 1

Define the boundary parameters as

, , 0, 1

i

i

i i

i i

n n

a b

a x b i n

p i n

p p i n

x x i n

x a x b p p

+

+

+ +



   =

   =

  = −

  = −

= = = =

 

Range of Function Values 

 ,a b  

Probability Density Function 

( ) 1
1

1

 if i i
i i

i i

p p
f x x x x

x x

+
+

+

−
=  

−
 

Cumulative Distribution Function 

( ) ( )1 1

1

 if i
i i i i i

i i

x x
F x p p p x x x

x x
+ +

+

 −
= + −   

− 

 

Mean 

Not defined 

Variance 

Not defined 

Skewness 

Not defined 

Kurtosis 

Not defined 

Median 

Not defined 

Mode 

Not defined 
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PsiDiscrete 

PsiDiscrete ({x1,x2,…,xn}, {p1,p2,…,pn},…) 

PsiDiscrete ({x1,x2,…,xn}, {p1,p2,…,pn},…) is a custom discrete distribution that takes on values {x1,x2,…,xn} 

with probabilities {p1,p2,…,pn} respectively. 

Parameters 

 

 

1 2

1 2

, , ,

, , ,

The probabilities  are first normalized so that they sum to one

n

n

i

x x x

p p p

p

 

Range of Function Values 

 1 2, , , nx x x  

Probability Density Function 

( )
 if 

0 otherwise

i ip x x
f x

=
= 



 

Cumulative Distribution Function 

( )

1

1

1

1

0 if 

 if ,

1 otherwise

This assumes that 1,2, , 1

s

i s s

i

i i

x x

F x p x x x s n

x x i n

+

=

+





=   



  = −


 

Mean 

1

n

i i

i

x p 
=

=  

Variance 

( )
2 2

1

n

i i

i

x p 
=

− =  

Skewness 

( )
3

1

3

n

i i

i

x p


=

−
 

Kurtosis 

( )
4

1

4

n

i i

i

x p


=

−
 



Median 

1

1

 where min 1,2, , : 0.5

This assumes that 1, 2, , 1

j

s i

i

i i

x s j n p

x x i n

=

+

 
= =  

 

  = −


 

Mode 

( )
1,2, ,

argmax i
i n

p
x

=

 

PsiDisUniform 

PsiDisUniform ({x1,x2,…,xn},…) 

PsiDisUniform ({x1,x2,…,xn},…) is a custom discrete distribution that takes on values {x1,x2,…,xn} with equal 
probability.  It is similar to the PsiDiscrete distribution except that no probabilities are specified – instead all x 

values are equally likely to occur.  (In the equations below, each pi = 1/n.)  PsiDisUniform can be used to 

resample a set of past observations {x1,x2,…,xn}. 

Parameters 

 1 2, , ,

These values have the corresponding probabilities as

1
1,2, ,

n

i

x x x

p i n
n

=  =

 

Range of Function Values 

 1 2, , , nx x x  

Probability Density Function 

( )
 if 

0 otherwise

i ip x x
f x

=
= 



 

Cumulative Distribution Function 

( )

1

1

1

1

0 if 

 if ,

1 otherwise

This assumes that 1,2, , 1

s

i s s

i

i i

x x

F x p x x x s n

x x i n

+

=

+





=   



  = −


 

Mean 

1

n

i i

i

x p 
=

=  
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Variance 

( )
2 2

1

n

i i

i

x p 
=

− =  

Skewness 

( )
3

1

3

n

i i

i

x p


=

−
 

Kurtosis 

( )
4

1

4

n

i i

i

x p


=

−
 

Median 

1

1

 where min 1,2, , : 0.5

This assumes that 1, 2, , 1

j

s i

i

i i

x s j n p

x x i n

=

+

 
= =  

 

  = −


 

Mode 

( )
1,2, ,

argmax i
i n

p
x

=

 

PsiGeneral 

PsiGeneral (a,b, {x1,x2,…,xn}, {w1,w2,…,wn},…) 

PsiGeneral (a,b, {x1,x2,…,xn}, {w1,w2,…,wn},…) is a custom continuous distribution with lower and upper 

bounds equal to a and b respectively, and with user specified values x1,x2,…,xn and corresponding weights 
w1,w2,…,wn. This is similar to a PsiCumul (a,b, {x1,x2,…,xn},{p1,p2,…,pn},…) distribution, where the 

probabilities are calculated using the weights as shown below. 

Parameters 

1

1

1

1,2, ,

1, 2, , 1

The cumulative probabilities are defined as 

i

i i

i
k

i n
k

j

j

a b

a x b i n

x x i n

w
p

w

+

=

=



   =

  = −

= 


 

Range of Function Values 

 ,a b  



Probability Density Function 

( ) 1
1

1

 if i i
i i

i i

p p
f x x x x

x x

+
+

+

−
=  

−
 

Cumulative Distribution Function 

( ) ( )1 1

1

 if i
i i i i i

i i

x x
F x p p p x x x

x x
+ +

+

 −
= + −   

− 

 

Mean 

Not defined 

Variance 

Not defined 

Skewness 

Not defined 

Kurtosis 

Not defined 

Median 

Not defined 

Mode 

Not defined 

PsiHistogram 

PsiHistogram (a,b,{w1,w2,…,wn},…) 

PsiHistogram (a,b,{w1,w2,…,wn},…) is a custom continuous distribution with lower and upper bounds equal to 

a and b respectively, and with user specified weights w1,w2,…,wn corresponding to n subintervals of equal size. 

This is similar to a PsiCumul (a,b, {x1,x2,…,xn},{p1,p2,…,pn},…) distribution, where the probabilities are 

calculated using the weights as shown below, and the interval defined by the bounds a and b is divided into 

subintervals of equal size as described below. 

Parameters 

 

 1 2

1

1

The interval ,  is divided into  subintervals

of equal size , , ,

The cumulative probabilities are defined as 

n

i

i
k

i n
k

j

j

a b

a b n

x x x

b a
x a i

n

w
p

w=

=



− 
= +  

 

= 

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Range of Function Values 

 ,a b  

Probability Density Function 

( ) 1
1

1

 if i i
i i

i i

p p
f x x x x

x x

+
+

+

−
=  

−
 

Cumulative Distribution Function 

( ) ( )1 1

1

 if i
i i i i i

i i

x x
F x p p p x x x

x x
+ +

+

 −
= + −   

− 

 

Mean 

Not defined 

Variance 

Not defined 

Skewness 

Not defined 

Kurtosis 

Not defined 

Median 

Not defined 

Mode 

Not defined 

Special Distributions 
The RASON modeling language offers a number of special PSI Distribution functions that do not fit readily 

into the classes of continuous, discrete and custom distributions described above.  For example, PsiSip() and 

PsiSlurp() ensure that Monte Carlo trials are drawn sequentially from SIP or SLURP data.  And 
PsiMVNormal(), PsiMVLogNormal(), PsiResample() and PsiShuffle() return array results rather than single-

valued results. 

Note:  PSI Property functions generally may not be passed as arguments to any of the PSI Distribution 

functions in this section.  The only exception is that the PsiCertify() function may be passed to PsiSip() or 

PsiSlurp(), enabling the SIP or SLURP-based distribution to be named and published as a Certified Distribution. 

Functions PsiMVLogNormal(), PsiMVNormal(), PsiResample() and PsiShuffle() are included to provide an 

upgrade path for users of AnalyCorp’s XLSim software.  Note that PsiMVLogNormal() and PsiMVNormal() 

require a covariance matrix (not a rank correlation matrix) as an argument; they cannot be correlated with 

dissimilar distributions specified via other PSI Distribution functions. 

PsiFit 

PsiFit (data) 

PsiFit dynamically fits a probability distribution to sample data, and creates an uncertain variable linked to the 

sample data. This dynamically fitted uncertain variable can then be used in the model as an uncertain input 



variable. The "data" argument is a list of sample data.  The examples below illustrates how to use PsiFit in two 

different ways:  PsiFit({list, of , values}) or PsiFit(cell_range).   

 

Example 1: 
"uncertainFunctions": { 

     "testFit": { 

            "formula": "PsiFit({1,2,3,4,5,6,7,8,9,10})", 

            "mean": [], 

            "percentiles": [], 

            "trials": [] 

     } 

} 

Example 2: 
"data": { 

"A1:A10": { 

            "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 

        } 

    }, 

"uncertainFunctions": { 

     "testFit": { 

            "formula": "PsiFit(A1:A10)", 

            "mean": [], 

            "percentiles": [], 

            "trials": [] 

     } 

} 

PsiMVLogNormal 

PsiMVLogNormal (µ,∑) 

PsiMVLogNormal (µ,∑) is a multivariate distribution that returns a vector of random variables that are 

lognormally distributed, with mean values specified by the vector µ, and covariance values specified by the 
matrix ∑. This is a generalization of the PsiLogNorm2 distribution to higher dimensions. A variable vector y = 

[y1,…,yn] has a multivariate LogNormal distribution if and only if the variable vector [ln(y1),…,ln(yn)] has a 

multivariate Normal distribution. 

PsiMVLogNormal returns an array of sample data.  On each Monte Carlo trial, the function will return 5 

sample values. 

Parameters 

2

,  a real vector

A positive semidefinite matrix 

We define parameters i ii







= 

 

Range of Function Values 

 )0,  for an -dimensional vector
n

n  



 
 
 

309 

Probability Density Function 

( ) ( ) ( )
( )( ) ( )( )1

11
2 2

ln ln
2 exp

2

T

n y y
f y y

 


−
− − −

 − −  −
 = 
 
 

 

Cumulative Distribution Function 

No closed form 

Mean 

22
1

1 2 2, ,
n

ne e


 + + 
 
 

 

Variance 

( ) ( )
2 22 2

1 1 1 221 , , 1n n ne e e e
     ++ − −

 
 

Skewness 

( )
2 2

1

i

[ , , ]

where

s 2 1i i

ns s

e e
 

= + −

 

Kurtosis 

2 2 2

1

4 3 2

[ , , ]

where

2 3 3i i i

n

i

k k

k e e e
  

= + + −

 

Median 

1 , , ne e
 

   

Mode 

22
1 1 , , n ne e

   −− 
 

 

PsiMVNormal 

PsiMVNormal (µ,∑) 

PsiMVNormal (µ,∑) is a multivariate distribution that returns a vector of random variables that are normally 

distributed, with mean values specified by the vector µ, and covariance values specified by the matrix ∑. This is 

a generalization of the PsiNormal distribution to higher dimensions. 

PsiMVNormal returns an array of sample data. On each Monte Carlo trial, the function will return 5 sample 

values. 



Parameters 

2

,  a real vector

A positive definite matrix 

We define parameters i ii







= 

 

Range of Function Values 

( ),  for an -dimensional vector
n

n−   

Probability Density Function 

( ) ( )
( ) ( )1

1
2 22 exp

2

T
n y y

f y
 


−

− −
 − −  −

=   
  

 

Cumulative Distribution Function 

No closed form 

Mean 

 1, , n   

Variance 

2 2

1 , , n     

Skewness 

[0]  for an -dimensional vectorn n  

Kurtosis 

[0]  for an -dimensional vectorn n  

Median 

 1, , n   

Mode 

 1, , n   

PsiResample 

formula: "PsiResample(data)" 

PsiResample returns an array of sample data.  On each Monte Carlo trial, the function will return 5 sample 

values. 

PsiResample returns a random sample (with replacement) of the trial values in array specified by the data 

argument.   
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PsiMVResample 

formula: "PsiMVResample(data)" 

PsiMVResample is a multivariate distribution that returns a vector of sample data. PsiMVResample returns a 

random sample of the trial values specified by the data argument.  On each Monte Carlo trial, PsiMVResample 

will return a uniformly selected column from the argument.   

PsiShuffle 

formula: "PsiShuffle(data)" 

PsiShuffle returns an array of sample data.  On each Monte Carlo trial, the function will return 10 sample 

values. PsiShuffle returns a random permutation of all the trial values specified by the data argument.  In the 

sample drawn on each Monte Carlo trial, each value in the data range is selected only once; values are repeated 

in a single sample only if they are repeated in data.  

PsiMVShuffle 

formula: "PsiMVShuffle(data)" 

PsiMVShuffle is a multivariate distribution that returns a vector of sample data.  On each Monte Carlo trial, the 

function will return 10 sample vectors.  PsiMVShuffle returns a random permutation of all the trial values in the 

cell range specified by the data argument. In the sample drawn on each Monte Carlo trial, each vector in the 

data range is selected only once; values are repeated in a single sample only if they are repeated in data.  

PsiSip 

formula: "PsiSip(sip)" 

PsiSip returns trials for an uncertain variable from a list or vector of sample data, called a Stochastic 

Information Packet (SIP).  The sip argument is an Excel cell range containing the list of sample data.  The value 
returned by PsiSip() on the ith trial is the ith value in the list. 

PsiSlurp 

formula: "PsiSlurp(slurp,j)" 

PsiSlurp returns trials for an uncertain variable from a table of correlated sample data, called a Stochastic 

Library Unit, Relationships Preserved (SLURP), in the sequence specified in the table.  The slurp argument is 

an array containing the SLURP data; the j argument is the index of the desired SIP (column) of the SLURP, 

starting from 1.  The value returned by PsiSlurp() on the ith trial is taken from the ith row and the jth column of 

the table. 

PSI Property Functions 

Using PSI Property Functions 

PSI Property functions should be entered only as additional arguments of analytic and custom PSI Distribution 

functions.  They modify the behavior of the PSI Distribution function in which they appear. 

For example, formula: "PsiNormal (0, 1)" specifies a Normal distribution with mean 0 and standard 

deviation 1:  Sample values drawn from this distribution could be any number from ‘minus infinity’ to ‘plus 

infinity’ (though sample values near 0 are more likely to be drawn).  If you write formula: "PsiNormal 



(0, 1, PsiTruncate (-10, 10))" the distribution is ‘truncated’ so that sample values always lie 

within the range from -10 to +10. 

You can specify more than one PSI Property function as an argument to a PSI Distribution function, and they 

can appear in any order after the required arguments.  For example, formula: "PsiBeta (1, 2, 

PsiTruncate (-10, 10), PsiShift(3), PsiCorrDepen("MyCorr", 0.5))" specifies a 

Beta distribution with shape parameters 1 and 2, truncated to a range from -10 to +10, shifted right by 3, and 

correlated with the uncertain variable whose definition contains PsiCorrIndep ("MyCorr"), with rank correlation 

coefficient 0.5. 

PsiBaseCase  

formula: "PsiBaseCase(value)" 

Use this property to specify a Base Case value for an Uncertain Variable.  This is the single value that you’d 

want the uncertain variable to be if you were not an Uncertain Variable (i.e. if it did not have a PSI Distribution 

function).   

PsiCertify 

PsiCertify (name, default_value, short_description, full_description, 

version, author, copyright, trademark, history) 

PsiCertify is used to name, certify and ‘publish’ a PSI Distribution function as a Certified Distribution.  The 

default_value argument should be a number; all other arguments should be character strings.  Only the name 
argument is required; the others are optional.   

PsiCensor 

PsiCensor(min, max) 

PsiCensor is used to pile the values of samples from the uncertain variable’s distribution as follows:  if the 

uncertain variable’s value is less than the Min value, then the sample value will be piled at the Min, if the 

uncertain variable’s value is larger than the Max value, then the sample value will be piled at the Max.  This 

argument results in a “build up” of values around the Min and Max values in the distribution. 

PsiCorrMatrix 

PsiCorrMatrix (matrix array, position, instance) 

PsiCorrMatrix is used to specify that a uncertain variable is correlated with a group of other uncertain variables, 

through a matrix of rank-order correlation coefficients.  The first argument, matrix array, is a 2-dimensional 

array containing the correlation matrix.  Position specifies the uncertain variable index in the correlation matrix. 

Instance is the string name given to the correlation matrix.  

You pass "PsiCorrMatrix (matrix cell range, position)" as an argument to the formula in the uncertain variable 

PSI Distribution function, for example:  

data: { 

   corrmatrix: { 

      dimensions: [3,3], value: [[1, 0.8, 0.5],[0.8, 1, 0.2],[0.5, 0.2,  

1]] 

   } 

 }, 

uncertainVariables: { 
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   uncVar1: { 

       formula: "=PsiUniform(0,100,PsiCorrMatrix(corrmatrix, 1))", 

       mean: [] 

     }, 

   uncVar2: { 

         formula: "=PsiNormal(10,5,PsiCorrMatrix(corrmatrix, 2))", 

         mean: [] 

      }, 

      uncVar3: { 

         formula: "=PsiNormal(10, 2,PsiCorrMatrix(corrmatrix, 3))", 

         mean: [] 

      } 

 }, 

Note that corrmatrix is a 2-dimensional array. PsiCorrMatrix() within the uncertain variable formulas 

specify that the first variable has a rank correlation coefficient of 0.8 with the second variable, and 0.5 with the 

third variable. The second and third variables are correlated with each other, with a rank correlation coefficient 

of 0.2.  Note that a correlation matrix must always have 1’s on the diagonal, because an uncertain variable is 

always perfectly correlated with itself. Also, the matrix must be symmetric: If row 2, column 1 contains 0.8, 

then row 1, column 2 must also contain 0.8. Finally, the correlation coefficients must be consistent with each 

other: For example, if uncertain variable 1 is strongly positively correlated with variable 2, and variable 2 is 

strongly positively correlated with variable 3, then variable 1 cannot be negatively correlated with variable 3. 

Formally, the matrix must be positive semidefinite – it cannot have any negative eigenvalues. 

PsiCorrDepen / PsiCorrIndep 

PsiCorrDepen 

PsiCorrDepen(corrname,coefficient) 

PsiCorrDepen is used to specify that this uncertain variable is correlated with one other uncertain variable, with 

the specified rank-order correlation coefficient.  The corrname argument is a text string that must match the 

corrname argument of the ‘independent variable,’ a cell containing a PSI distribution with the PsiCorrIndep() 

property function call.  See below for an example.  

PsiCorrIndep 

PsiCorrIndep(corrname) 

PsiCorrIndep is used to specify that this uncertain variable acts as an independent variable correlated with one 

other uncertain variable, the dependent variable.  The corrname argument is a text string that must match the 

corrname argument of the related PsiCorrDepen() call.   

Example  

Note the use of single quotes around the MyCoor argument inside of the PsiCorrIndep()/PsiCorrDepen() 

functions.   



uncertainVariables: {    

uncVar1: { 

            formula: "=PsiUniform(0,100,PsiCorrDepen('MyCorr',0.9))", 

            mean: [] 

      }, 

      uncVar2: { 

            formula: "=PsiNormal(100,10,PsiCorrIndep('MyCorr'))", 

            mean: [] 

      } 

    }, 

PsiLock 

PsiLock(value) 

PsiLock is used to (temporarily) make an uncertain variable “constant,” so it returns the specified value for all 

trials in a simulation, regardless of the distribution function used. 

PsiSeed 

PsiSeed(value) 

PsiSeed is used to set a random number seed for Monte Carlo samples generated for this distribution function, 

that will override any general seed value specified for the simulation model.  It is most often used in an analytic 

distribution that is being published as a Certified Distribution.   

PsiShift 

PsiShift (shift) 

PsiShift is used to shift the domain of this uncertain variable’s distribution by the specified amount.   

PsiTruncate 

PsiTruncate (min,max) 

PsiTruncate is used to restrict the values of samples from this uncertain variable’s distribution to lie within the 
range from min to max.   

Psi Data Mining/Forecasting Function Signatures 

Signatures for PsiForecast(), PsiPredict(), PsiTransform() and PsiPosteriors() when utilizing a PMML model in 

RASON.  See the Decisions Table chapter for a complete walk though of how to use one of these four functions 

to load a data mining or forecasting model, saved in PMML format, into RASON.    

PsiForecast() 

PsiForecast(Model, Input_Data, [Simulate], [Num_forecasts], [Header] ) 

Computes the forecasts for Input_Data using a Time Series model stored in PMML format.   
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Model:  Range containing the stored Times Series model in PMML format.  Note: Argument will always start 

with cell B12 and end with the cell address containing </PMML>.   

Input_Data:  Range containing the new Time Series data for computing the forecasts. Range must contain a 

header with the time series name and a sufficient number of records for the forecasting with a given model. 

Simulate:  If True, the forecasts are adjusted with random normally distributed errors. If False or omitted, the 

forecasts will be deterministic. 

Num_forecasts:  If True, the forecasts are adjusted with radom normally distributed errors.  If False or 

omitted, the forecasts will be deterministic.   

Header:  If True, the forecasts are adjusted with random normally distributed errors.  If False or omitted, the 

forecasts will be deterministic.   

Output: A single column containing the header and forecasts for input time series. The number of produced 

forecasts is determined by the number of selected cells in the array-formula entry.  

 

Supported Models: 

• Arima 

• Exponential Smoothing 

• Double Exponential Smoothing 

• Holt Winters Smoothing 

 
PsiPredict() 

PsiPredict(Model, Input_Data, [Header]) 

Predicts the response, target, output or dependent variable for Input_Data whether it is continuous 

(Regression) or categorical (Classification) when the model is stored in PMML format.  In addition, this 

function also computes the fitted values for a Time Series model when the model is stored in PMML format.   

Model:  Range containing the stored Classification, Regression or TimeSeries model in PMML format.   

Input_Data:  Range containing the new data for computing predictions. Range must contain a header row 

with column names and at least one row of data containing the exact same features (or columns) as the data 

used to create the model. 

Header:  If True, the forecasts are adjusted with random normally distributed errors.  If False or omitted, the 

forecasts will be deterministic.   

Output: A vector array containing the header and predicted/fitted values for each record in Input_Data.   

To know if the result of the prediction is continuous or categorical, you must know what kind of model you are 

passing as an argument to the scoring function – if you previously fitted the classification model and are now 

predicting the new feature vectors, you should expect to get the compatible categorical response.  On the other 

hand, you should expect the continuous response from the new data prediction when using a fitted regression 

model.  Note:  If the user intends to use an “unknown” model for scoring, the stored worksheets contain the 
complete information about the model including several clear indications of the model type and data 

dictionaries with the types of features and response. 

PsiPredict() can compute the fitted values for the new time series based on the provided Time Series model. 

Unlike future-looking forecasting, provided by PsiForecast(), PsiPredict() computes a model prediction for each 

observation in the provided new time series.  

 

Supported Models: 

• Classification:  

▪ Discriminant Analysis 

▪ Logistic Regression 

▪ K-Nearest Neighbors 
▪ Classification Tree 



▪ Naïve Bayes 

▪ Neural Network 

▪ Random Trees 

▪ Bagging (with any supported weak learner) 

▪ Boosting (with any supported weak learner) 

• Regression:  

▪ Logistic Regression 

▪ K-Nearest Neighbors 

▪ Neural Network 

▪ Bagging (with any supported weak learner) 

▪ Boosting (with any supported weak learner) 

• Time Series (fitted values)  

▪ ARIMA 

▪ Exponential Smoothing 

▪ Double Exponential Smoothing 

▪ Holt-Winters Smoothing 
PsiPosteriors() 

PsiPosteriors(Model, Input_Data, [Header]) 

Computes the posterior probabilities for Input_Data using a Classification model stored in PMML format.   

 

Model:  Range containing the stored Classification model in PMML format.  Note: Argument will always start 

with cell B12 and end with the cell address containing </PMML>.   

Input_Data:  Range containing the new data for computing posterior probabilities. Range must contain a 

header with column names and at least one row of data containing the exact same features (or columns) as the 

data used to create the model. 

Header:  If True, the forecasts are adjusted with random normally distributed errors.  If False or omitted, the 

forecasts will be deterministic.   

Output: Multiple columns containing a header with class labels and estimated posterior probabilities for each 

class label for all records in Input_Data.   

 

Supported Models: 

• Classification:  

▪ Discriminant Analysis 

▪ Logistic Regression 

▪ K-Nearest Neighbors 

▪ Classification Tree 

▪ Naïve Bayes 

▪ Neural Network 
▪ Random Trees 

▪ Bagging (with any supported weak learner) 

▪ Boosting (with any supported weak learner) 

PsiTransform() 

PsiTransform(Model, Input_Data, [Header]) 

Transforms the Input_Data using a Transformation model stored in PMML format. 

Model:  Range containing the stored Transformation model in PMML format.  Note: Argument will always 

start with cell B12 and end with the cell address containing </PMML>.   

Input_Data:  Range containing the new data for transformation. Range must contain a header with column 

names and at least one row of data containing the exact same features (or columns) as the data used to create the 

model. 
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Header:  If True, the forecasts are adjusted with random normally distributed errors.  If False or omitted, the 

forecasts will be deterministic.   

Output: One or multiple columns containing a header and transformed data.   

 

Supported Models: 

• Transformation:  

▪ Rescaling 

• Text Mining  

▪ TF-IDF Vectorization (input data – text variable with the corpus of documents) 

▪ LSA Concept Extraction (input data – term-document matrix, where columns represent terms 
and rows represent documents) 

  



Appendix II RASON Error Codes 

Introduction 
This chapter documents the RASON Error messages that can be returned when you 
optimize a model, run a simulation or perform a data mining function 

Error Messages 
 

General JSON Error Indicates that an unexpected internal error has occurred.   

Missing model file or string Indicates that an internal error has occurred by can appear 

when a user attempts to solve an empty model string.   

Model type (Simulation, optimization, 

data mining) mismatch 

Indicates that the User has used the wrong RASON end 

point to solve the current model.  For example, clicking 

Simulate in the RASON IDE rather than Solve when 

solving an optimization model, or calling Get/POST 

rason.net/api/model/id/optimize when 

running a simulation model.   

Improper engine selected for the 
particular model 

Indicates that an appropriate engine has not been selected to 
solve the model.   

Invalid Json token Not in use in RASON 2.0 and later versions.   

Unrecognized Json identifier Indicates that a name of a section or a property has been 

used which is not part of the RASON syntax. For example, 

if a user misspells a section heading such as  

“modelSetings” or a non-existent property name is passed. 

Invalid Json data type Indicates that the user has entered a different type than 

expected. For example, if a number is required, but a string 

is passed, or if an array is required, but a scaler has been 

passed.  This error message may also be returned when an 

Excel type not presented in RASON is attempted in 

conversion (for example, Excel errors #N/A, #NUM, etc.).   

Missing name definition in Json object All objects must be named.  If the “name” property is 

missing, this error will appear.    

When using the syntax: 

Variables:{ 

                     x:{value:0} 

                } 

the variable is implicitly named “x”.   
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However, when using the syntax below, you must specify 

the name of the object by using the name property. 

Variables:[ 

                 { name: “x”, value: 0} 

                ] 

Expecting ':' Missing “:” 

Expecting '{' or '[' 

 

Missing an expected opening bracket 

Expecting '}' or ']' Missing an expected closing bracket 

Incompatible Json assignment In RASON models containing a property or object with the 

‘:’ operator, examples may include, the dimensions of the 

right hand side of an optimization constraint not matching 

the dimensions of the left hand side of the constraint.   

Duplicated Json assignment Indicates that an object has been defined twice.   

The identifier, to which a value is 

assigned, must be a scalar. 

The variable/parameter should be a scalr (not arry).  Setting 

"value:[]" is not supported.   

Incorrect Json array dimensions Indicates that the definition of dimensions: [r,c] is not 

correct. Note: Although [r][c] is correct C++ syntax, it is 

not correct RASON syntax.   

Incorrect Json data array Indicates a mistake in any array definition through the [] 

operator, for example, [ 1, 2 ]]. 

Mismatching sizes of JSON arrays For example:  value:[] has different dimensions then lower: 

[] or upper: [] 

Less elements assigned to a JSON array If a variable is defined explicitly as array through 

dimensions:  [] and less elements were assigned through 

value: []. 

More elements assigned to a JSON array If a variable is defined explicitly as array through 

dimensions:  [] and more elements were assigned through 

value: []. 

Incorrect assignment to a Json ‘type’ 

identifier 

Indicates that “type:” property has been assigned an invalid 

value.  For example, “type: “bynari”” rather than “type:  

binary”” when applied to a decision variable or passing 
“type: “maximum”” to a variable or constraint instead of 

the objective function.  

Missing Json Variable Definition Indicates that in a conic constraint definition, an identifier 

has been used, which is not a decision variable.   

Index [] misused or out of range Indicates that the application of the range operator [] to an 

array is invalid.  For example, x[6] while x has length 5.   

Wrong Simulation Index in modelSettings When running a specific simulation, out of multiple 

simulations, but simulationIndex property is set to <1 or > 

numSimulations.  

Incompatible model block definition Could indicate that a two sided constraint has been passed.  

For example, a constraint block with a lower bound of 1 

and an upper bound of 10.   



Invalid binding definition or incompatible 

dimensions 

Indicates an error in a data source definition or the related 

index sets.  If using PsiDataSrc() fumction in an Excel 

model, confirm that there are no trailing or leading spaces 

in any of the argument definitions in either the excel cells 

or the function definition.    

Missing binding value column valueCol: "" property is required when binding to data 

Formulas not allowed in this definition Indicates that a formula has been entered for an object that 
should not have a formula, for example, a decision variable 

object.   

Invalid parameter definition Indicates that PsiOptParam() or PsiSimParam() has been 

misspelled or entered improperly 

Inconsistent Table Indicates that an invalid table definition has been used in 

the functions SELECT or PIVOT; the index operator [] has 

been applied to the identifier, which is an invalid table; or 

something is wrong in the table definition either inline (in 

the table) or through binding.   

Inconsistent Data source definition Indicates an error in the PsiDataSrc() function in Excel 

during the RASON conversion.  If not using Excel, then 

this error indicates that a data source definition and /or the 

datasets associated with the data source definition are 
invalid.   

Empty data-source The data source is empty.   

Do not mix {indexCols, valueCols} and 

{colIndex, rowIndex} indexing systems 

Two sets may not be mixed when describing a table.  For 

example, indexCols and rowIndex where indexCols creates 

a table like data-source while indexCols creates a 

dataframe.   

direction:  'export' is required in a 

datasource definition for saving 

If exporting results, such as final variable values, the data-

source must contain the property "direction": "export" in 

order to prevent overwriting of a data-source used only for 

reading.   

Inconsistent arguments to SELECT 

function 

Indicates that the is an error in the syntax for the SELECT 

function.   

Inconsistent arguments to PIVOT 
function 

Indicates that the is an error in the syntax for the PIVOT 
function.   

Misused equal/valueof property If the “equal:” property is used outside of the Constraints 

section. 

Inconsistent index set, index column, or 

mismatching index set and column 

Indicates an invalid index set definition or the usage of an 

index set in a table.   

Index column values does not match the 

designated index set.  Try the datasource 

property sortIndexCols:true" 

One and the same element reappears in an index set; or the 

index column does not match a predefined index set, in the 

indexSets section.   

Incorrect loop definition Indicates a syntax mistake in a loop/for definition. 

Array bounds not allowed in a table 

assignment 

Not in use in RASON 2.0 and later versions.   

Loop table/array definition mismatch A for/loop may define an array or table implicitly though 

the assigned expressions.  If there is a mismatch in shape, 

indices or index sets which prevents the creation of 
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structural arrays on the left hand side of  expressions, this 

error will appear.   

Duplicate sets or indices in JSON loop If a loop contains multiple indices, the indices must be 

different, i.e. for i in 'parts', j in 'prods') 

Loop defined in a wrong section Loop defined in a wrong section.  Loops may only appear 

in the formulas and preprocessor sections.   

Unsupported nesting of loops Nesting of loops is not allowed or is not allowed in this 

section.   

Incompatible worksheet definitions; 

check your worksheets:[] and activeSheet: 

"" properties 

The two properties "worksheets" and "activeSheet" are 

optional properties.  However, if one exists, so must the 

other.  The activeSheet:  name should be among the names 

listed in worksheets:[]. 

RASON can’t handle worksheets in 

names 

RASON does not support the use of worksheet names.  For 

example,  

Con:  {formula: “2 * SUM(sheet1!A1:A5)”, equal: 2} 

The use of “sheet1!” is not supported.   

RASON can’t handle dimensions/cubes RASON does not support the use of dimensions or cubes. 

RASON can’t handle Excel TABLE & 

structured references 

RASON does not support the use of Excel tables  and Excel 

structured references.  (A combination of table and column 

names is referred to as a structured reference in Excel, i.e. 
=SUM(Products[Parts].) 

RASON can’t handle OFFSET, 

INDIRECT, VBA functions etc.  that 

required Excel at run-time 

RASON does not support the use of the Excel functions  

OFFSET and INDIRECT or any VBA functions designed 

by the user.    

Invalid parent stage When the stage-binding value references a non-existing 

stage.  For example, 

"optStage.number_to_build.finalValue", where "optStage" 

does not exist.   

Circular reference of a parent stage Similar to circular references with formulas in Excel.  If a 

dependency chain of stages is started, a given stage may not 

be dependent on a stage that already exists in the chain.   

Only one formula def is allowed within an 

aggregation loop when the loop is part of 
a sequential code. 

If contained within a loop, the operators "sum", "min" and 

"max" may only contain one formula definition. 

More than one formula assigned to an 

identifier 

Only one formula may be attached to a parameter or 

variable name. For example:  A1: {formula: "a formula"} 

may only be defined once within a RASON model.     

Missing constraint/objective type 

definition 

Your RASON optimization model must contain at least one 

constraint or an objective. 

Error in indentParams: [] model definition Only one formula marked by indentParams:[] is allowed for 

this type of analysis.   

Error in plotParams:  [] model definition A model setting pertaining to sensitivity analysis is not 

correct, i.e. the property 'sensitivityPoints' should not be < 2 

or the property 'sensitivityPoints2'  should not be < 0 or = 1.   

Invalid Statement Definition Syntax error in statement definition in { If-then-else, while, 

Loop, For, sum, min, max } 



Statement defined in a wrong setting Statements may not be defined in all sections, i.e. Loop 

may not appear in objective/constraints sections.   

Error in if-then-else definition Syntax error in definition of If-then-else statement. 

Operation available only with assigned 

formulas 

Operations such as +, - within a formula will execute only 

when the formula is assigned to a cell.  For example, if we 

sum two arrays in a non-array formula, the result depends 

on the formula cell address.  Only applies when a formula 
is attached to a variable which is an array or contains a 

reference to another variable or cell.  

Missing workflow (DAG) property A decision flow must be named using the properties flow, 

flowName, workflow or workflowName. Naming property 

MUST appear on the first line of the workflow.  

Input sources/parameters in models/stages 

must be unique 

Input parameters/data-sources must be unique.  This error is 

returned when two input sources/parameters are given the 

same name.    

Invalid output/result in stage binding Result entered for input param value or data-source 

selection does not exist.   

Invalid input parameter binding Input parameter value is set to a mismatched type or 

dimensions.  

Invalid or unsupported model section for 
the current solving action 

Inappropriate section is present in a given model type.  For 
example, the datasets section should not exist in an 

optimization or simulation model.   

 

The error messages below are specific to RASON Data Mining.   

 

Invalid datasource type.  Supported types:  

csv, xml 

Indicates data source is an unsupported type.  Currently, 

RASON Data Mining supports the following file types: 
"csv", "json", "xml", "excel", "odbc", "access", "msaccess", 
"mssql", "oracle", "odata". 

  

Invalid estimator/transformer type Indicates an error in the estimator or transformer type.  

Currently, RASON Data Mining supports the following 

estimator/transformer types: "affinityAnalysis", 

"bigData", "classification", "clustering", 

"featureSelection", 
  "regression", "textMining", "timeSeries", 

"transformation". 

   

Invalid algorithm name 
The supported names for each algorithm are listed 

below.   

 

"affinityAnalysis"-- "associationRules" 

 

"bigData" -- "sampling"or "summarization"  

 

"classification" -- "bagging", "boosting", 

"decisionTree", "nearestNeighbors", 
"DiscriminantAnalysis", 
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"logisticRegression", "naiveBayes", "neuralNetwork", 

or "randomTrees" 

 

"clustering" --"hierarchical" or "kMeans"  

 

"featureSelection" -- "linearWrapping", 
"logisticWrapping", or "univariate"  

 

"regression" -- "bagging", "boosting", "decisionTree", 

"linearRegression", "nearestNeighbors", 

"neuralNetwork", or "randomTrees"  

 

"textMining" -- "latentSemanticAnalysis" or "tfIdf"  

 

"timeSeries" -- "addHoltWinters", "autocorrelation", 

"autocovariance", "difference", "lagAnalysis", 

"partialAutocorrelation", "arima", "doubleExponential", 

"exponential", "movingAverage", "mulHoltWinters", or 
"noTrendHoltWinters" 

 

"transformation" -- "binning", "intervalBinning", 

"CountBinning", "canonicalVariateAnalysis", 

"categoryReduction", "factorization", "imputation", 

"oneHotEncoding", "oversamplePartitioning", 

"partitioning", "principalComponentAnalysis", 

"rescaling", "sampling", or "stratifiedSampling"  

Invalid use of trainData or validData This error appears when the trainData and validData 

properties are used incorrectly.  Contact Frontline 

Solvers Support for more information related to your 

specific model at support@solver.com. 

Invalid or missing action property This error appears when an invalid action property is 

passed or when an action property is missing.  Contact 

Frontline Solvers Support for more information related 

to your specific model at support@solver.com. 

Invalid enumeration value assigned to 

parameter or property 

If an invalid enumeration value is assigned to a 

parameter or property, this error will appear.   

The following properties/parameters accept only the 

values in their sets. If a user enters something different, 

this error message will appear. 

 

"aggregationType" has values { "avg", "max", "min", 

"stddev", "sum" } 
 

"binningTypeFeatures" and "binningTypeTarget” have 

values { "equal_count", "equal_interval", "none" } 

 

"dataForErrorComputation" has values { "only_train", 

"only_valid", "train_and_valid" } 

 

"dataFormat" has values { "csv", "parquet" } 

 

"dissimilarity" has values { "euclidean", "jaccard", 

"matching" } 
 



"hiddenLayerActivation" and “outputLayerActivation" 

have values { "logistic_sigmoid", "softmax", "tanh" } 

 

"imputationStrategy" has values { "delete_record", 

"mean", "median", "mode", "value" } 

 
"inputDataType" has values { "distance_matrix", 

"raw_data" } 

 

"learningOrder" has values { "original", "random" } 

 

"linkage" has values { "centroid", "complete_linkage", 

"group_average", "mcquitty", "median", 

"single_linkage", "ward" } 

 

"matrixMethod" has values { "correlation", "covariance" 

} 

 
"metric" has values { "chi2", "cramersv", "fisher", 

"ftest", "gainratio", "gini", "kendall", "mutualinfo", 

"pearson", "spearman", "welch" } 

 

"normType" has values { "l1", "l2" } 

 

"partitionMethod" has values { "manual", "random", 

"sequential" } 

 

"priorProbMethod" has values { "empirical", "manual", 

"uniform" } 
 

"prunedTreeType" has values { "full_grown", 

"best_pruned", "min_error", "manual" } 

 

"samplingType" has values { "approximate", "exact" } 

 

"sortOrder" has values { "descending", "ascending" } 

 

"stratificationMethod" has values { "equal_size", 

"proportional" } 

 
"technique" has values { "adjusted_normalization", 

"normalization", "standardization", 

"unit_normalization" } 

 

"weightingScheme" has values { "equal", 

"inverse_distance" } 

 

"weightingSchemeDocument" has values { "binary", 

"entropy", "gf_idf", "inverse", "normal", "prob_idf" } 

 

"weightingSchemeNormalization" has values { 

"cosine", "none" } 
 

"weightingSchemeTerm" has values { "augnorm", 

"boolean", "logarithmic", "raw_frequency" } 



 
 
 

325 

Invalid use of selectedCols or excludedCols This error appears when the trainData and validData 

properties are used incorrectly.  Contact Frontline 

Solvers Support for more information related to your 

specific model.   

Invalid evaluation property An invalid evaluation property has been input for the 

specified action.  Only string values are supported 
among the set of all data mining evaluation properties.     

Decision Table FEEL Errors  

License limit for numbers of rules in decision 

table has been reached.   

 

Decision table general error Internal error – please contact Technical Support. 

Duplicate/missing name of a decision table "Duplicate" indicates that multiple decision tables have 

identical names. "Missing" indicates that the table name 

is missing in the upper left hand corner of the decision 

table.   

Unrecognized hit policy User has entered an unrecognized hit policy for 

"hitPolicy" property.   

Missing or wrong decision table inputs Decision tables must have at least one input entered as 

an array [] with either missing type, standard FEEL type 

or a set of allowed values.   

Missing or wrong decision table outputs Decision tables must have at least one output entered as 

an array[] with either missing type, standard FEEL type 

or a set of allowed values.   

Num refTypes must = num inputs + num 

outputs 

The number of elements in refTypes must be equal to 

numInputs + numOutputs.   

Unknown ref type.  Valid ref types are:  

Boolean, number, text, date, time and 

duration. 

An unsupported reference type has been passed for 

retype:[].  Current supported reference types are:  

Boolean, number, text, date, time and duration. 

Decision table column data type mismatch Indicates there is a value in the input/output column that 
has a "type" different from the listed "type" specified for 

the refTypes property, i.e. if an input of type "string" is 

entered for an input of type ">10".   

Inconsistent decision table input values The array for inputValues: [] must have the same 

columns as the array for inputs: [] 

Inconsistent decision table output values The array for outputValues: [] must have the same 

columns as the array for inputs: [] 

Inconsistent decision table output defaults The array for defaults: [] must have the same columns 

as the array for outputs:[]. 

Missing or wrong decision table rules A decision table must have at least one rule row.   

Inconsistent decision table rules dimensions The array for rules:[] must hae the same number of 

columns as inputs + outputs. 

Input value not covered by the input entries All values specified for inputValues must be referenced 

at least once in the rules.  For example, if a decision 

table exists with the property inputValues:['apples', 

'pears'] and no input entry mentions "pears", this error 

will be returned.   
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Output entry must be a string or number 

matching the output type 

The output entry must have the same type as the 

corresponding output listed in refTypes. 

FEEL string type is required  

FEEL number type is expected  

FEEL any ' – ' in unary test is expected  

FEEL NOT(value) unexpected value  

FEEL expected range operator [..]  

FEEL invalid path '.' operator  

FEEL invalid unary test  

Unary test must be a string expression Each unary test specified for the "rules" property must 
be a string expression. 

Output entry not covered by output values All values specified for outputValues must be 

referenced at least once in the rules.  For example, if a 

decision table exists with the property 

outputValues:['apples', 'pears'] and no output entry 

mentions "pears", this error will be returned.   

Decision table arguments mismatched Number of arguments to PsiDecTable() is incorrect.   

Decision table input argument is array, must 

be scalar 

An input argument must be a scalar.   

No hit found in decision table No rule evaluated successfully in the decision table. 

Multiple hits not allowed with hit policy 

'unique'.   

A "unique" hit policy must "hit" evaluating to a unique 

result.  If multiple rules are "hit", an error will be 

returned.     

Different hits must have the same values with 

hit policy 'any'.   

With a hit policy of "any", if any rules overlap, but point 

to the same result, that unique result is returned.   

Hit policy with aggregation requires numerical 

outputs.   

If a hit policy with aggregation is used, such as C+, C#, 

C< or C>, numerical outputs (rather than strings) must 

be returned in the result.   

Output entry not found in the output domain This error is returned when an output entry is not 

included in the outputValues domain.  For example, if 

the property outputValues:['apples', 'pears'] exists in a 

decision table, but a rule output returns 'cherry'.   

Composing Data/Time/Duration in decision 
table result failed 

If using data/time/duration strings in an expression, the 
relevant function must be used, i.e. the expression 

'PT2h' + 'PT3h' is invalid.  This expression must be 

rewritten as: duration('PT2h') + duration('PT3h'). 

Boxed function definition mismatch.  Check 

its syntax.  It must be part of a non-array 

formula.   

PsiDecTable() must be entered in a single cell as a non-

array formula.  To extract an array result in Excel, use 

the SPILL feature in Microsoft Excel or use Frontline's 

PsiCalcValue() formula to retrieve the results.  For more 

information on PsiCalcValue see the Analytic Solver 

Reference Guide. 
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Unable to locate parent stage data Pertains to decision flows.  This error 

occurs when a child stage is unable to 

locate the result of the parent stage. 

Unsupported data format  

Unknown failure has occurred while 

solving RASON model. 

An unknown error has occurred.  Please 

contact Frontline Systems Technical 

Support for help (support@solver.com).   

Terminated by user request The data mining process has been stopped 

by the user.   

Unsupported action This error occurs when user types action 

or estimator are unknown for RASON 

DM. 

Unsupported estimator This error occurs when user types action 

or estimator are unknown for RASON 

DM. 

Unsupported transformer This error occurs when user types action 

or estimator are unknown for RASON 

DM. 

Unsupported forecaster This error occurs when user types action 

or estimator are unknown for RASON 
DM. 

Unsupported predictor This error occurs when user types action 

or estimator are unknown for RASON 

DM. 

NoDataProvided No data provided for action. 

Unable to retrieve dataset RASON DM is not able to locate the 

specified dataset.  

  

Please parse the DAG model first. ???? 

Stage XX does not exist The specified stage is missing from the 

decision flow. 

Pipeline for stage X is empty. RASON DM is unable to locate the 

contents for stage X.   

Failed to locate or load result RASON DM is unable to locate the result.  

Invalid Response Format.  

STANDALONE cannot be used 
with workflow models 

Response-format=STANDALONE is not 

supported when solving a decision flow.  
Use Response-format=WORKFLOW 

Please specify non-empty stage 

name 

Each stage must contain a stageName. 

Invalid or unknown model type RASON DM is unable to determine the 

model type.  Use 

"modelType"="datamining" to specify 

that the model is a datamining model. 

Reusable model X not found RASON DM is not able to locate the 

specified reusable model. 
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