

RASON Modeling Language
Reference Guide

Copyright

Software copyright 1991-2024 by Frontline Systems, Inc.

User Guide copyright 2024 by Frontline Systems, Inc.

Trademark

RASON® and Analytic Solver® are registered trademarks of Frontline Systems, Inc.

Patent Pending
Systems and Methods for Automated Risk Analysis of Machine Learning Models.

Contact Us

Contact Frontline Systems, Inc., P.O. Box 4288, Incline Village, NV 89450.
Tel (775) 831-0300 Email info@solver.com Web https://rason.com

mailto:info@solver.com
https://rason.com/

Table of Contents

RASON Modeling Language Reference Guide i

Copyright ... ii
Trademark .. ii
Patent Pending .. ii
Contact Us .. ii

Rason Model Components for Optimization or Simulation 9

Introduction .. 9
Box Functions .. 9

LAMBDA Function .. 12
Constraints ... 13

Using Cone Constraints... 17
Interpreting Reduced Costs ... 19
Constraints: Normal, Chance, Recourse ... 19
Multiple Uncertainties May Offset Each Other .. 19
Value at Risk Measure .. 20
Conditional Value at Risk Measure ... 20
Uncertainty Set Measure ... 21

Contexts ... 21
Relation to Custom Types ... 21
The Context Definition ... 22

Custom Types .. 23
Data-source Binding ... 23
Custom Types in RASON ... 24
Custom Type Specifications .. 25

Data ... 27
Data Sources .. 28

Using a Named Data Connection ... 34
Parametric Selection Feature ... 35

Decision Tables .. 46
Supplying Data To and Calculating the Decision Table.. 51
Optional Arguments .. 51

Display Precision.. 56
Engine Settings .. 56

Common Engine Options .. 57
LP/Quadratic Solver Options... 59
LP/Quadratic Solver MIP Parameters .. 60
SOCP Barrier Solver Parameters ... 63
Large Scale GRG Nonlinear Solver Parameters ... 65
Derivatives and Other Nonlinear Options .. 66
Multistart Search Parameters ... 67
Evolutionary Solver Parameters .. 69

Evolutionary Parameters for Integer Problems ... 73
Mixed Integer Problem Parameters ... 75
Simulation Engine Settings ... 77

Formulas .. 81
Index Sets .. 83
Model Description .. 85
Model Name .. 85
Model Settings ... 86

Active Sheet ... 86
Auto Adjust Chance Constraint ... 86
Big M Value ... 87
Chance Constraint Use .. 87
Nonsmooth Model Transformation.. 88
Optimizations to Run .. 89
Random Seed ... 90
Run Specific Optimization .. 90
Run Specific Simulation ... 90
Simulation Optimization ... 91
Simulations to Run ... 91
Use Sparse Variables .. 91
Stochastic Transformation .. 92
Trials Per Simulation .. 93

Objective ... 93
The Objective Function... 94
Implicit and Explicit Forms for the Objective .. 94

Parameters ... 95
Variables .. 95

Interpreting Reduced Costs ... 98
Recourse Variables ... 98

Uncertain Functions ... 98
Statistics Functions ... 99

Uncertain Variables .. 112
Psi Distribution Functions ... 113
Statistic Functions .. 113

A Note on Excel Ranges in a Converted RASON Model ... 127

Rason Data Mining Model Components 128

Introduction ... 128
Data ... 129
Datasources ("datasources") ... 131

Using a Named Data Connection .. 135
Datasets ("datasets") ... 141
Weaklearner ("weakLearner")... 142

Algorithm Parameters: Decision Tree ... 143
Algorithm Parameters: Discriminant Analysis .. 143
Algorithm Parameters: Linear Regression ... 144
Algorithm Parameters: Logistic Regression ... 144
Algorithm Parameters: Naïve Bayes ... 145
Algorithm Parameters: Nearest Neighbors .. 145
Algorithm Parameters: Neural Network.. 146

Estimator ("estimator") ... 148
Algorithm Parameters Common to All Classification Algorithms 151
Algorithm Parameters: Find Best Model for Classification & Regression 152
Algorithm Parameters: Discriminant Analysis for Classification 153
Algorithm Parameters: Logistic Regression for Classification 153

Algorithm Parameters: Naïve Bayes for Classification .. 154
Algorithm Parameters: Neural Network for Classification or Regression 155
Algorithm Parameters: Decision Trees for Classification or Regression 158
Algorithm Parameters: Random Trees for Classification or Regression 159
Algorithm Parameters: k-Nearest Neighbors for Classification or Regression 160
Algorithm Parameters: Hierarchical for Clustering ... 160
Algorithm Parameters: k-Means for Clustering ... 165
Algorithm Parameters: Linear Regression... 166
Algorithm Parameters: Latent Semantic Analysis for Text Mining 166
Algorithm Parameters: TFIDF for Text Mining .. 166
Algorithm Parameters: ARIMA for Time Series ... 169
Algorithm Parameters: Lag Analysis for Time Series .. 170
Algorithm Parameters: Smoothing Methods for Time Series 170
Algorithm Parameters: Binning for Transformation .. 171
Algorithm Parameters: Canonical Variate Analysis for Transformation 172
Algorithm Parameters: Factorization for Transformation 172
Algorithm Parameters: Imputation for Transformation .. 173
Algorithm Parameters: Linear/Logistic Wrapping for Transformation 173
Algorithm Parameters: One Hot Encoding for Transformation 175
Algorithm Parameters: PCA for Transformation ... 175
Algorithm Parameters: Rescaler for Transformation ... 176
Algorithm Parameters: Univariate for Transformation .. 177

Transform ("transformer") .. 179
Algorithm Parameters: Association Rules for Affinity Analysis 181
Algorithm Parameters: Common Sampling Options for Big Data 181
Algorithm Parameters: Sampling for Big Data .. 182
Algorithm Parameters: Summarization ... 183
Algorithm Parameters: Linear/Logistic Wrapping for Transformation 184
Algorithm Parameters: Sampling/Stratified Sampling for Transformation 185
Algorithm Parameters: Partitioning for Transformation 186
Algorithm Parameters: Oversample Partitioning for Transformation 186
Algorithm Parameters: SyntheticDataGenerator for Transformation 187
Algorithm Parameters: Category Reduction for Transformation 193

Actions ("actions") ... 193
Model Parameters: Association Rules ... 195
Model Parameters: Bagging – Classification and Regression 195
Model Parameters: Big Data – Sampler .. 196
Model Parameters: Big Data – Summarizer .. 196
Model Parameters: Binning .. 196
Model Parameters: Boosting – Classification and Regression 196
Model Parameters: Canonical Variate ... 197
Model Parameters: Category Reduction for Transformation 197
Model Parameters: Decision Tree – Classification and Regression 197
Model Parameters: Factorization .. 198
Model Parameters: Find Best Model – Classification and Regression 198
Model Parameters: Univariate Feature Selection ... 198
Model Parameters: Logistic/Linear Wrapping Feature Selection 199
Model Parameters: Hierarchical Clustering ... 199
Model Parameters: Imputation.. 199
Model Parameters: k-Means Clustering .. 199
Model Parameters: Discriminant Analysis – Classification.................................. 199
Model Parameters: Linear/Logistic – Classification and Regression 200
Model Parameters: Latent Semantic Analysis ... 200
Model Parameters: Naïve Bayes – Classification .. 200
Model Parameters: k-Nearest Neighbors – Classification and Regression 201
Model Parameters: Neural Network – Classification and Regression 202

Model Parameters: One Hot Encoder ... 202
Model Parameters: Partitioning .. 202
Model Parameters: PCA... 202
Model Parameters: Random Trees -- Classification and Regression 203
Model Parameters: Sampling/Stratified Sampling .. 203
Model Parameters: Rescaler .. 203
Model Parameters: Smoothing Methods: Double Exponential, Exponential, Holt

Winters Additive, Holt Winters Multiplicative, Holt Winters No Trend, Moving

Average .. 203
Model Parameters: TFIDF ... 204
Model Parameters: Time Series ... 205
Evaluations Common to All Rason DM Methods and Algorithms 205
Evaluations: Big Data Common Evaluations ... 205
Evaluations: Binning.. 206
Evaluations: Canonical Variates ... 206
Evaluations: Classification – Common Parameters ... 206
Evaluations: Classification – Decision Trees .. 207
Evaluations: Classification – Ensemble Methods Common Options 207
Evaluations: Classification -- Discriminant Analysis... 207
Evaluations: Classification – Logistic Regression ... 208
Evaluations: Classification – Naïve Bayes .. 209
Evaluations: Classification – Neural Networks ... 210
Evaluations: Classification – Random Trees ... 210
Evaluations: Clustering – Hierarchical ... 211
Evaluations: Clustering – kMeans .. 211
Evaluations: Factoring ... 211
Evaluations: Feature Selection - Linear/Logistic Wrapping 211
Evaluations: Feature Selection - Univariate .. 212
Evaluations: Find Best Model – Classification and Regression 212
Evaluations: Forecasts – Common Parameters .. 213
Evaluations: Regression – Common Parameters ... 214
Evaluations: Regression – Linear Regression ... 215
Evaluations: SyntheticDataGenerator .. 218
Evaluations: Summarizer ... 218
Evaluations: Text Mining TFIDF Evaluations .. 224
Evaluations: Text Mining – Latent Semantic Analysis .. 224
Evaluations: Time Series – ARIMA and Lag Analysis .. 224
Evaluations: Transformation Common Evaluations .. 225
Evaluations: Transformation -- Summarization ... 225
Evaluations: Transformation -- Imputer .. 225
Evaluations: Transformation – Principal Components ... 226
Evaluations: Transformation -- Scaler .. 226

Fitted Model ("fittedModel") .. 226
PreProcessor ("preProcessor") .. 227
JSON/XML Formats for DataFrames .. 228

JSON ... 229
XML .. 230
Column-wise order: .. 230
Row-wise order: ... 230
Column-wise order: .. 230
Row-wise order: ... 231
XSD Schema Definition: .. 231
RASON .. 232

Rason Decision Flow Components 234

Introduction .. 234
Decision Flow Components .. 234

Solver Result Messages 236

Introduction .. 236
Result Messages and Codes .. 236

Interval Global Solver Result Messages... 246

RASON DMN/FEEL at Conformance Level 3 248

Introduction .. 248
Creating independent DMN/Feel models ... 248

List data and related functions ... 248
Formatting results of box objects as custom types .. 251

Appendix 253

Microsoft LET Function ... 253
LET Function ... 253

Psi Distribution Functions ... 253
Continuous Analytic Distributions .. 254

PsiBeta ... 254
PsiBetaGen ... 255
PsiBetaSubj .. 257
PsiCauchy... 258
PsiChiSquare .. 259
PsiErlang .. 261
PsiExponential .. 262
PsiGamma .. 263
PsiLogLogistic.. 267
PsiLogNormal .. 268
PsiLogNorm2 ... 269
PsiMaxExtreme .. 270
PsiMinExtreme ... 271
PsiMyerson ... 272
PsiNormal... 275
PsiNormalSkew .. 275
PsiPareto .. 279
PsiPareto2... 280
PsiPearson5 .. 281
PsiPearson6 .. 282
PsiRayleigh .. 284
PsiStudent... 285
PsiTriangGen .. 286
PsiTriangular .. 288
PsiUniform ... 290
PsiWeibull .. 291

Discrete Analytic Distributions ... 292
PsiBernoulli .. 292
PsiBinomial .. 293
PsiGeometric .. 294
PsiHyperGeo .. 296
PsiIntUniform ... 297
PsiLogarithmic ... 298
PsiPoisson .. 300

Custom Distributions .. 302

PsiCumul .. 302
PsiDiscrete ... 303
PsiDisUniform .. 304
PsiGeneral .. 305
PsiHistogram .. 306

Special Distributions .. 307
PsiFit .. 307
PsiMVLogNormal .. 308
PsiMVNormal .. 309
PsiResample ... 310
PsiMVResample ... 311
PsiShuffle ... 311
PsiMVShuffle ... 311
PsiSip ... 311
PsiSlurp .. 311

PSI Property Functions ... 311
Using PSI Property Functions ... 311
PsiBaseCase ... 312
PsiCertify ... 312
PsiCensor ... 312
PsiCorrMatrix ... 312
PsiCorrDepen / PsiCorrIndep .. 313
PsiLock .. 314
PsiSeed... 314
PsiShift... 314
PsiTruncate .. 314
Psi Data Mining/Forecasting Function Signatures .. 314

Appendix II RASON Error Codes 318

Introduction ... 318
Error Messages... 318

9

Rason Model Components for
Optimization or Simulation

Introduction
This section introduces each of the nine different components or sections which make up a RASON model:

"variables", "uncertain variables", "data", "dataSources", "engineSettings", "formulas", "modelSettings",

"objective", "constraints", "indexSets" and "objective". This chapter explains how each component of your

model should be defined. Some optimization models will consist of just 3 sections: variables (where the

decision variables will be defined), constraints (where the constraints will be defined) and objective

(where the objective will be defined)) where other larger and more complex models might contain several

additional segments such as: engineSettings (where the engine is chosen and an engine options are

specified), data (where any arrays used in the calculation of the constraints or objective are defined),

formula (where any intermediate calculations are performed) and/or dataSources (where any data is

imported from an outside source such as a CSV file). Most simulation models will be comprised of two

components: uncertainVariables (where the uncertain variables are defined) and

uncertainFunctions (where the uncertain functions are defined). However, a simulation model could

also contain additional segments such as: engineSettings, data, formula, and/or datasources.

Note: The RASON modeling language supports all but a few of Excel's functions1 which means that you can

write a formula easily using functions such as SUM, SUMPRODUCT, etc. along with operators such as + and

*. You can define arrays and use Excel functions that return vector and matrix results and access your data from

within an Excel worksheet or a database.

Box Functions
Custom defined functions are supported in RASON Decision Services. These custom functions are defined

within the boxFunction section of the RASON model but can be reused within any section.

Note: For a list of supported FEEL expressions, see the Decision Tables section that appears later in the guide.

Example:

boxFunctions: {

 funPMT: {

 inputs: ['p', 'r', 'n'],

 inputTypes: ['number', 'number', 'number']"},

 language: "FEEL",

 resultType: "number",

 body: {

 payment: {formula: "(p * r/12)/(1-(1+r/12)**-n)"},

1 Note: Excel functions not supported by the Rason modeling language are: Call(), Cell(), CubeX(), EuroConvert(),

GetPivotData(), HyperLink(), Indirect(), Info(), Offset(), RegisterID(), PivotDim(), PivotCube(), FormulaText(),

Dollar(), Fixed(), Replace(), Search(), Text() and SqlRequest().

 .

 fee: {formula: "0.01 * payment"}

 }

 result: {formula: "payment + fee"}

}

Notice the use of the prefix "fun" in the name of the box function, funPMT. It is good practice to use this

prefix when defining a box function in RASON in order to prohibit a naming conflict error. For example, if this

function were instead named "PMT", rather than "funPMT", each time this function was used in the RASON

model, the Excel Financial PMT function would be called rather than this defined function.

• inputs (required): Defines the input parameters

• inputTypes (Required if Formula Language = FEEL, otherwise optional): Defines the type for all

input parameters.

o Supported types are:

Formula Language = Excel

Array: Any Excel cell reference, i.e. A1:C1.

Note: This can be used for a Box function that, say, computes the SUMPRODUCT(A1:A3, B1:B3) where A1:A3 is

a range for the first input parameter and B1:B3 is a range for the second input parameter.

Boolean: The entered words TRUE and FALSE are interpreted as Boolean reserved words,

not strings.

Empty: Select "empty" if Formula Language = EXCEL and no Data Type is being specified.

Error: Any Excel error such as #N/A, #Number, etc.

Number: May be an integer or fraction.

String or Text: Any string

Language = FEEL

Boolean: The entered words TRUE and FALSE are interpreted as Boolean reserved words,

not strings.

Date: Any valid date, such as 05-05-1964

Duration: There are two formats for duration, one measuring periods in months and another

measuring periods in seconds. For example, P1DT1H2M3S denotes:

• P for "period"

• 1D for 1 day

• T for "time"

• 1H for 1 hour

• 2M for 2 minutes and

• 3S for 3 seconds.

• language (required): Defines the language: FEEL or EXCEL.

• resultType (Required if Formula Language = FEEL, otherwise optional): Defines the type of result

returned by the function. The returned value type is specified below the formula language. Custom

functions return only one output.

o Supported types are:

Formula Language = Excel

Array: Any Excel cell reference, i.e. A1:C1.

11

Note: This can be used for a Box function that, say, computes the SUMPRODUCT(A1:A3, B1:B3) where A1:A3 is

a range for the first input parameter and B1:B3 is a range for the second input parameter.

Boolean: The entered words TRUE and FALSE are interpreted as Boolean reserved words,
not strings.

Empty: Select "empty" if Formula Language = EXCEL and no Data Type is being specified.

Error: Any Excel error such as #N/A, #Number, etc.

Number: May be an integer or fraction.

String or Text: Any string

Language = FEEL

Boolean: The entered words TRUE and FALSE are interpreted as Boolean reserved words,
not strings.

Date: Any valid date, such as 05-05-1964

Duration: There are two formats for duration, one measuring periods in months and another

measuring periods in seconds. For example, P1DT1H2M3S denotes:

• P for "period"

• 1D for 1 day

• T for "time"

• 1H for 1 hour

• 2M for 2 minutes and

• 3S for 3 seconds.

• body (optional): Defines the intermediary formulas used to to calculate the result. In this example,

"payment" is calculated as (p * r/12)/(1-(1+r/12)**-n) and "fee" is calculated as 0.01 * payment. Note

that "payment" and "fee" are user defined names.

• result (required): Defines the calculation returned by the function. In this example the result adds the

payment and fee as defined within the body.

Invocation of Custom Functions

Custom functions are invoked in RASON models as a standard function by name and values passed for

parameters in brackets. For example:

MonthlyPayment: {formula: "funPMT(amount, rate, term)" finalValue:[]}

Notes:

• Variables amount, rate and term are global in scope.

• Custom functions in RASON are polymorphic and multithreaded.

For more information on using custom functions in RASON, see the Using Custom Functions chapter within

the RASON User Guide and example models using custom functions under Rason Examples – Decision –

Custom Functions.

FEEL Expressions

Variables and constants can be combined through operations called literal expressions. Literal expressions in S-
FEEL are similar to formulas in Excel and in the RASON modeling language. For a list of supported FEEL

expressions, see the Decision Tables section that appears later in the guide.

LAMBDA Function

The LAMBDA function, introduced in Microsoft Excel, can also be used to create custom, reusable functions

which can be invoked using a custom name. For example, a user could use the LAMBDA function to define a

new function that calculates a common formula within a RASON model. Using the new function in the cell to

calculate the formula, rather than the actual formula, reduces the chance of introducing an error into the model.

Example

boxFunctions: {

 "MyLmd": {result: "LAMBDA(y,LET(x,y+1,LET(z,6, z+x*y)))"}

}

Notes:

• The number of supported parameters is 253.

• Periods (.) are not supported in LAMBDA function names and parameters.

Notes on the LAMBDA and LET Functions

• Scope of variables within a LAMBDA function

When a LAMBDA expression is calculated, RASON Decision Services will first search the local

scope of the expression for the definition of a variable. If not found, RASON will proceed to search

the parent scope and then will move to the global scope (cell/range names).

Assume a variable with the defined name "z" and the custom Lambda function below exist within the
same RASON model.

=LAMBDA (x, y, LET (z, x+1, y * z + b1))

In this instance, the local scope is the LET function, the parent scope is the LAMBDA function

enclosing the LET function, and the global scope is all cell/range names in the RASON model. The

variable z =x+1 despite the existence of z in the global scope. The variable z inside LET and the z

variable are considered to be different variables.

• Nesting LAMBDA/LET functions

RASON Decision Services supports only nested LET functions. Nexted LAMBDA functions are not

supported.

• Properties of LAMBDA/LET in RASON Decision Services

The following list contains important properties of both the LAMBDA and LET functions.

1. Reusability – LET definitions are not reusable while LAMBDA definitions, even ones containing

LET functions, are resuable.

2. Nesting – LET definitions can be nested while LAMBDA definitions cannot.

3. Recursion – Although the LAMBDA function is recursive in Excel, RASON Decision Services

does not support recursion with this function.

4. Threads – Both LET and LAMBDA functions running in multiple threads.

5. Polymorphic Evaluation – The calculation of derivates, intervals, etc inside of a LAMBDA and

LET function.

6. Model Conversion: Both LET and LAMBDA functions are supported in model conversion from

Excel to RASON (Create App – RASON).

• A LET function within an Excel model will appear within the formulas property within the

RASON model, after conversion is complete.

uncertainFunctions: {

13

 "c5": { formula: "LET(x, 1+1, LET (y, 2, A5 + x = y))",

mean: []

}

• The LAMBDA function within an Excel model will appear within a new section,

"boxFunctions" within the RASON model, after the model conversion is complete.

boxFunctions: {

 "MyLmd" : {

 result: "LAMBDA(y, LET(x, y+1, LET(z, A13, z+x*7)))"

}

For more examples see the RASON User Guide's Using Custom Functions chapter. For example models using

the Lambda function, see RASON Examples – Decisions – Custom Functions.

Constraints
This optional section is used for defining normal, recourse or chance constraints in optimization, stochastic
optimization or simulation optimization models. There are 10 constraint input properties: comment, name,

dimensions, type, formula, lowerBound, upperBound, equal, chanceType, and chanceProbability. In return you

may ask for the constraint's final value, dual value, dual upper value, dual lower value, slack value intial value

and index value. In the example code below, five constraints are defined by a matrix multiplication of the

parts and products arrays. The upper bound of each constraint is contained in the upper array. In return,

the dual value and upper and lower bounds for the dual value for each constraint will appear in the Result

(dualValue: [], dualUpper:[], dualLower:[]).

constraints: {

cons: {

 formula: "mmult(parts, transpose(products))", upper: [450, 250, 800,

 450, 600], dualValue: [], dualUpper: [], dualLower: [] }

},

We also could have created the cons block of constraints by using an alternate syntax, shown below.

However, if a parameter is defined in this way, it would not be possible to pass (say) new right hand side values

outside of the RASON model environment (via a direct call to the RASON REST API).

constraints :

 { name: "cons",

formula: "mmult(parts, transpose(products))",

 upper: [450, 250, 800, 450, 600],

 dualValue: [], dualUpper: [], dualLower: [] }

},

Please see the table below for all input properties available in constraints.

Input Property Example Definition

aliasName aliasName:

“num_parts_inventory”

This property is automatically inserted into

the converted RASON model when an

Excel model is deployed through Analytic

Solver’s Deploy Model button, if a block of

cells containing constraint left hand sides is
assigned a defined name in the Excel

Solver model.

comment comment: "number of

parts used must be less

than inventory"

Enter a comment here to describe the

constraint or block of constraints.

(Optional)

name name: "constraints" Enter a name for a constraint or block of

constraints. (Optional)

dimensions 1. dimensions: [3,1]

2. dimensions: [3]

3. dimensions: [1,3]

4. dimensions: [3,2]

1. Defines a 2 – dimensional horizontal

array with 3 rows and 1 column.

2. Defines a 1-dimensional vertical array

with 3 elements.

3. Defines a 2 – dimensional vertical

array with 3 elements.

4. Defines a 2 – dimensional array with 3

rows and 2 columns.

All arrays are 1 – based. (Optional.) If

missing, constraint array shape will be

implicitly defined by the shape of the
lower, upper, equal or value properties,

however, for readability of the code, the

use of the dimensions property is

recommended.

type 1. type: "cone"

2. type: "rotatedCone"

1. Defines the constraint or constraint

block as belonging to a cone.

2. Defines the constraint or constraint

block as belonging to a rotated cone.

If chancetype and type arrays are

missing, the constraint or block of

constraints is assumed to be normal.

See below for information on cone and

rotated cone constraints see the Using Cone

Constraints topic below.

formula formula: "mmult(parts,

transpose(products))",

Calculates the constraint. (Required.)

lower* lower: 0

lower: [1, 2, 3]

lower: "availInvent"

where availInvent is an array of

constants.

Specifies the lower bound of the constraint

or constraint block. If an array is passed

and dimensions, upper, equal or

value properties are missing, the shape

of the constraint array will be determined

by the shape of the lower property.

However, it is recommended that the

dimensions property be used for

readability purposes. If missing, the lower

bound is defined as "unbounded".
(Optional)

Note: Only constant values are supported

for this property. If a formula is provided

to lower: [], the error: "Can not be parsed"

will be returned. If the right hand side of

15

your constraint must contain a formula,

then simply subtract the RHS from the left

hand side of the constraint, for example:

x1 + x2 = x3 +x4 can be rearranged to: x1

+ x2 – (x3 + x4) = 0.

upper* upper: 0

upper: [1, 2, 3]

upper: "availInvent"

where availInvent is an array of

constants.

Specifies the upper bound of the constraint

or constraint block. If an array is passed

and dimensions, lower, equal or

value properties are missing, the shape of

the constraint array will be determined by

the shape of the upper property.

However, it is recommended that the

dimensions property be used for

readability purposes. If missing, the upper

bound is defined as "unbounded".

(Optional)

Note: Only constant values are supported

for this property. If a formula is provided
to upper: [], the error: "Can not be parsed"

will be returned. If the right hand side of

your constraint must contain a formula,

then simply subtract the RHS from the left

hand side of the constraint, for example:

x1 + x2 = x3 +x4 can be rearranged to: x1

+ x2 – (x3 + x4) = 0.

equal* equal: 0

equal: [1, 2, 3]

equal: "availInvent"

where availInvent is an array of

constants.

Defines an equality constraint. If an array

is passed and dimensions, upper,

lower or value properties are missing,

the shape of the constraint array will be

determined by the shape of the equal

property. However, it is recommended that

the dimensions property be used for

readability purposes. If missing, either

upper or lower must exist. (Optional)

chanceType chanceType: “VaR”

chanceType: “CVaR”

chanceType: “USet”

Defines the constraint or constrant block as

a chance constraint(s). Constraint or
constraint block must contain

uncertainties. The property

chanceProbability property must

exist if chanceType exists.

Value at Risk (VaR) – Specifies that the

chanceProbability percentile of the

realizations of the constraint left hand side

must be less than or equal to the constraint

right hand side; realizations beyond the

chanceProbability percentile may be

greater than the right hand side by any
amount.

Conditional Value at Risk – Specifies that

the expected value of all the realizations of

the constraint right hand side up to the

chanceProbability percentile must

be less than or equal to the constraint left

hand side.

Uncertainty Set – Applicable only to linear

constraints where some or all of the

coefficients may depend on the

uncertainties. Specifies that the constraint
right hand side must be satisfied for all

variations from the nominal variable values

and do not exceed a bound, measured by a

norm.

For more information on these types of

constraints, see the topics below.

chanceProbability chanceProbability: 0.95 Defines the percentile for use with VaR,

CVaR, and USet constraints.

For more information on chance

constraints, see the topics below.

*The RASON Server currently ONLY supports constant values (i.e. 3, 8.54, etc.) or an array containing
constant values for the lower, upper and equal properties.

An output property must be specified within the constraint definition as an empty array.

Output Property Example Definition

dualLower dualLower: [] Creates an empty array to hold the Allowable Decrease for

the constraint or constraint block. See the topic,

Interpreting Reduced Costs below for more information on

this property.

dualUpper dualUpper: [] Creates an empty array to hold the Allowable Increase for the

constraint or constraint block. See the topic, Interpreting

Reduced Costs below for more information on each of these

properties.

dualValue dualValue: [] Creates an empty array to hold the shadow price for the
constraint or constraint block. The shadow price for a

constraint is nonzero only when the constraint is binding.

See the topic, Interpreting Reduced Costs below for more

information on each of these properties.

slackValue slackValue: []
Creates an empty array to hold the slack value for each

constraint. The slackValue holds the constraint's slack

which is nonzero only when the constraint is NOT equal to

its bound. For example, take the constraint x1 + x2 = 3. If

x1 = 0 and x2 = 2, slackValue = 1.

finalValue finalValue: [] Creates an empty array to hold the final constraint value for

the constraint or constraint block.

initialValue initialValue: [] Creates an empty array to hold the initial value of the

constraint.

indexValue indexValue: [] Creates an empty array to hold the index value for each

constraint in the block of constraints.

17

Using Cone Constraints
A simple kind of cone constraint is a non-negativity constraint on a variable or block of variables. These types

of constraints specify that the variables must lie within a simple kind of cone, called the non-negative orthant.

This first order cone places a bound on the L1-norm of the vector of decision variables. A second order cone

(also called a Lorentz cone or "ice cream cone") is a convex set that looks like this:

This cone places a bound on the L2-norm of the vector of decision variables. If x1, x2, and x3 are variables that

lie within this cone, then x1 >= SQRT(SUMSQ(x2, x3)) must hold. A problem with a linear objective andlinear

or second order cone (SOC) constraints is called a second order cone programming (SOCP) problem; it is

always a convex optimization problem. Second order cone programming is the natural generalization of linear

programming. It offers the same advantages of convexity and scalability to large problems offered by linear

programming – but for a broader class of models. For history buffs, Premium Solver Platform V6.0 was the

first commercial software product to offer broad support for second order cone programming.

Please see the two examples below (RGFirehouseLocation.json and RGFirehouseLocationConic.json) which

illustrate how to setup the same model in two different ways: the first (RGFirehouseLocation.json) without cone

constraints and the second (RGFirehouseLocationConic) with cone constraints. The goal of both models is to

find a location, given by x and y coordinates, of a proposed firehouse that minimizes the maximum distance
between the firehouse and six cities in the region.

In the first example, there are three decision variables x, y, and z. The x and y variables will hold the final x

and y coordinates of the proposed firehouse location. The third variable, z, will be minimized in the objective

function.

{

 comment: "NLP Example, individual constraints",

 engineSettings : { engine : "GRG Nonlinear" },

 variables : {

 x: { value: 1.0, finalValue: [] },

 y: { value: 1.0, finalValue: [] },

 z: { value: 1.0, finalValue: [] }

 },

 constraints : {

 c1: { formula: "sqrt((x - 1)^2 + (y - 4)^2) - z", upper: 0 },

 c2: { formula: "sqrt((x - 0.5)^2 + (y - 3)^2) - z", upper: 0 },

 c3: { formula: "sqrt((x - 2)^2 + (y - 4)^2) - z", upper: 0 },

 c4: { formula: "sqrt((x - 2)^2 + (y - 2)^2) - z", upper: 0 },

 c5: { formula: "sqrt((x - 2)^2 + (y - 5)^2) - z", upper: 0 },

 c6: { formula: "sqrt((x - 0.5)^2 + (y - 6)^2) - z", upper: 0 }

 },

 objective : {

 obj: { formula: "z", type: "minimize", finalValue: [] }

 }

}

The constraints calculate the distance between the proposed firehouse location and each of the six cities using

the the Pythagorean Theorem (SQRT ((Xc – X)^2 + (Yc – Y) ^2)), which is a nonlinear function of the

variables. The objective function minimizes the z variable to find the smallest possible distance between the

firehouse and each city. This model may be solved with the Nonlinear GRG engine.

In the next example, 6 conic constraints (one for each city) is used to calculate the distance between the

proposed firehouse location and each city, rather than the Pythagorean Theorem.

{

 engineSettings : { engine: "SOCP Barrier" },

 variables : {

 x: { value: 1.0, finalValue: [] },

 y: { value: 1.0, finalValue: [] },

 z: { value: 1.0, finalValue: [] },

 f: { dimensions: [6], value: 1.0 },

 g: { dimensions: [6], value: 1.0 },

 h: { dimensions: [6], value: 1.0 }

 },

 data: {

 corx: { dimensions: [6], value: [1, 0.5, 2, 2, 2, 0.5] },

 cory: { dimensions: [6], value: [4, 3, 4, 2, 5, 6] }

 },

 constraints : {

 dx: { dimensions: [6], formula: "corx - x - g", equal: 0 },

 dy: { dimensions: [6], formula: "cory - y - h", equal: 0 },

 dz: { dimensions: [6], formula: "f - z", upper: 0 },

 cone1: { value: "f[1], g[1], h[1]", type : "cone" },

 cone2: { value: "f[2], g[2], h[2]", type : "cone" },

 cone3: { value: "f[3], g[3], h[3]", type : "cone" },

 cone4: { value: "f[4], g[4], h[4]", type : "cone" },

 cone5: { value: "f[5], g[5], h[5]", type : "cone" },

 cone6: { value: "f[6], g[6], h[6]", type : "cone" }

 },

 objective : {

 obj: { formula: "z", type: "minimize", finalValue: [] }

 }

}

The x and y coordinates of each city to be served by the firehouse are given in the corx and cory arrays,

respectively. The x and y variables will hold the final x and y coordinates of the proposed firehouse. The f

block of variables will be forced by the dx block of constraints to equal the difference between the x coordinate

of the proposed firehouse and the x coordinate of each city. The g block of variables will be forced by the dy

block of constraints to equal the distance between the y coordinate of the proposed firehouse and the y

coordinate of each city. The h block of variables will be driven by the dz block of constraints to be less than or

equal to z, the variable to be minimized in the objective function. Each member of the f, g, and h variable

blocks must (for example f[1], g[1], and h[1]) belong to a second order cone constraint which can be

rewritten as f[1] > = SQRT (SUMSQ(g[1]; h[1]). Minimizing the z variable in the objective function

will push the maximum distance between the proposed firehouse location and each city to the lowest possible

value guaranteeing that the firehouse is as close as possible to each of the six cities. This model may be solved

with the SOCP Engine.

Note: In RASON, you can solve any type of model containing conic constraints. There is no need to select a

specific engine within engineSettings. If no engine is specified, the model is considered to be nonlinear

and an appropriate nonlinear engine will be selected to solve the model. If the model type of SOCP is known,

and an engine supporting conic constraints is specified, the model will be solved as an SOCP. Currently, the

three engines that support conic constraints are: "SOCP Barrier" (as shown in the above example), "Gurobi

Solver" and "Mosek Solver".

19

Interpreting Reduced Costs

The Shadow Price for a constraint is nonzero only when the constraint is equal to its bound. This is called a

binding constraint, and its value was driven to the bound during the optimization process. Moving the constraint

left hand side’s value away from the bound will worsen the objective function’s value; conversely, “loosening”

the bound will improve the objective. The Shadow Price measures the increase in the objective function’s value

per unit increase in the constraint’s bound. In the case of linear problems, the Shadow Price remains constant
over the range of Allowable Increases and Decreases in the variables’ objective coefficients and the constraints’

right hand sides, respectively. For each constraint, dualLower and dualUpper will report the constraint

right hand will report the amount by which the RHS could be increased or decreased without changing the dual

value.

Constraints: Normal, Chance, Recourse
Constraints are relations such as f(x1 , x2 …, ,xn) <= b, where x1 , x2 …, ,xn are decision variables. A constraint is

satisfied when the relation it specifies is true within a small tolerance. When your model includes uncertainty,

we must examine how each constraint depends on the uncertainties and the decision variables:

• If a constraint depends only on certain parameters and normal decision variables, it is ‘deterministic’ and is

handled in the usual way by the Solver. We call this a normal constraint. (See above for an example.)

• If a constraint depends on uncertain variables and normal decision variables, we must specify what it

means for the constraint to be satisfied. There are many possible realizations for the uncertain variables,

but only single values for the decision variables. The Solver must find values for the decision variables that
cause the constraint to be satisfied for all, or perhaps most but not all, realizations of the uncertainties. We

call this a chance constraint. For example, we might specify that the constraint must be satisfied 95% or

99% of the time; it can be violated 5% or 1% of the time. For 95%, we denote such a constraint as VaR 0.95

A1 <= B1. But this form may not be your best choice – alternatives called CVaR and USet are discussed in

the section “More on Chance Constraints.”

• If a constraint depends on uncertain variables and recourse decision variables, then the Solver will find an

array of values for each of the recourse variables, corresponding to the realizations of the uncertain vs.

Recourse decisions give the Solver flexibility to satisfy constraints that involve uncertainty; but in effect,

each such constraint has many realizations – one for each realization of the uncertainties. We call this a

recourse constraint.

• A constraint may also depend on recourse decision variables, and possibly normal decision variables, but
not depend on any uncertain variables. This is also a recourse constraint, with many realizations. The

Solver must find values for the recourse variables that satisfy all the constraints where they appear – some

with uncertainties, and some without.

Multiple Uncertainties May Offset Each Other

What happens when a constraint depends on several different uncertainties? Is such a constraint harder or easier

to satisfy than a constraint that depends on just one uncertainty? In the simplest case, suppose we have a linear

constraint, with coefficients ai and decision variables xi: a1x1 + a2x2 + ... + anxn  b. Suppose that each coefficient

ai is uncertain (and independent of all the others), with sample values drawn randomly from PsiUniform (ai – 0.5,

ai + 0.5). The average or nominal value of each coefficient is ai. The ‘worst’ that can happen is that a sample is

drawn where every coefficient is ai + 0.5 – this makes the left hand side (LHS) as large as possible, so it is very

likely to violate the condition LHS  b. But this case is very unlikely to occur. In most realizations of the

uncertainties, some coefficients (randomly drawn from the range ai – 0.5 to ai + 0.5) will be less than ai, and

some will be greater than ai. The more uncertainties are involved, the greater the chance that some of them will

draw samples less than ai. If we use a chance constraint to specify that the relation must be satisfied (say) 95%

or 99% of the time, we actually have a better chance of satisfying this constraint when it depends on many

uncertainties than when it depends on just one – as long as the uncertainties are independent, or at least not
highly correlated with each other.

More on Chance Constraints

As explained above, if a constraint depends on uncertain variables and normal decision variables, we can seek

solution values for the variables that cause the constraints to be satisfied for all, or perhaps most but not all,

realizations of the uncertainties. If we insist that the constraints are satisfied for all realizations, we may not be

able to find values for the decision variables that meet this requirement – and if we do, we will very likely ‘pay

for this’ via worse values for the objective function.

Instead, we can seek solution values for the variables that cause the constraints to be satisfied for most, but not

necessarily all, realizations of the uncertainties. We might specify that the constraint must be satisfied (it must

not exceed a given limit) 95% or 99% of the time; it can be violated 5% or 1% of the time. This is depicted in

the chart below, where 95% of the area under the curve is to the left of the bar (i.e. the constraint right hand side

value), and 5% is to its right. This is one form of a chance constraint; the criterion that it must be satisfied for

all realizations of the uncertainties up to a given percentile (say 95%) makes it a VaR (Value at Risk) constraint.

We write this constraint as VaR 0.95 A1 <= B1.

The RASON modeling languague supports two other criteria besides VaR that may be better choices for many

models. A chance constraint includes:

• A left hand side that depends on decision variables and uncertainties.

• A relation that must be either <= or >=. (A chance constraint can’t be an equality. Note however that a

recourse constraint can be an equality.)

• A type that may be VaR (Value at Risk), CVaR (Conditional Value at Risk), or USet (Uncertainty Set). These

criteria are discussed below.

• A measure that may be a percentile 0.01 – 0.99 for VaR or CVaR, or a ‘budget of uncertainty’ (any positive
value) for USet.

Value at Risk Measure

Chance constraints defined by a percentile or VaR (Value at Risk) measure have been used since the early

1960s. Such constraints offer a good deal of modeling flexibility, and they are easy to understand in terms of the

probability that the constraint will be satisfied. Value at Risk is used in the banking and securities industries,

and its use is mandated by the international Basel II accords. But chance constraints in this form have several

drawbacks:

• A VaR constraint with probability 95% requires only that the constraint be satisfied – not violated – 95% of

the time; it says nothing about the magnitude of the violation that may occur the other 5% of the time. For

example, a portfolio of securities that is VaR-constrained to lose no more than $100,000 95% of the time could

still lose $1 million+ at other times.

• As a measure of risk, the VaR criterion is not subadditive, a property expected of any ‘coherent risk

measure.’ For example, if two portfolios A and B are VaR-constrained to not lose money 95% of the time, it is
reasonable to expect that a combined portfolio A+B should have a 95% or better chance of not losing money –

but this is not guaranteed by the two portfolio VaR constraints.

• A VaR constraint is not necessarily convex; hence, using such a constraint in an otherwise convex model (for

example, any linear programming or convex quadratic model) will radically affect its ‘solvability’ – it means

that a globally optimal solution cannot be guaranteed, and solution time may rise exponentially with model size.

Further, when robust optimization methods automatically transform a model with VaR constraints into a larger

but deterministic ‘robust counterpart’ model, it first approximates the non-convex VaR constraint with a convex

CVaR constraint, and then transforms the CVaR constraint. Since CVaR is always more conservative than

VaR as a risk measure, the robust counterpart solution will ‘pay a price’ in conservativeness, with a worse

objective value. Users are often better off using CVaR directly.

Conditional Value at Risk Measure

To deal with the problems of Value at Risk cited above, an alternative risk measure called Conditional Value at

Risk or CVaR (also called Expected Tail Loss or ETL) was developed in the late 1990s. VaR 0.95 A1 <= B1

21

specifies that the 95th percentile of the realizations of A1 must be less than or equal to B1; realizations beyond

the 95th percentile may be greater than B1 by any amount. In contrast, CVaR 0.95 A1 <= B1 specifies that the

expected value of all the realizations of A1 up to the 95th percentile must be less than or equal to B1. Below is a

chart that compares VaR and CVaR. VaR is the value (10,000) that lies at the 5th percentile of the realizations of

the constraint left hand side; 95% of the realizations are greater than 10,000 and lie in the graph to the right of
this point. CVaR (8,000) is the expected value (i.e. the mean or average value) of all the realizations that lie in

the ‘tail’ to the right of the VaR (Note that, if CVaR 0.05 A1 <= B1 is satisfied for some B1, then VaR 0.05 A1

<= B1 is also (more than) satisfied. As a risk measure, Conditional Value at Risk has several advantages over

VaR:

• Unlike VaR, a CVaR constraint at 95% places a bound on the average magnitude of the violations that may

occur 95% of the time.

• CVaR is a ‘coherent risk measure.’ It is subadditive, so if two portfolios A and B are CVaR-constrained to

not lose money 95% of the time, then a combined portfolio A+B has the same or better chance of not losing

money.

• A CVaR constraint is always convex. Models consisting of all convex functions can be solved to global

optimality, and solved to very large size using modern interior point optimization methods.

Uncertainty Set Measure

The RASON modeling language supports a third criterion for uncertainty in a chance constraint, which reflects

the approach taken in most of the literature on robust optimization methods. This criterion, called USet (for
uncertainty set), is applicable only to linear constraints, with coefficients ai and variables xi:

a1x1 + a2x2 + ... + anxn  b

where some or all of the coefficients ai may depend on the uncertainties. It is useful to think of the vector [a1 a2 ...

an] as having a nominal or expected value, and a variation from this value for each realization of the

uncertainties. A constraint of the form USetΩ A1 <= B1, where a1x1 + a2x2 + ... + anxn is in A1, and b is in B1,

specifies that A1 <= B1 must be satisfied for all variations from the nominal value of [a1 a2 ... an] that do not

exceed a bound Ω, measured by a norm. The bound Ω is often called the budget of uncertainty for the

constraint. A very large Ω says that the constraint must be satisfied for practically all variations of the

coefficients from nominal; a Ω of 0 effectively ignores uncertainty, requiring only that A1 <= B1 for the

nominal value of [a1 a2 ... an], and saying nothing about departures from this value. The RASON modeling

language allows you to choose among four different norms to measure variation from the nominal value: The

L1, L2, L-Infinity and D norms – as described in “Uncertainty Sets and Norms” that appears earlier in this
guide.

Contexts
Use the "contexts" section of a RASON model to define a context: a single object that determines both the type

structure of the object and also the value of the object. Components of a context must include two arguments:

typeRef which assigns the type and formula to calculate the value. Note that constant values are allowed.

Relation to Custom Types

Context objects resemble component custom types, which are defined below. Component custom types are

defined as custom types with components such as names names, types and, optionally, allowed values (i.e.

domain). If a component type is attached to a variable, then that variable defines values in its array structure

according to the component type description. The variable may be referenced component-wise using the ‘.’

operator. For example,

typeDefs: {

 tPmt: {

components: {

 payment: { typeRef: 'number' },

 fee: { typeRef: 'number' },

 total: { typeRef: 'number' }

}

 }

}

data: {

 loan: { type: 'tPmt', value: [600000, 1000, 601000], binding: 'get'

}

}

Now loan.payment, loan.fee, and/or loan.total may be referenced in subsequet formulas within the RASON

model. The restriction here is that the variable must define only constant values. These constant values may be

obtained using the binding: ‘get’ mechanism or by fetching a record from an external table or even simply

including them inline, as shown in the example code above. Regardless of how they are obtained, these values

could not be computed. That is, until now. In the latest version of RASON Decision Services, the concept of
variables with components has been extended to the next level, context: where components may include

formulas.

The Context Definition

A context is a single object which determines the type of the structure and, at the same time, defines the values.

Recall that with component types we have two objects – the type and the variable to which we attach the type.

This results in an abstract type definition that many different variables may be attached to. However, context is

a single object encompassing both the type and the variable.

Contexts are defined within the special section contexts: { }. Each object has a unique name in the global

scope. The context object, "language", defines the formula language using the syntax "language": "Excel" or

"language": "FEEL". (Currently, only FEEL and Excel are supported formula types.)

Components are defined by a unique name in the local scope and through component properties.

The typeRef/type property must be a supported type in Excel or FEEL; custom types are not allowed. Each

component must have either a value or formula property to define the value attached to it. These two properties

plus the holding mechanism, makes the context type variables distinguishable from the component type

variables. See the example below.

contexts: {

 cPmt: {

 language: "FEEL",

 components: {

 payment: {

 typeRef: 'number',

 formula: "(loan.principal*loan.rate/12)

 / (1 - (1 + loan.rate/12)**-loan.termMonths)"

 },

 fee: {

 typeRef: 'number',

 value: 10

 },

 total: {

 typeRef: 'number',

 formula: "payment + fee"

 }

 }

 }

}

23

The components “payment”, “fee”, and “total” are in the local scope of the context variable cPmt. Outside that

context, the same names can be used either in the global scope or another local scope and they will be

distinguishable. Notice that the formulas in the context can reference variables from both local and global

scopes.

Defined in this way, the context object is a variable itself and can be used in formulas as a whole – it will be
treated as a vertical array with all component values. The context object may also be used component-wise

through the ‘.’ operator. For example, cPmt.total will return only the total component.

The component property typeRef comes from the DMN syntax, but the Excel property type is also supported.

Since the basic component types depend on the language, users must pay attention to the assigned type values.

For example, if a context uses language: Excel, then the FEEL type "duration" may not be assigned to a

component. Frontline encourages the usage of typeRef with language: "FEEL" and type with language: "Excel".

Notice that the context object resembles box functions without arguments. The difference between the two is

that box functions have one more result formula and that is the only value they are able to compute in return.

Box functions reference box function components as results. Since contexts have no result or default

components, when used without the ‘.’ operator, contexts return all component values in a vertical array.

There are two functions which can be used optionally with Context objects when the language is set to FEEL,

i.e "language": "FEEL". RASON Decision Services has implemented them in order to obtain compliance for

the DMN specification.

• getValue(contextObject, componentName) is equivalent to contextObject.componentName

• getEntries(contextObject) is equivalent to simply referencing the contextObject

Custom Types
In past versions of RASON, type definitions were not required as optimization and simulation models dealt

exclusively with numeric values. However, with the recent introduction of decision tables and custom

functions, RASON Decision Services is now supporting custom type definitions. With this new service,

RASON Decision Services now conforms to DMN Specification Level 2. Custom Type definitions can be
applied to all sorts of RASON model problem types including optimization, simulation and stochastic models

along with decision tables and custom functions. Note: Custom Type definitions are not supported in RASON

data mining models.

For more information on Custom Types or to read through a few example models using custom types, please

see the Custom Types Definitions chapter within the RASON User Guide.

Data-source Binding

One key benefit to using a custom type definition is the ability to bind a single variable-structure, containing

multiple named components, to the entire record.

In the past, the following data source declaration would require three different variables in order to bind to each

value column.

"datasources": {

 "dsc_loan": {

 "type": "csv",

 "connection": "loan_data.txt",

 "selection": "loanID=?",

 "parameters": {

 "ID": {

 "binding": "get",

 "value": "L1"

 }

 },

 "indexCols": ["loanID"],

 "valueCols": ["principal", "rate", "termMonths"]

 }

}

However, once a custom type definition has been defined…

"typeDefs": {

"tLoan": {

 "language": "FEEL",

 "components": {

 "principal": {"typeRef": "number", "allowedValues": [">0"]},

 "rate": {"typeRef": "number", "allowedValues": ["0..1"]},

 "termMonths": {"typeRef": "number", "allowedValues": ["0>"]}

 }

 }

}

…then a new variable can be introduced with "type" set to the custom type definition (in this example "loan")

and that variable can be bound to the data-source (in this example "dsc_loan) as shown in the code below.

"data": {

 "loan": {

 "type": "tLoan",

 "binding": "dsc_loan"

 }

}

The binding property feeds the components of the variable, loan, with the values in the data-source record.

Later in formulas, the components may be referenced through the "." operator, for example:

"formulas": {

 "payment": "(loan.principal * loan.rate/12)/(1-(1+loan.rate/12)^-

 loan.termMonths)",

 "finalValue":[]

}

Note: The variable "loan" of this custom type definition can be alternatively initialized inline or through the

existing binding "get".

"data"

 "loan": {

 "type": "tLoan",

 "value": [100000, 0.0375, 360],

 "binding": "get"

 }

}

Custom Types in RASON

Custom Type is a major feature in the DMN/FEEL specification (Conformance Level 2) utilized heavily in the

development of Decision Trees and Custom Functions. However, this feature may be used in RASON Decision

services beyond these two applications.

There are two different structures for custom types: custom types with constraints on values and custom types

with components.

• Custom types with constraints on values

25

In this structure, all members of tEmploymentStatus and tAge are of the same typeRef, either "string" for

tEmployementStatus or "number" for tAge.

Custom Type with Constraints Example

"typeDefs": {

 "tEmploymentStatus": {

 "type": "string",

 "allowedValues": ["UNEMPLOYED", "EMPLOYED", "SELF-EMPLOYED",

 "STUDENT"]

 },

 "tAge": {
 "language": "FEEL",
 "typeRef": "number",
 "allowedValues": ["[18..21]", ">65"]

 }

},

• Custom types with components

This custom type uses the components property to define a list of components for the custom type structure.

Notice that this structure allows different types to be passed to each component in the type definition.

Custom Type with Components Example

"typeDefs": {

 "tLoan": {

 "language": "FEEL",

 "components": {

 "principal": {"typeRef": "number", "allowedValues": [">0"]},

 "rate": {"typeRef": "number", "allowedValues": ["0..1"]},

 "termMonths": {"typeRef": "number", "allowedValues": ["0>"]}

 }

}

Custom Type Specifications

A custom type must be defined within the "typeDefs": {} section of the RASON model.

The components of a custom type definition are:

• "language": Select the syntax (Excel or FEEL) by using "language": "FEEL" or "language":

"Excel". The supported type is determined by the language setting. If missing, the default is "Excel".

Type definitions within the same RASON model can be different. In other words, two type definitions

within the same RASON model using two different language settings may exist.

• "isCollection": Use the "isCollection" property to allow multiple records to be passed to the variable

with the given "type". See the Advanced Features section below for more information on this property.

• "typeRef" or "type": Assigns a variable to a given type.

• "language": FEEL or Excel

• If "language": "FEEL", use the "typeRef" property.

"typeDefs": {

 "tEmploymentStatus": {

 "language": "FEEL",

 "typeRef": "string",

 "allowedValues": ["UNEMPLOYED", "EMPLOYED", "SELF-EMPLOYED",

 "STUDENT"]

 }

}

• If "language": "Excel", use the "type" property rather than "typeRef".

"typeDefs": {

 "tEmploymentStatus": {

 "language": "Excel",

 "type": "string",

 "allowedValues": ["UNEMPLOYED", "EMPLOYED","SELF-EMPLOYED",

 "STUDENT"]

 }

 }

Supported Types when Formula Language = Excel

Boolean: The entered words TRUE and FALSE are interpreted as Boolean reserved words, not strings.

Number: May be an integer or fraction.

String or Text: Any string

Support Types when Language = FEEL

Boolean: The entered words TRUE and FALSE are interpreted as Boolean reserved words, not strings.

Date: Any valid date, such as 05-05-1964

Duration: There are two formats for duration, one measuring periods in months and another measuring
periods in seconds. For example, P1DT1H2M3S denotes:

• P for "period"

• 1D for 1 day

• T for "time"

• 1H for 1 hour

• 2M for 2 minutes and 3S for 3 seconds.

Note: Since the basic component types depend on the "language" (Excel or FEEL) used, it is

important for users to note the assigned type values. For example, if "language": "Excel", "typeRef"
may not be set to "duration" since this type reference is not supported for this language.

• "components": Use this property to list the members in the type definition. This example contains 3

components: principal, rate, and termMonths. Each of these components is of type "number".

"typeDefs": {

 "tLoan": {

 "language": "FEEL",

 "components": {

 "principal": {"typeRef": "number", "allowedValues": [">0"]},

 "rate": {"typeRef": "number", "allowedValues": ["0..1"]},

 "termMonths": {"typeRef": "number", "allowedValues": ["0>"]}

 }

 }

},

• "allowedValues": Use this property to specify the exact values that a type definition can take on, for

example, a value greater than 0. In this example,

27

"typeDefs": {

 "tLoan": {

 "language": "FEEL",

 "components": {

 "principal": {"typeRef": "number", "allowedValues": [">0"]},

 "rate": {"typeRef": "number", "allowedValues": ["0..1"]},

 "termMonths": {"typeRef": "number", "allowedValues": ["0>"]}

 }

 },

Data
Data arrays may be defined and calculated in this optional section to be used later when defining constraints,

the objective in an optimization model, or an uncertain function in a simulation model. If you are pulling data
from an external source, use this section to "bind" the data to an array or table.

In the example code below, data from the qty column from the parts_data data source is assigned to the

parts table. Note: A table is created here, rather than an array, by the use of the valueCol property.

data: {

 parts: {

 binding: "parts_data", valueCol: 'qty'

 },

}

Scalars, arrays or tables containing scalars maybe be defined in the data section to be used in a constraint,

objective or uncertain function definition.

The following is an example of a scalar constant, which is neither an array nor a table.

time: { value: 10 }

In the example below, the array profit with size equal to 3 contains the values, 75, 50, and 35. In this

instance, the binding property allows write access to the profit array outside of the model environment.

data: {

profit: {

 dimensions: [3], value: [75, 50, 35], binding: "get" },

},

The following is an example of a scalar constant, which is neither an array nor a table.
time: { value: 10 }

To change the array elements in profit to 100, 75, 50; you can pass new data directly in the REST API call, via

standard HTTP GET parameters, for example:

$.get(https://rason.net/api/optimize?profit=100,75,50...

To change only one element, say the middle element from 50 to 60, your call to the REST API, via standard
HTTP GET parameters would change to:

$.get(https://rason.net/api/optimize?profit[2]=...

We also could have created the profit array by using an alternate syntax, shown below. However, when a
parameter is defined in this way, you will not be able to pass new values to the array outside of the RASON

model environment (as shown above).
"data" : [

 { name: "profit", value: [75, 50, 35], binding: "get", finalValue: [] }

],

https://rason.net/api/optimize?profit%5b2

All properties available for data, can be found in the table below.

Data Property Type Explanation

aliasName aliasName:

“num_parts_inventory”

This property is automatically inserted into the

converted RASON model when an Excel model is

deployed through Analytic Solver’s Deploy Model

button, if a block of cells containing data is assigned

a defined name in the Excel Solver model.

binding binding: "get"

profit: { binding:

"profit_data" }

Allows data to be edited outside of the model from a

URL or when calling the RASONTM interpreter to

solve an optimization or simulation model.

Used to bind imported table from the

profit_data datasource to a new table named

profit.

comment comment: "partsReq" array holds
the number of parts required to

produce each product

Enter a comment here to describe the data.

name name: "parts" Use this property to define the table, array or scalar

name.

type p: { type: ‘number’,

value: 1, binding:

‘get’ }

Use the type property to ensure that the correct data

type is passed with the binding ‘get’.

Valid standard types are:

"boolean", "number", "string", "array",

"array/boolean", "array/number", "array/string"

“array” - array of any data

“array/number” - array of numbers only or a scalar

number

Data Mining types: "dataset", "fittedModel"

value value: [1, 1, 1]

value: [[1, 1, 1],

 [2, 2, 2],

 [3, 3, 3]]

Sets the values of the array.

Sets the values of a table.

If dimensions property is missing, the shape of the

variable array will be determined by the shape of the

value property. However, it is recommended that the

dimensions property be used for readability

purposes.

valuecol valueCol: ['initials'] Used with binding property to bind imported

values from a readable data source. If omitted, the
RASON interpreter assumes the last column in the

table as the input to valueCol.

Data Sources
External data sources may be defined in this optional section. Data from these sources is imported into

parametric tables or arrays to be used in 1. formula calculations or 2. as initial starting points for decision

variables in a nonlinear optimization model. Currently the RASON modeling language supports ten different
data sources: "excel" (Microsoft Excel), "access" or "msaccess" (Microsoft Access), "odbc" (ODBC database),

29

"odata" (OData database), "mssql" (Microsoft Sequel), "oracle" (Oracle database), CSV (Comma Separated

Value), "json" (JSON file), or "xml" (XML file). Data sources such as "Access", "ODBC", "CSV", etc, contain

data in tables with records described by index and value columns. Binding to these data sources results in table

objects. Data source types such as Excel and CSV may contain data in 2-dimensional arrays without any

descriptions. Binding to these data sources results in array objects. Objects are bound to data sources within

the data section. However, if exporting the results of a solve, we must bind to objects within the variables,

constraints, objective, uncertainVariables, and uncertainFunctions sections.

Importing

In the example below, data from three columns, "parts", "products" and "qty", within the ProductMixParts.txt

CSV file is imported to the data source parts_data. (To open ProductMixParts.txt, browse to (typically)

C:\Program Files\Frontline Systems\Solver SDK Platform\Examples\RASON.)

The first property, type, specifies the type of file where the data is contained. In this example, the file is a CSV

(Comma Separated Values) file as shown in the screenshot. The second property, connection, specifies the

file name within quotes ("ProductMixParts.txt; header"). The term header appears after the file

name because the CSV file contains column headings. If your CSV file does not contain column headings, this

term should be omitted. (See Note below.) The term direction stipulates whether the contents of the file

are being imported or exported. If importing, then direction should be import, the default setting for

"direction".

The 3rd property indexes the data first by the parts column and secondly by the prods column using

indexCols. The 4th property defines the value column (column containing values rather than text), qty,

using valueCols. The property indexCols must appear before valueCols. The order of columns listed

by indexCols should be the same as the order in the datasource selection.

Note: The properties indexCols and valueCols describe a RASON Table while colIndex and rowIndex describe

a dataframe. These properties should be be mixed.

Note: Specifying that your CSV file contains column headings in the selection property is specific to CSV

files, this is not needed when using an Access or ODBC database or when your data is contained in an Excel

file.

 datasources: {
 parts_data: {

 type: "csv",

 connection: "ProductMixParts.txt; header",

 indexCols: ["parts", "prods"],

 valueCols: ["qty"],

 direction: "import"

 }

},

In the screenshot below, we have entered the same data as in the CSV file above into a spreadsheet in Excel.

In this example, the first property, type, specifies that the data is contained in an Excel file. The second

property, connection, specifies the name of the file, "ProductMixExcel.xlsx". The 3rd

property,selection: "Parts_Table", is a defined name given to the Excel range G2:I12.

Alternatively, we could also pass selection: "Sheet1!G2:I12". The 4th property, indexCols,

indexes the data first by the "parts" column then by the prods column. The 5th property, valueCols,

defines the value column (column containing values rather than text), qty. The 6th property, direction,

specifies that the contents of the data source are being imported, the default setting.

datasources :

 {

 parts_data: {

type: "excel",

connection: "ProductMixExcel.xlsx",

selection: "parts_table",

 indexCols: ["parts", "prods"],

valueCols: ["qty"],

sortIndexCols: true,

direction: "import"

}

 }

If we were to add more data to parts_table, then at a minimum we would need to update the selection

property. Here's the same data but this time the data is "raw", in other words, all the columns contain values. In

31

this instance we can create an indexed set and define column and row headings using the properties colIndex

and rowIndex. Now, if a new product or part is added, this section of our model will not require any changes.

As in the example above, the first property, type, specifies that the data is contained in an Excel worksheet,

"excel"; the second property, connection, passes the name of the Excel file,

"ProductMixExcel.xlsx"; and the third property, selection, passes the Excel cell range that contains

the data, in this instance, "Sheet1!B2:D6".

However in this example, a dataframe is created for the parts_data datasource using the two properties colIndex

and rowIndex. When a parameter is binding to such a datasource, the object is a dataframe or a 2D
array.

A dataframe, the workhorse of the Rason Server, is a collection of data organized into named columns of equal

length and homogeneous type. Rason uses DataFrames to deliver input data to an algorithm and to deliver the

results of the algorithm back to the user. DataFrames hold heterogeneous data across columns (variables):

numeric, categorical, or textual. When solving a decision flow containing optimization or simulation models,

the columns that are indexed over the same dimensions and that belong to the same entity are reported in a

single dataframe with multiple columns rather than multiple dataframes, i.e. final, dual, initial, etc for

optimization results and statistics for uncertain variables or functions in simulation models. RASON can still

bind to the individual results such as optModel.x.finalValue but will also consider the possibility of the last

segment being a dataframe column rather than a separate dataframe. As a result, JSON responses are concise

which greatly simplifies OData representation and querying.

The 4th property, colIndex, binds the index name prods to the columns and the 5th property, rowIndex,

binds the index name #parts to the rows. The property colIndex binds a set of integers from 1 to the

number of columns and the property rowIndex binds a set of integers from 1 to the number of rows to the 2-

dimensional array parts_data.

datasources :

 {

parts_data: {

type: "excel",

connection: "ProductMixExcel.xlsx",

selection: "Sheet1!B2:D6",

 colIndex: "prods",

rowIndex: "parts",

direction: "import"

},

}

In this example, if a new product or new part is added, there will be no changes required to this section of the

model. It is completely scalable.

This next example illustrates how to import data from an SQL database residing on an Azure server in the

Cloud using an ODBC connection string. (See the example RGProductMixSQL11.json on www.RASON.com.)

The RASON modeling language allows readable and writeable access to outside data sources, such as an SQL

database residing on a an Azure server in the Cloud using an ODBC connection string. Note that within the

datasources section, data is matched by name using the indexcols and valuecols properties rather than

by position, i.e. see selection within parts_data, in the example code below (See the example

RGProductMixSQL11.json on www.RASON.com.)

The first property, type, specifies the type of file containing the data, in this case the file is a SQL database.

The second property, connection, passes the connection string as obtained from the server. (See below for

information on creating a Named Data Connection.) The third property, selection, imports three fields from

the Parts table, Parts, Products and Qty ordered according to the ID field. The 4th property,

indexCols, indexes the data first by parts and secondly by prods while the 5th property, valueCols,

holds the actual data from the qty field. The 6th property stipulates the "direction" of the file as "import".

datasources :

parts_data: {

 type: "odbc",

 connection: "Driver={SQL Server Native Client

11.0};Server=tcp:solver.database.windows.net,1433;Database=Rason;Uid

=rasonread;Pwd=Rason1234;Encrypt=yes;TrustServerCertificate=no;Conne

ction Timeout=30;",

 selection: "SELECT Parts as parts, Products as prods, Qty as

qty FROM Parts ORDER BY ID",

 indexCols: ['parts', 'prods'],

33

 valueCols: ['qty'],

 direction: "import"

},

We also could have created the parts_data data source by using an alternate syntax, shown below.

However, when a variable is defined in this way, it will not be available outside of the model environment.

datasources : {

 { name: "parts_data",

connection: "Driver={SQL Server Native Client

11.0};Server=tcp:solver.database.windows.net,1433;Database=Rason;Uid

=rasonread;Pwd=Rason1234;Encrypt=yes;TrustServerCertificate=no;Conne

ction Timeout=30;",

selection: "SELECT Parts as parts, Products as prods, Qty as qty

FROM Parts ORDER BY ID",

indexCols: ["parts", "prods"],

 valueCols: ["qty"],

 direction: "import"

 }

},

Our final example illustrates how to import data from an OData data source. This model is also completely
scalable. For more information on OData, see <a ref="http://www.odata.org"

target="_blank">www.odata.org. Note: OData data sources are not currently writeable due to limitations

in the commonly OData specification.

A screenshot of the OData data source can be found below. (To open this example, browse to (typically)

C:\Program Files\Frontline Systems\Solver SDK Platform\Examples\RASON and open the file

ProductMixOData1.json.)

The dataSources section contains the following code:

datasources : {

parts_data: { type: "odata", connection:

"http://localhost:60865/MyWcfDataService.svc/", selection:

"ProductParts?$format=json&columns=Part,Product,QTY",

indexCols: ['parts', 'prods'], valueCols: ['qty'], direction: "import" },

http://www.odata.org/

invent_data: { type: "odata", connection:

"http://localhost:60865/MyWcfDataService.svc/", selection:

"Inventory?$format=json&columns=Part,Inventory",

indexCols: ['parts'], valueCols: ['inventory'], direction: "import" },

profit_data: { type: "odata", connection:

"http://localhost:60865/MyWcfDataService.svc/", selection:

"Profits?$format=json&columns=Product,Profit",

indexCols: ['prods'], valueCols: ['profit'], direction: "import" }

},

Let's look at the parts_data data source first.

The first property for parts_data, type, specifies the type of file containing the data. In this case, the type

is an OData data source. The second property, connection, specifies the location of the OData data source

on the internet or distributed server. (See below for information on creating a Named Data Connection.) The

The third property, "ProductParts?$format=json&columns=Part,Product,QTY",imports three

fields from the ProductParts table, Part, Inventory and QTY. In this example,

$format=json is passed within the selection property to stipulate which OData format (JSON or XML) the

table should be returned. This is an optional argument. If passed, the OData service will return the data in the

format specified, $format=json for JSON or $format=atom for XML. If omitted, the OData service will return

the data in preferred format: JSON, XML. The RASON server will automatically recognize the format if not

specified. The 4th property, indexCols, indexes the data first by parts and secondly by products, while

the 5th property, valueCols, imports the actual data from the qty field. The ID column within the

ProductParts table is not used. The 6th property, direction, indicates that the data will be "imported".

The properties for the invent_data and profit data data sources are similar. The first property, type,

specifies the type of file, the second property connection specifies the location of the OData data source on

the internet or server, while the third property, selection, specifies the columns to be imported and in what

format they should be imported, in both cases, JSON. In invent_data, the Part and Inventory fields

are imported from the Inventory table and in profit_data, the Product and Profit fields are

imported from the Profits table. The fourth property, indexCols, indexes the data by parts in

invent_data and prods in profit_data. The last property, valueCols, imports the actual data

from within the inventory (in the invent_data source file) and profit (in the profit_data source

file) fields.

Using a Named Data Connection

In previous versions of RASON, models that accessed external databases required actual credentials to be

passed, such as database URLs, port numbers, usernames, and passwords, in the text of the RASON model, in a

dataSource declaration, as shown above and in the example code below.

Previous versions of RASON

 "parts_data": {

 "type": "odbc",

 "connection": "Driver={SQL Server Native Client

11.0};Server=tcp:solver.database.windows.net,1433;Database=Rason;Uid=ra

sonread;Pwd=Rason1234;Encrypt=yes;TrustServerCertificate=no;Connection

Timeout=30;",

 "selection": "SELECT Parts as parts, Products as prods, Qty as qty

FROM Parts ORDER BY ID",

 "indexCols": ["parts", "prods"],

 "valueCols": ["qty"],

 "direction": "import"

 },

35

RASON 2020 offers an alternative to tackle this security risk by substituting

"connection": "Driver={SQL Server Native Client

11.0};Server=tcp:solver.database.windows.net,1433;Database=Rason;Uid=ra

sonread;Pwd=Rason1234;Encrypt=yes;TrustServerCertificate=no;Connection

Timeout=30;",

with three options: a file containing the contents of "connection" as in (1) below, a named Data Connection as
shown in (2) or a URL pointing to Microsoft Common Data Service as shown in (3).

1. "connection": "File = filename",

RASON 2020 will interpret this as (i) get the text contents of filename, which must be attached to the

current model instance and (ii) substitute this text for the string "File=filename". Therefore, if

filename contains the text "Driver={SQLServerNativeClient…Timeout=30;", the effect

will be the same as in previous versions of RASON.

2. "connection": "Name=myname", where myname is the name given to the Data Connection. See

below for instructions on how to create a named Data Connection.

3. "connection": "secret=uri", where uri is the Microsoft Common Data Service URL

"connection": "xxxx.crm.dynamics.com" where the actual Microsoft Common Data Service

URL is passed directly to "connection".

If using a with "secret=url" in the dataSources section of your RASON model, enter a URI of the

form https://subdomain.crm.dynamics.com. , i.e.
"https://www.cdatacloud.net/solver/api.rsc/GoogleSheets1_ODataSourceExa

mple_Sheet1",

RASON 2020 will interpret this as (i) get the text contents of the "secret" represented by the URL and (ii)

substitute this text for the string "Secret=url". So if the "secret" contains the text

"Driver={SQLNativeClient…Timeout=30;", the effect will be the same as in previous versions of RASON.

Similarly, if using CData Cloud Hub with "connection": "xxxx.crm.dynamics.com", enter a

URI of the form https://subdomain.crm.dynamics.com.

RASON 2020 will interpret this as (i) get the text contents of the connection represented by the URL and

(ii) substitute this text for the string "connection".

Currently, RASON 2020 supports "secrets" maintained, only, in an Azure Key Vault. Enterprise customers

can provision their own Key Vault and arrange to authenticate the RASON Server to this Key Vault if so

desired.

For more information on how to setup and maintain a named Data Connection, see the RASON Services WEB

IDE chapter within the RASON User Guide.

Parametric Selection Feature

The example model DT Loan Strategy Model2.json, demonstrates how to import this same data from an
external data file using a parametric selection criteria. A Parametric Selection allows a single record to be

selected from an external datasource file as an input. Parametric selection in data-sources is universal, but it is

critical to decision tables, which expect a single record for their inputs. All supported data types may be used

with this feature.

Much of the customer and loan data is imported from the two datasources: loan_data and cust_data. The

datasources section creates two datasources, cust_data and loan_data. The datasource, cust_data, binds to the

customers.txt csv file. This file contains five input parameters, age, maritalStatus, employmentStatus,

creditScore and bankrupt. A screenshot of this file is shown below.

http://xxxx.crm.dynamics.com/
https://subdomain.crm.dynamics.com/
https://www.cdatacloud.net/solver/api.rsc/GoogleSheets1_ODataSourceExample_Sheet1
https://www.cdatacloud.net/solver/api.rsc/GoogleSheets1_ODataSourceExample_Sheet1
http://xxxx.crm.dynamics.com/
https://subdomain.crm.dynamics.com/

The loan_data datasource binds to the loans.txt csv file. This file contains three input parameters: type, rate,

and turn.

{ modelName: "loanStrategy",

 datasources :{

cust_data: {

 type: "csv",

 connection: "customers.txt",

 selection: "custID = ?",

 parameters: {

 cuID: {

 binding: 'get',

 value: 'c1'

}

 },

indexCols: ['cust ID'],

valueCols: ['age', 'maritalStatus', 'employmentStatus',

'creditScore', 'bankrupt'],

direction: "import"

 },

Inside of the cust_data datasource, we see the connection argument passing the CSV file, connection:

"Customers.txt" (screenshot above). The selection argument selects the "CustID" column , from the

Customers.txt file, and replaces "custID = ?" with "custID = cuID"; the parameters argument binds "cuID" to

"c1". In addition, indexCols is set to "cust ID" and valueCols are set to 'age', 'maritalStatus',

'employmentStatus', 'creditScore', and 'bankrupt'. This means that cust ID is the index column and 'age',

'maritalStatus', 'employmentStatus', 'creditScore', and 'bankrupt' are the value columns.

loan_data: {

 type: "csv",

 connection: "loans.txt",

 selection: "loanID = ?",

 parameters: {

 loID: {

 binding: 'get',

 value: 'l1' }

 },

 indexCols: ['loanID'],

 valueCols: ['type', 'rate', 'term'],

 direction: "import" }

 },

Inside of the loan_data datasource, we see the connection argument passing the CSV file, connection:

"loans.txt" (screenshot above). The selection argument selects the "loanID" column , from the

37

loans.txt file, and replaces "custID = ?" with "custID = loID"; the parameters argument binds "loID" to "l1". In

addition, indexCols is set to "loanID" and valueCols are set to 'type', 'rate' and 'term'. This means that

loanID is the index column and 'type', 'rate and 'term' are the value columns.

If we wanted to use multiple selection criteria, such as cust ID and maritalStatus, we would change the code to

the following:

cust_data: { type: "csv",

 connection: "customers.txt",

 selection: "custID = ? and maritalStatus=?",

 parameters: {

 cuID: { binding: 'get', value: 'c1' },

 marryStat: {binding: 'get', value: 'c2'}

 },

 indexCols: ['custID'],

valueCols: ['age', 'maritalStatus', 'employmentStatus',

'creditScore', 'bankrupt'],

direction: "import"

 },

The RASON Server will map "custID=?" with "custID = c1" and "maritalStatus=?" with "maritalStatus = m"

using the order found in the selection and parameters arguments, i.e. custID precedes

maritalStatus in selection thus cuID must precede marryStat in parameters. A query can

return any number of rows that satisfy the filtering condition, from 0 to infinity. Note that parameter names

must not be the same as parameter names in the selection query, i.e. "cuID" could not be renamed to "custID".

To make this same query outside of the RASON model, use:

$.get(https://rason.net/api/decision?cuID=c1&marryStat=s.....

Or in general:

$.get(https://rason.net/api/decision?par1=val1&par2=val2.....

Note: In this instance, quotes are not needed around the value arguments (in this case c1 and s). Quotes would

only be needed if a string with spaces were being passed as a value.

It's also possible to match the name defined in the RASON model to the SQL parameter name. In this example,

the syntax would be

cust_data: { type: "csv",

 connection: "customers.txt",

 selection: "custID = $cuID",

 parameters: {

 cuID: { binding: 'get', value: 'c1' },

 marryStat: {binding: 'get', value: 'c2'}

 },

Or, with multiple selections…

cust_data: { type: "csv",

 connection: "customers.txt",

 selection: "custID = $cuID and maritalStatus=$marryStat",

 parameters: {

 cuID: { binding: 'get', value: 'c1' },

 marryStat: {binding: 'get', value: 'c2'}

 },

The remaining data is passed in the data section. The input data custExist is passed as a constant within the

RASON model.

data: {

 comment: "use binding to feed dif. values",

https://rason.net/api/decision?cuID=c1&marryStat=s
https://rason.net/api/decision?par1=val1&par2=val2

 custExist: { value: false },

 custAge: { value: 40, binding: 'cust_data', valueCol: 'age' },

maritalStatus: { value: 's', binding: 'cust_data', valueCol:

'maritalStatus' },

employmentStatus: { value: 'selfEmployed', binding: 'cust_data',

valueCol: 'employmentStatus' },

 creditScore: { value: 610, binding: 'cust_data', valueCol:

 'creditScore' },

 bankrupt:{ value: false, binding: 'cust_data', valueCol: 'bankrupt' },

 monthIncome: { value: 2500, binding: 'get' },

 monthExpenses: { value: 1000, binding: 'get' },

 loanType: { value: 'standard', binding: 'loan_data', valueCol: 'type'

 },

 loanRate: { value: 5.0, binding: 'loan_data', valueCol: 'rate' },

 loanTerm: { value: 30, binding: 'loan_data', valueCol: 'term' },

 loanAmnt: { value: 100000.0, binding: 'get' }

},

The decision table results return the recommended loan strategy for customer 1.

 { "loanstrategy": {

 "status" : { "code" : 0, "codeText" : "Solver has

 completed the calculation." },

 "observations" : {

 "strategy" : { "value" : "bureau" },

 "routing" : { "value" : "accept" }

 }

 }

}

Changing Table Components Outside of the RASON Model

Input data monthIncome, monthExpenses, and loanAmnt are passed within the RASON model as "get"

only. This property allows write access to the data outside of the model environment using the keyword "get".

For example, let's say we wanted to increase the value for monthIncome but we did not want to do so within the

RASON model. Rather we could pass this new parameter in the call to the "decision" endpoint.

$.get(https://rason.net/api/decision?monthIncome=3000...

 Note: Changing a decision table component outside of the RASON model is not supported.

See the Loan Strategy Example within the RASON User Guide for a complete walkthough of this example.

Exporting

In the example below, initial variable values are first imported from the CSV file ResultVarsInit.txt and, after

the model is solved, the final variable values are saved back to that same CSV file. The final constraint values

are saved to ResultFcns.txt and the final objective value is saved to ResultObj.txt. (To open and view the
complete example file, RGProductMixCsv1.json, and the three files containing the results, ResultVarsInit.txt,

ResultFcns.txt, and ResultObj.txt, browse to (typically) C:\Program Files\Frontline Systems\Solver SDK

Platform\Examples\RASON.) A screenshot for the file ResultVarsInit.txt is shown below. This file contains

the prods dimension and the initial variable values. Both ResultFcns.txt and ResultObj.txt will be created

once the model is solved.

https://rason.net/api/decision?monthIncome=3000...

39

Note: It is currently not possible to import the initial variable values from one datasourse and export the final

variable values to a different data source. In addition, each variable/uncertainVariable block or

constraint/uncertainFunction/objective block must be saved to a unique data source.

{ datasources : {
 …

 vars_data: { type: "csv", connection: "ResultVarsInit.txt",

indexCols: ['prods'], valueCols: ['initials'],

direction: "import/export" },

fcns_data: { type: "csv", connection: "ResultFcns.txt", direction:

 "export" },

 obj_data: { type: "csv", connection: "ResultObj.txt", direction:

 "export" }

 },

…

 variables : {

 x: { binding: "vars_data", valueCol: 'initials', lower: 0,

 finalValue: [] }

 },

 constraints: {

 c: {dimensions: ['parts'], binding: "fcns_data", formula:

 "MMULT(piv_parts, x)", upper: 'invent', finalValue: [] }

 },

 objective : {

 total: { binding: "obj_data", formula: "sumproduct(x, profit)",

 type: "maximize", finalValue: [] }

 }

Let's start with the fcns_data and obj_data data sources. The fcns_data datasource exports the final

constraint values to the TXT file, ResultFcns.txt. The first property, type, specifies the type of file where the

data is being imported/exported. In this example, the file is a CSV file. The second property, connection,

specifies the file name within quotes ("ResultFcns.txt") while the third property assigns the direction of

the file as "export". The binding property within the c constraint definition "binds" the constraint block to

the fcns_data data source. The user must specify which results he/she would like exported. In this example,

only one output property is passed, finalValue:[]. For a complete list of results that may be written to a

writeable data source, see the constraints section discussion.

Similarly, the obj_data datasource exports the final objective value to the TXT file, ResultObj.txt. Again the

first property, type, specifies the file type ("CSV")while the second property, connection, specifies the

file name ("ResultObj.txt")and the third, direction, specifies that the file will be exported. Within

objective, the total objective function is bound to the obj_data data source. The only output property

passed within the objective definition is finalValue:[]. As a result, only the final objective function

value will be exported to ResultObj.txt. For a complete list of results that may be written to a writeable data

source, see the objective section discussion.

The vars_data data source performs a dual function by first importing the decision variable initial values

from the CSV file ResultVarsInit.txt and then saving the final variable values back to that same file. As

discussed above, the first property, type, specifies the type of file where the data is being imported/exported

("csv") while the second property, connection, specifies the file name within quotes

("ResultVarsInit.txt"). The third and fourth properties (indexCols and valueCols) are required for

importing the initial variable values. The third property, indexCols specifies the dimension(s) (or

column(s)) to be imported and the fourth property, valueCols, specifies the values to be imported. Within

variables, a block of decision variables x is bound to the vars_data data source using the binding

property. Since only one output property is passed within the x definition, finalValue:[], a single

column containing the final values of the decision variables will be appended to ResultVarsInit.txt. The last

property, direction: "import/export", stipulates that the contents of the file will be "imported" (for

initial variable values) and then the final variable values will be "exported", hence the setting "import/export".

For a complete list of results that may be written to a writeable data source, see the variables section

discussion.

The export results are shown in the three screenshots below starting with ResultVarsInit.txt. Notice that a new

column has been appended, finalValue. (This is the result of the finalValue output property within the

x array definition.)

 Screenshots of the newly created files ResultFcns.txt and ResultObj.txt are shown below.

To perform the same steps when importing/exporting to an Excel file, you need to specify the cell address
containing the dimensions to be imported and/or the cells to which the results should be exported. In this

second export example (below), the vars_data data source is again importing initial decision variable values

and then exporting the final decision variable values to the same Excel workbook. A screenshot of

41

ProductMixExcel.xls is shown below. (To open this file, log on to www.RASON.com, then click the Editor tab

and RASON Examples – Example models discussed in RASON Reference Guide.)

datasources: {

 vars_data: { type: "excel", connection: "ProductMixExcel.xlsx",

 selection: "Sheet1!Q2:R4", indexCols: ['prods'], valueCols:

 ['initials'], direction: "import/export"},

 fcns_data: { type: "excel", connection: "ProductMixExcel.xlsx",

 selection: "Sheet1!U2:U6", indexCols: ['parts'], direction: "export" },

 obj_data: {type: "excel", connection: "ProductMixExcel.xlsx",

 selection: "Sheet1!X1", direction: "export"}

},

variables : {

 x: { dimensions: ['prods'], binding: "vars_data", valueCol: 'initials',

 lower: 0, finalValue: []},

constraints : {

 c: { dimensions: ['parts'], binding: "fcns_data", formula:

 "MMULT(piv_parts, x) - invent", upper: 0, finalValue: []}

},

objective : {

 total: { formula: "sumproduct(x, profit)", type: "maximize", binding:

 "obj_data", finalValue: [] }

}

Again, let's start with the fcns_data and obj_data data sources. The fcns_data datasource exports the

final constraint values to the Excel file, ProductMixExcel.xlsx. The first property, type: "Excel",

specifies the type of file where the data is being imported/exported, in this instance an Excel file. The second

property, connection, specifies the file name within quotes ("ProductMixExce.xlsx"). The 3rd

property, selection: "Sheet1!U2:U6", gives the location, within the ProductMixExcel.xlsx

workbook, where the final constraint values will be saved. Alternatively, we could pass a defined name here.

The 4th property, indexCols, indexes the data by the "prods" column (or dimension). The binding

property within the c constraint definition "binds" the constraint block c to the fcns_data datasource. One

http://www.rason.com/

output property (finalValue:[]) is included in the c definition. The RASON interpreter will append the

final constraint values to the original selection. The last property, "direction", indicates that the file will be

exported. (The default setting for the direction property is "import".) For a complete list of results that may

be written to a writeable data source, see the constraints section discussion.

Similarly, the obj_data datasource exports the final objective value to ProductMixExcel.xlsx. Again the first

property, type, specifies the file type ("Excel"), the second property, connection, specifies the file name

("ResultObj.txt") and the third property, selection, specifies where the final objective value will be

written ("Sheet1!X1"). The binding property within the total objective definition "binds" the objective

definition to the obj_data data source. Since only the finalValue result property is present within the

objective definition, only the final value of the objective function (a single value) will be saved to

ProductMixExcel!X2. The last property, "direction", indicates that the file will be exported. For a complete list

of results that may be written to a writeable data source, see the objective section discussion.

As in the example above, the vars_data data source performs a dual function by first importing the decision

variable initial values from the Excel file ProductMixExcel.xlsx and then saving the final variable values back

to that same file. The first property, type, specifies the type of file where the data is being imported/exported

("Excel"), the second property, connection, specifies the file name within quotes

("ResultVarsInit.txt") and the third property, selection, specifies where the final variable values

will be appended ("Sheet1!Q2:R4"). We could pass a defined name here rather than a cell address. The

fourth and fifth properties (indexCols and valueCols) are required for importing the initial variable

values. The property, indexCols specifies the dimension(s) (or column(s)) to be imported and the property,

valueCols, specifies the value column to be imported. Within variables, the x array definition uses the

valueCol property to pass the initial variable values and the binding property to "bind" to the

vars_data data source. Since only one output property (finalValue:[]) is present within the x array

definition, only the final variable values will be appended to the original cell address, Q2:R4. The last property,

"direction", indicates that the file will be both imported and exported hence the setting "import/export".

The export results are shown in the screenshot below.

Note: If the "initials" column heading in Excel is replaced with "finalValue". RASON will both read the initial

variable values from cells R2:R4 and overwrite these values with the final variable values after the model is
solved.

The next example illustrates how to import and export data from an odbc database, specifically a

Microsoft Access database. The screenshot below shows the Profits table containing the "initials" field

containing the starting values of the decision variables.

See the Named Data Connections section above for more information on how to create a named data connection

where you can maintain your data access credentials in a secure Azure "vault" rather than passing them in the

connection property.

43

datasources : {

...

vars_data: { type: "msaccess", connection:

"ProductMixAccess.accdb",

selection: "SELECT Products, initials FROM Profits ORDER BY

ID", indexCols: ['prods'], valueCols: ['initials'],

direction: "import/export"

},

fcns_data: { type: "msaccess", connection:

"ProductMixAccess.accdb",

selection: "ResultFcns", direction:"export"

},

obj_data: { type: "msaccess", connection:

"ProductMixAccess.accdb",

selection: "ResultObj" , direction: "export"

}

},

...

variables : {

x: { dimensions: ['prods'], binding: "profit_data",

valuecol:'initials', lower: 0, finalValue: [] }

},

constraints : {

c: { dimensions: ['parts'], binding: "fcns_data", formula:

"MMULT(piv_parts, x)", upper: 'invent', finalValue: [] }

},

objective : {

total: { binding: "obj_data", formula: "sumproduct(x,

profit)", type: "maximize", finalValue: []

}

}

Once again, let's start with the fcns_data and obj_data data sources. The fcns_data

datasource, exports the final constraint values to the Access data base file, ProductMixAccess.accdb. The first

property, type: "msaccess", specifies the type of file where the data is being imported/exported.

Alternatively, "access" or "odbc" could have been passed instead of "msaccess". The second

property, connection, specifies the file name within quotes ("ProductMixAcess.accdb"). The 3rd

property, selection: "ResultFcns", creates a table within the Access database, where the final

constraint values will be saved. The direction property ensures that the file is "exported". Within the c

constraint definition, the constraint block is bound to the fcns_data data source by the binding property.

The output property, finalValue:[], will export the final constraint values to the ResultsFcns table within

the file, ProductMixAccess.accdb.

Note: See the Named Data Connections section above for more information on how to create a named data

connection where you can maintain your data access credentials in a secure Azure "vault" rather than passing

them in the connection property.

Similarly, the obj_data datasource exports the final objective value to ProductMixAccess.accdb. Again the

first property, type, specifies the file type ("msaccess"), the second property, connection, specifies the

file name ("ProductMixAccess.accdb") and the third property, selection, specifies the table where

the final objective value will be written ("ResultObj"). The direction property ensures that the file is

"exported". The binding property within the total objective definition "binds" the objective to the

obj_data source. The output property, finalValue:[], exports the final objective function value to the

ResultObj table within the file ProductMixAccess.accdb.

As in the two previous examples, the vars_data data source performs a dual function by first importing the

decision variable initial values from the Access database and then saving the final variable values back to that

same file. The first property, type, specifies the type of file where the data is being imported/exported

("msaccess"), the second property, connection, specifies the file name within quotes

("ProductMixAccess.accdb") and the third property, selection, imports two fields from the Profits

table in order by ID ("SELECT Products, Initials FROM Profits ORDER BY ID"). The 4th

property, indexCols, indexes the data by the prods dimension while the 5th property, valueCols,

imports the actual numerical data. The direction property ensures that the initial variable values are

imported and the final variable values are exported using direction: "import/export. Within

variables, the x array definition uses the valueCol property to pass the initial variable values and the

binding property to "bind" to the vars_data data source. The final variable values (requested using the

output property finalValues:[] within the x array definition) will be appended to the Profits table.

The results of the export are shown in the screenshots below. The first screenshot displays the Profits table.

Notice the appended finalValue field. The 2nd and 3rd screenshots display the ResultFcns and ResultObj tables,

respectively.

45

Note: See the Rason User Guide to see an example of how to import and export to/from an SQL Database
running on an Azure server running in the Cloud using an ODBC connection string.

 All properties available for dataSources, can be found in the table below.

Data Source

Property

Example Explanation

Type type: "Excel"

type: "odbc"

type: "csv"

Use this property to pass the file type:

"excel" (Microsoft Excel), "access" or

"msaccess" (Microsoft Access),

"odbc" (ODBC database), "odata"
(OData database), "mssql" (Microsoft

Sequel), "oracle" (Oracle database),

CSV (Comma Separated Value),

"json" (JSON file), or "xml" (XML

file).

connection connection: "ProductMix.xlsx"

connection: "ProductMixCSV.txt;header"

Note: See the Named Data Connections section above for

more information on how to create a named data connection

where you can maintain your data access credentials in a

secure Azure "vault" rather than passing them in the

connection property.

Use this property to pass the filename

of the data source.

If using a CSV file with column

headings, you must also pass "header",

i.e.:

selection 1a. selection: "Sheet1!B2:D6"

1b. selection: "Parts_Table"

2. Selection: "SELECT Parts,

 Products, Qty FROM Parts ORDER BY ID"

Use this property to select the

columns/fields to import.

1. If data source is an Excel file,

pass A. the Excel Range or B. an
Excel defined name.

2. If data source is an odbc database

use: SELECT + desired fields

separated by commas + FROM +

name of table containing desired

field(s) + ORDER BY + field

name containing order index

indexCols indexCols: ["parts", "prods"]

Note: The properties indexCols and valueCols create a

RASON table and should not be used with colIndex or
rowIndex which create a dataframe.

Used in conjunction with

valueCols. Use this property to

index by dimension(s).

valueCols valueCols: ["qty"]

Note: The properties indexCols and valueCols create a
RASON table and should not be used with colIndex or

rowIndex which create a dataframe.

Used in conjunction with

indexCols. Use this property to

import columns/fields containing

values

colIndex colIndex: "prods"

Note: The properties colIndex and rowIndex create a

dataframe and should not be used with indexCols or valueCols

which create a RASON table.

Use this property to create an implicit

index set consisting of integer

numbers from 1 to the number of

columns. This property should be

used when importing data not

organized as a table, and thus not

having index columns or value

columns.

rowIndex rowIndex: "parts"

Note: The properties colIndex and rowIndex create a

dataframe and should not be used with indexCols or valueCols

which create a RASON table.

Use this property to create an implicit

index set consisting of integer
numbers from 1 to the number of

rows. This property should be used

when importing data not organized as

a table, and thus not having index

columns or value columns.

sortIndexCols

sort

sortIndexCols: True Use this property to sort the columns

alphabetically.

direction direction: "import"

direction: "export"

direction: "import/export"

Use this property to specify if the

contents of the data source are being

imported ("import" – the default),

exported ("export") or both

("import/export")

Decision Tables
A decision table contains a set of rules which specify actions to perform based on specific conditions. Decision

tables should be used when there is a consistent number of rules, or conditions, to be evaluated followed by a

specific set of actions to be performed once a rule, or condition, is met.

A decision table is created in RASON using the newly introduced decisionTables RASON section as

shown in the example code below, however additional sections such as data, formulas, or dataSource will also

be called into play to pass the calculation parameters, get results, and import data respectively. A RASON

model creating and invoking a decision table is below. This example code uses decisionTables, data

and formulas components to pass the data to the decision table, create the decision table and finally calculate

the decision table.

The modeling language used internally for Rason's Decision Table functionality is S-FEEL extended to

standard conversion functions in FEEL. For more information on Decision Tables, we invite you to reference

47

the following: DMN Method and Style by Bruce Silver (Cody Cassidy Press, September 28, 20180 and DMN

Cookbook by Bruce Silver & Edson Tirelli (Cody-Cassidy Press, April 4, 2018).

Below, you will find a graphical representation of a decision table and the matching RASON code. See the

chart for explanations on each decision table component. See the RASON User Guide for a complete walk

through of several decision table examples.

O
age service holidays

number number 27,5,3,2

1 - - age - service

2 >=60 - 3

3 - >=30 3

4 <18 - 5

5 >=60 - 5

6 - >=30 5

7 [18..60] [15..30] 2

8 [45..60] <30 2

{ comment: "'O' output order policy example",

 decisionTables: {

 tblHolidays: {

 hitPolicy: 'outputOrder',

 inputs: ['age', 'service'],

 outputs: ['holidays'],

 refTypes: [‘number’, ‘number’, ‘text’],

 outputValues: [27, 5, 3, 2]

 rules: [

 ['-', '-', 22],

 ['>=60', '-', 3],

 ['-', '>=30', 3],

 ['<18', '-', 5],

 ['>=60','-', 5],

 ['-', '>=30', 5],

['[18..60]','[15..30]', 2],

['[45..60]','<30', 2]

],

 default: [1]

 }

 },

hitPolicy

inputValues

Rules

inputs

outputs

outputValues

Rules

 data: {

 age: { value: 58 },

 service: { value: 31 }

 },

 formulas: {

 result: { formula: "tblHolidays(,,age, service)", finalValue: []

}

 }

 }

 }

decisionTables

In RASON, tables are defined as objects in the newly introduced section decisionTables: { }. Each table

component is defined as component with a scalar or array value assigned to it. See the RASON User Guide for

a complete walk through of how to create and calculate a decision table. See the table below for all

components associated with decisionTables.

Data Source

Property

Example Explanation

default default: [1]

There are two ways to return a default value for a decision

table.

1. Simply use "-" for all unary tests.

2. Use the default component as shown in the

example above.

hitPolicy hitPolicy: 'outputOrder' Specifies how the table will be evaluated when multiple

rules are applicable and multiple output values are returned.

The Hit Policy value identifies the supported policies by a

capital letter and an operator, when applicable. The 1st letter

of the policy or the whole word may be passed to the

hitPolicy component. The currently supported Hit

policies and their meanings are:

Unique (U): A unique rule must be successful, or "hit",

evaluating to a unique result. If multiple rules are "hit", an

error will be returned.

Any (A): If rules overlap, but point to the same result, that
unique result is returned.

Priority(P): If multiple rules are "hit" and multiple results

collected, the result with the highest priority is returned.

Priorities are defined by the order in the outputValues

component.

First (F): Returns only 1 result. Once a rule is evaluated

successfully, or a hit occurs, the search stops.

Rule Order (R) - If multiple rules are hit, the collection of

results is returned according to the rule order, as specified

in outputValues.

49

Output Order (O) If multiple rules are hit, return the

collection of results in the priority order as listed for

outputValues.

Collect (C) – The same as (R). However, we may make

this policy more specific by adding an operator to it in order

to allow aggregation.

Note: If aggregating a date, a scalar is returned. If using an

operator, output must not be a string, but only a numerical

value.

 C+ - totals the matched output values

 C< - returns the min of the matched output values

 C> - returns the max of the matched output values

 C# - returns the number of matched output values

inputs inputs: ['age', 'service'] The input parameters, or the inputs to the decision table.

inputValues inputValues: [Describes the domain covered by all input entries in the

decision table rules. Each input value must relate to a given

input parameter. Input Values may be a list of values

separated by commas (i.e. 27, 5, 3, 2) or a list of unary tests

(i.e. <10, >=20, [18..20]). Both refValues and

inputValues/outputValues may exist within the

same RASON model but inputValues will override the

refValues component. Use refValues when

stipulating the value type accepted by the column and

input/outputValues when stipulating the domain of

the column.

When testing a value against a list of values or unary tests,

the OR operator is used. A list of values is evaluated as 27

OR 5 OR 3 OR 2. Likewise, the list of unary tests is
evaluated as <10 OR >=20. It's possible to negate a list as

well. For example, NOT(27, 5, 3, 2) would result in a

selection of a record that does not includes 27 OR 5 OR 3

OR 2. Similarly, NOT(<10, >=20) would equate to neither

<10 OR >=20 being selected.

All input entries in the relevant input column should cover

the entered domain, otherwise, an error will be generated

indicating that the table is not complete. If an input value

does not exist, the completeness test is not performed.

outputs outputs: ['holidays'] After calculation, a decision table returns a few selected or

all output parameter values in the form of an array. If a
decision table has a single output or a single output has

been selected, the result will be a scalar value. These input

parameters belong to the local scope of this table.

outputValues outputValues: [27, 5, 3,

2]

An outputValue can be a list of values separated by

commas (i.e. 27, 5, 3, 2) listing the priority of returned

results. Ia value appears in the table that does not match the

output value, an error will be returned.

In this example, the list "27, 5,3,2" is entered as an output

for "holidays". The output values list (27, 5, 3, 2) specifies

the priority when returning the results. In other words, the

results are to be returned largest to smallest.

Both refValues and outputValues may exist within

the same RASON model but outputValues will

override the refValues component. Use refValues

when stipulating the value type accepted by the column and

input/outputValues when stipulating the domain of

the column.

All output entries in the relevant output column should

cover the entered domain, otherwise, an error will be

generated indicating that the table is not complete. If an

output value does not exist, the completeness test is not

performed.

refTypes refTypes: [‘number’,

‘number’, ‘text’],

Describes the data type for each input. When defining

refTypes, all input and output columns must be included.
Enter empty strings or null for any input or output column.

The output parameter's domain is defined using the

outputValues component (see below). May coexist

with inputValues/outputValues.

Data Types

Boolean: The entered words TRUE and FALSE are

interpreted as Boolean reserved words, not strings.

Number: May be an integer or fraction.

Text: Any string

Date: Any valid date, such as 05-05-1964

Time: Any valid time

Duration: There are two formats for duration, one

measuring periods in months and another measuring

periods in seconds. For example, P1DT1H2M3S represents

1 hour, 2 minutes, and 3 seconds using:

• P for "period"

• 1D for 1 day

• T for "time"

• 1H for 1 hour

• 2M for 2 minutes and

• 3S for 3 seconds.

rules rules: [

 ['-', '-', 22],

 ['>=60', '-', 3],

 ['-', '>=30', 3],

 ['<18', '-', 5],

 ['>=60','-', 5],

Rules consists of Input Entries and Output Entries. These

entries consist of unary tests which return information (true

or false) about the rule. Supported unary tests may have one

of the following syntax forms: value(Boolean, number, text,

date, time, duration), < value, > value, <= value, >= value,

[value..value], (value..value], [value..value), (value..value),

"-". Note: Currently, rules may only be entered as rows.

51

 ['-', '>=30', 5],

 ['[18..60]','[15..30]',2],

 ['[45..60]','<30', 2]

],

The first test examines whether the value being tested is

equal to the value inside the parenthesis. For example, if

the Unary test consists of the single value 'medium', the

resulting test would ensure that the variable being tested

was equal to 'medium'. The forms, [value..value],

(value..value], [value..value) and (value..value), are interval
tests. The [] operators denote a closed interval while the ()

operators denote an open interval. The last test, "-" returns

TRUE against any value.

Supplying Data To and Calculating the Decision Table

Use the data section to pass the parameters required to evaluate, or calculate, the decision table. Note: Decision

tables only accept scalar (constant) arguments as inputs.

data: {

input1: { value: XX },

input2: { value: YY }

 },

Data may be passed directly in the RASON code or from an external data source. See the dataSource

section in this guide for more information on external data sources. See the "Using an External Data Source"

example in the RASON User Guide for a walkthrough of an example where the data is contained within a CSV

file. Note: No components of a decision table can be bound to an external database or file.

Use the formulas section to obtain the final results from a decision table given the input data. The complete
signature of the decision table function is:

formulas: {

result: { formula: "tblDecTable([string ret_output], [bool ret_header],

input1, input2, … inputN)", finalValue: [] }

}

 }

where:

• The first argument [string ret_output] is an optional argument that, when passed, returns only the

desired columns in the output. Note this argument must be surrounded by single quotes,

'Header_Name'.

• The second argument [strong ret_header] is an optional Boolean argument that, when True, returns the

column headings in the output.

• The third and remaining arguments pass the input parameters to the decision table.

 The number of arguments given to the decision table must be equal to the number of Input Parameters. The

finalValue[] argument returns the final collection of results.

Optional Arguments

Two optional arguments may be passed to a decision table: output and ret_header.

To return the result for a given output only, pass the output heading in quotes. For example, to only receive the

number of holidays, rather than both holidays and the rule, add "holidays" as as the second argument to the

existing formula:

{

result: { formula: "tblHolidays('holidays',,age, service")", finalValue:

[] }

}

In this instance, only the result collection for "holidays" will be returned, 27, 5, 3.

You can pass as many output arguments as needed.

A 2nd optional argument, ret_header, is a Boolean argument, that, if True, returns a header for the result

collection.

{

result: { formula: "tblHolidays('holidays', True, age, service)",

finalValue: [] }

}

In this instance, the result collection will include only the "holidays" output parameter with the header

"holidays" as the first element in the collection: "holidays", 27, 4, 3.

To only include the optional ret_header argument instead of both optional arguments, use:

{

result: { formula: "tblHolidays(,True, age, service)", finalValue: [] }

}

See the Merging Decision Table Results section in the RASON User Guide for an example in practice.

FEEL Expressions

Variables and constants can be combined through operations called literal expressions. Literal expressions in S-

FEEL are similar to formulas in Excel and in the RASON modeling language.

The following operators are supported in combination with decision table rules: addition (+), subtraction (-),

multiplication (*), division (/) and exponentiation (**). Variables and constants can be combined using only

these supported operators and parentheses. An example of an expression is: 2 * age – service where two

variables, age and service, and a constant, 2, are linked by two arithmetic operations (* and -). Note that an

expression is a FEEL expression, NOT an Excel formula. In this example, the expression "age – service"

appears in the first rule where "age" and "service" refer to cells H7 and I7. This expression does not refer to any

appearances of "age" or "service" outside of the scope of this table. For more information on supported
conversion expressions, please see the list below.

Supported conversion functions

date(string date) returns a date serial number, the same as Excel DATEVALUE

date(number y, number m, number d)

time(string time) returns a time serial number, the same as Excel TIMEVALUE

time(number h, number m, number s[, number offset]) the optional offset is duration in seconds, which can be

used to model UTC

duration(string dur) returns duration in months or seconds depending on format

yearsAndMonthsDuration(string from_date, string to_date) return difference between two dates as a duration in

months

number(string num, string group_sep, string dec_sep) returns a number from a string

string(float num) returns a float number as a string

Supported numeric functions are:

53

ceiling(number num, [scale]) rounds up a number

• A number in FEEL is represented as a pair of integers (a,b) where a is a signed 34 digit integer and

s is the scale of the number. To specify a numeric value for the ceiling function using the optional

scale argument, use ceiling(a,b). Examples: ceiling(1.5) = 2, ceiling(-1.56,1) = -1.5. 2

decimal(number num, number decimals) rounds a number to the given number of decimals

floor(number num, [scale]) rounds down a number

• A number in FEEL is represented as a pair of integers (a,b) where a is a signed 34 digit integer and

s is the scale of the number. To specify a numeric value for the floor function using the optional

scale argument, use floor(a,b). Examples: floor(1.5) = 1, floor(-1.56,1) = -1.6. 3

Supported string functions:

substring(string str, number pos, number num_chars)

stringLength(string str)

upperCase(string str)

lowerCase(string str)

substringBefore(string str, string match)

substringAfter(string str, string match)

contains(string str, string match)

startsWith(string str, string match)

endsWith(string str, string match)

Supported list functions are:

min(number n1, number n2,…) returns the minimum number

max(number n1, number n2,…)

sum(number n1, number n2,…)

mean(number n1, number n2,…)

and(bool b1, bool b2,…)

or(bool b1, bool b2,…)

stringJoin(list of strings, [separator]) – joins a list of strings divided by a separator.

• The separater can be an empty string. Null elements in the list parameter are ignored. If list is
empty, the result is the empty string. If delimiter is null, the string elements are joined without a

separator. string join(["a","b","c"], "_and_") = "a_and_b_and_c" string join(["a","b","c"], "") =

"abc" string join(["a","b","c"], null) = "abc" string join(["a"], "X") = "a" string join(["a",null,"c"],

"X") = "aXc" string join([], "X") = ""4

Please refer to the OMG Specification on DMN for more details on these functions

2 Source: Object Management Group Decision Model and Notation Version 1.4. OMG Document Number: dtc/21-12-01. URL:
https://www.omg.org/index.htm

3 Source: Object Management Group Decision Model and Notation Version 1.4. OMG Document Number: dtc/21-12-01. URL:
https://www.omg.org/index.htm

4 Source: Object Management Group Decision Model and Notation Version 1.4. OMG Document Number: dtc/21-12-01. URL:
https://www.omg.org/index.htm

Supported Operators for Models using Date, Time or Duration

See the Decision Table Containing Duration example in the RASON User Guide for an illustration on using

expressions within decision table rules. The following list contains the supported operations for decision tables

containing dates, times, or durations.

now() – returns current date and time

today() – returns current date

Date – date = duration

Time – time = duration

Date + duration = date

Date – duration = date

Time + duration[s] = time

Time – duration[s] = time

Duration + duration = duration

Duration – duration = duration

Duration or number * duration = number

Duration / duration or number = number

Duration or number / duration = number

dayOfWeek(FeelDate date) or dayOfWeek(string date) or dayOfWeek(FeelDateTime datetime)*

dayOfYear(FeelDate date) or dayOfYear(string date) or dayOfYear(FeelDateTime datetime)*

monthOfYear(FeelDate date) or monthOfYear (string date) or monthOfYear(FeelDateTime datetime)*

weekOfYear (FeelDate date) or weekOfYear (string date) or weekOfYear (FeelDateTime datetime)*

*See Example Code below.

Comparison operators {=, !=, >, >=, <, <=} are also allowed but only between identical types.

Important Note: Date, Time, and Duration data types are S-FEEL types not recognizable in an Excel formula.

As a result, these data of these types, must arrive as string input arguments in the S-FEEL format. Similarly,

when a decision table, custom function or custom type returns these types, the latter are formatted as S-FEEL

strings before they enter the RASON environment.

Example Code
{

 comment: "Example of specific FEEL operations",

 data: {

 D: { value: "'2021-05-31'" }

 },

 formulas: {

 dow: { feelFormula: "dayOfWeek(D)", finalValue: [] },

 doy: { feelFormula: "dayOfYear(D)", finalValue: [] },

 moy: { feelFormula: "monthOfYear(D)", finalValue: [] },

 woy: { feelFormula: "weekOfYear(D)", finalValue: [] }

 }

}

Response
{

 "status": {

 "code": 0,

55

 "id": "2590+2021-09-17-16-31-48-224467",

 "codeText": "Solver has completed the calculation."

 },

 "observations": {

 "dow": {

 "value": "Monday"

 },

 "doy": {

 "value": 151

 },

 "moy": {

 "value": "May"

 },

 "woy": {

 "value": 23

 }

 }

}

The path operator

One additional operator, the path operator is supported by RASON when used with decision tables containing

dates, times or durations.

If a variable in an S-FEEL expression is of type Date, the following path operations are defined:

DateVariable.Year extracts the year component from the date value

DateVariable.Month extracts the month component from the date value

DateVariable.Day extracts the day component from the date value

DateVariable.Weekday extracts the weekday component from the date value

For example, Date(“2019-05-05”).Year returns 2019; Date(“2019-05-05”).Weekday returns 7 for “Sunday”.

If a variable in an S-FEEL expression is of type Time, the following path operations are defined:

TimeVariable.Hour extracts the hour component from the time value

TimeVariable.Minute extracts the minute component from the time value

TimeVariable.Second extracts the second component from the time value

For example, Time(“18:50:05”).Hour returns 18; Time(“18:50:05”).Minute returns 50.

If a variable in an S-FEEL expression is of type Duration expressed in years and months, the following path

operations are defined:

DurationVariable.Years extracts the years component from the duration value

DurationVariable.Months extracts the months component from the duration value

For example, Duration(“P1Y2M”).Years returns 1; Duration(“P1Y2M”).Months returns 2.

If a variable in an S-FEEL expression is of type Duration expressed in days and time, the following path

operations are defined:

DurationVariable.Days extracts the days component from the duration value

DurationVariable.Hours extracts the hours component from the duration value

DurationVariable.Minutes extracts the minutes component from the duration value

DurationVariable.Seconds extracts the seconds component from the duration value

For example, Duration(“P1DT1H20M10S”).Days returns 1; Duration(“P1DT1H20M10S”).Minutes returns 20.

Example of the path operator in practice

2 *ceiling(duration(dtDuration).minutes/duration('PT20M').minutes)

Display Precision
Use the optional high level property "displayPrecision": X, to control the decimal precision in the RASON

model results. (The number of decimal digits displayed in the RASON results.) The minimum setting for this

property is -1, the default setting, and the maximum setting is 15 decimal digits.

If calling the Quick Solve endpoints POST rason.net/api/solvetype = Optimize, Simulate, Decision or Diagnose

or GET/POST rason.net/api/model/{nameorid}/solvetype = Optimize, Simulate, Decision or Diagnose; the

default setting is 1.0E-6.

When the Quick Solve endpoint POST rason.net/api/solvetype=datamine or solve or POST
rason.net/api/model/{nameorid}/solvetype=datamine or solve is called, the default decimal precision will be

used which is 1E-17.

Otherwise, the property value setting will determine the precision returned, i.e. if "displayPrecsion"=10, the

result decimal precision will be 10 digits, or 1E-10.

Engine Settings
In this optional section, you'll specify the engine to be used to solve the optimization, simulation optimization or

stochastic optimization model and/or set any engine options. If a specific engine is not selected, the RASON

server will analyze your model and automatically select the best engine to solve. If solving a linear

optimization model, the Standard LP/Quadratic engine will be automatically selected. If solving a smooth,

nonlinear optimization model, the Standard LSGRG engine will be selected and if solving a nonsmooth model,

the Standard Evolutionary Engine will be selected. If running a simulation, the Risk Solver Engine will be
automatically selected.

The first property for engineSettings, engine, identifies the engine to be used during the solve. To

specific a specific engine, you must use the string values below.

To Specify this Engine Use

Nonlinear GRG Solver "GRG Nonlinear"

Standard LP/Quadratic Solver "LP/Quadratic"

Standard Evolutionary "Evolutionary"

Interval Global Solver "Interval Global"

Standard SOCP Engine "SOCP Barrier"

The example code below selects the Standard GRG Nonlinear engine to solve an optimization model, turns on

the Multistart parameter, and sets the maximum time limit to 600 seconds.

engineSettings: {

 engine: "GRG Nonlinear", multistart: True, maxTime: 600

 },

See below for complete descriptions of each available engine option.

*Note: Unlimited in the tables below equals the maximum 32-bit integer setting, 2,147,483,647.

57

Common Engine Options

The following parameters are used to control all Solver engines including additional "plug in" engines such as

Gurobi, Xpress, Large Scale GRG, Large Scale LP/QP, etc. For options specific to a "plug in" engine, please

see the Frontline Solvers Engines Guide.

Irreducible Infeasible Set – Bounds

Instead of the full Irreducible Infeasible Set (IIS), which analyzes both the constraints and variable bounds in

your model and attempts to eliminate as many of them as possible, you can produce the IIS minus the variable

bounds. The IIS minus the variable bounds analyzes only the constraints while keeping the variable bounds in

force. This may be sufficient to isolate the source of the infeasibility, but you must take into account the bounds

on all of the variables when analyzing the IIS.

Iterations

The value for the number of Iterations determines the maximum number of iterations ("pivots" for the Simplex

Solver, or major iterations for the GRG Solver) that a Solver Engine may perform on one problem. A new
"Trial Solution" is generated on each iteration. For problems with integer constraints, the Iterations setting

determines the maximum number of iterations for any one subproblem.

Max Time

The value for Max Time determines the maximum time in seconds that the Solver Engine will run before it

stops. For problems with integer constraints, this is the total time taken to solve all subproblems explored by

the Branch & Bound method.

Name iisBounds

Default 0 – Include Bounds

Min 0

Max 1 – No Bounds

Type Integer

Name iterations

Default Unlimited*

Min 1

Max Unlimited*

Type Integer

Name maxTime

Default Unlimited*

Min 1

Max Unlimited*

Type Integer

Number of Threads

The RASON server uses virtual machines to

run your model. Each virtual machine has the

ability to create multiple "threads" of

execution that can be run on different

processor cores. (Currently the number of

threads is 2.) You can control the number of

cores used for each Problem. The default
value of 0 means: "use as many threads as

there are processor cores in the machine." (The actual number of threads used may vary dynamically during

execution.) You can instead set this to a specific number of threads.

Precision

The number entered here determines how closely the calculated values of the constraint left hand sides must

match the right hand sides in order for the constraint to be satisfied. (This option is not used with the

LP/Quadratic or SOCP engines.) With the default setting of 1.0E-6 (0.000001), a calculated left hand side of -

1.0E-7 (0.0000001) would satisfy a constraint such as A1 >= 0. Use caution in making this number much

smaller, since the finite precision of computer arithmetic virtually ensures that the calculated values will differ

from the expected or "true" values by a small amount. On the other hand, setting the Precision to a much larger

value would cause constraints to be satisfied too easily. If your constraints are not being satisfied because the

values you are calculating are very large (say in millions or billions of dollars), consider adjusting your

formulas and data to work in units of millions, or setting the "Scaling" parameter (see explanation below)

instead of altering the Precision setting. Generally, this setting should be kept in the range from 1.0E-6
(0.000001) to 1.0E-4 (0.0001).

Precision and Integer Constraints

Another use of Precision is determining whether an integer constraint, such as A1:A5 = integer, A1:A5 = binary

or A1:A5 = alldifferent, is satisfied. If the difference between the decision variable’s value and the closest

integer value is less than the Precision setting, the variable value is treated as an integer.

Use Automatic Scaling

When Automatic Scaling is turned on (set to 0 or 1), the Solver will attempt to scale the values of the objective

and constraint functions internally in order to minimize the effects of a poorly scaled model. A poorly scaled

Name numThreads

Default 0 – Use Maximum Number

of Threads Available

Min 0

Max Number of cores on machine,

currently 2.

Type Integer

Name precision

Default 1.0e-6

Min 1.0e-4

Max 1.0e-9

Type Double

Name scaling

Default 0 – On

Min -1 – Off

Max 1 – On

Type Integer

59

model is one that computes values of the objective, constraints, or intermediate results that differ by several

orders of magnitude. Poorly scaled models may cause difficulty for both linear and nonlinear solution

algorithms, due to the effects of finite precision computer arithmetic.

If your model is nonlinear and you turn on Automatic Scaling, make sure that the initial values for the decision

variables are "reasonable," i.e. of roughly the same magnitudes that you expect for those variables at the
optimal solution. The effectiveness of the Automatic Scaling option depends on how well these starting values

reflect the values encountered during the solution process.

LP/Quadratic Solver Options

If the LP/Quadratic Solver is manually or automatically selected to solve the problem, the parameters for the

engine include the parameters in the Common Options section above as well as the parameters described below.

Note that the default values for Primal Tolerance and Dual Tolerance have been chosen very carefully; the

LP/Quadratic Solver is designed to solve the vast majority of LP problems ‘out of the box’ with these default

tolerances.

Derivatives for the Quadratic Solver

Name derivatives

Default 1 – Forward

Min 1

Max 2 – Central

Type Integer

When a quadratic programming (QP) problem – one with a quadratic objective and all linear constraints – is

solved with the LP/Quadratic Solver, the quadratic Solver extension requires first or second partial derivatives

of the objective function at various points. In the LP/Quadratic engine, these derivatives are computed via finite

differencing and the method used for finite differencing is determined by the setting of the Derivatives
parameter. Forward differencing uses the point from the previous iteration – where the problem function

values are already known – in conjunction with the current point. Central differencing relies only on the

current point, and perturbs the decision variables in opposite directions from that point. For QP problems, the

Central differencing choice yields essentially exact (rather than approximate) derivative values, which can

improve solution accuracy and reduce the total number of iterations; however the initial computation of

derivatives may take up to twice as long as with Forward differencing.

Do Presolve

Name presolve

Default 1 – On

Min 0 – Off

Max 1

Type Integer

When this parameter is set to 1 (which is the default setting), the LP/Quadratic Solver performs a Presolve step

before applying the Primal or Dual Simplex method. Presolving often reduces the size of an LP problem by

detecting singleton rows and columns, removing fixed variables and redundant constraints, and tightening

bounds.

Dual Tolerance

Name dualTolerance

Default 1.0e-7

Min 0

Max 1.0

Type Double

The Dual Tolerance is the maximum amount by which the dual constraints can be violated and still be
considered feasible. The default values of 1.0E-7 (0.000001) is suitable for most problems.

Primal Tolerance

Name primalTolerance

Default 1.0e-7

Min 0

Max 1.0

Type Double

The Primal Tolerance is the maximum amount by which the primal constraints can be violated and still be
considered feasible. The default value of 1.0E-7 (0.000001) is suitable for most problems.

Solve Without Integer Constraints

Name solveWithout

Default 0 - Off

Min 0

Max 1 – On

Type Integer

If you solve your problem with this parameter set to 1, LP/Quadratic ignores integer constraints (including
alldifferent constraints) and solves the "relaxation" of the problem.

LP/Quadratic Solver MIP Parameters

This section describes the parameters which control the LP/Quadratic engine when solving a mixed integer

problem. This engine contains an extensive set of options to improve performance on problems that contain

integers.

Cuts

Name cuts

Default 1

Min 1

Max 3

Type Integer

1 – Automatic, 2 – None, 3 - Aggressive

The LP/Quadratic Solver supports a wide range of cuts. A cut is an automatically generated linear constraint

for the problem, in addition to the constraints that you specify. This constraint is constructed so that it "cuts

off" some portion of the feasible region of an LP subproblem, without eliminating any possible integer

solutions. Cuts require more work on each subproblem, but they can often lead more quickly to integer

solutions and greatly reduce the number of subproblems that must be explored.

61

The LP/Quadratic engine employs a wide range of cuts including, Clique, Flow Cover, Gomory, Knapsack,

Local Tree, Mixed Integer Rounding, Probing, Two Mixed Integer Rounding, Reduce and Split, and Special

Ordered Sets.

When the Cuts parameter is set to 1, the LP/Quadratic engine will automatically determine the best cuts to use

on the problem. If the parameter is set to 2, then no cuts will be performed and if the parameter is set to 3, then
the LP/Quadratic Solver will apply the most aggressive forms of cuts.

Heuristics

Name heuristics

Default 1

Min 1

Max 3

Type Integer

1 – Automatic, 2 – None, 3 - Aggressive

A heuristic is a strategy that often – but not always – will find a reasonably good "incumbent" or feasible

integer solution early in the search. Heuristics require more work on each subproblem, but they can often lead

more quickly to integer solutions and greatly reduce the number of subproblems that must be explored. The

LP/Quadratic engine employs several heuristics including: Feasibility Pump, Greedy Cover, Local Search, and

Rounding.

When the Heuristics parameter is set to 1, the LP/Quadratic engine will automatically determine the best

heuristics to apply to the problem. If the parameter is set to 2, then no heuristics will be used and if the

parameter is set to 3, then the LP/Quadratic Solver will use heuristics extensively in trying to find a good initial

incumbent.

Integer Cutoff

Name intCutoff

Default 2.0e+30

Min -2.0e-30

Max 2.0e+30

Type Double

This option provides another way to save time in the solution of mixed-integer programming problems. If you

know the objective value of a feasible integer solution to your problem – possibly from a previous run of the
same or a very similar problem – you can enter this objective value for the Integer Cutoff parameter. This

allows the Branch & Bound process to start with an "incumbent" objective value (as discussed above under

Integer Tolerance) and avoid the work of solving subproblems whose objective can be no better than this value.

If you enter a value for this parameter, you must be sure that there is an integer solution with an objective value

at least this good: A value that is too large (for maximization problems) or too small (for minimization) may

cause LP/Quadratic to skip solving the subproblem that would yield the optimal integer solution.

Integer Tolerance

Name intTolerance

Default 0

Min 0

Max 1.0

Type Integer

When you solve an integer programming problem, it often happens that the Branch & Bound method will find a

good solution fairly quickly, but will require a great deal of computing time to find (or verify that it has found)

the optimal integer solution. The Integer Tolerance setting may be used to tell the Solver to stop if the best

solution it has found so far is "close enough."

The Branch & Bound process starts by finding the optimal solution without considering the integer constraints
(this is called the relaxation of the integer programming problem). The objective value of the relaxation forms

the initial "best bound" on the objective of the optimal integer solution, which can be no better than this.

During the optimization process, the Branch & Bound method finds "candidate" integer solutions, and it keeps

the best solution so far as the "incumbent." By eliminating alternatives as its proceeds, the B&B method also

tightens the "best bound" on how good the integer solution can be.

Each time the Solver engine finds a new incumbent – an improved all-integer solution – it computes the

maximum percentage difference between the objective of this solution and the current best bound on the

objective:

Objective of incumbent - Objective of best bound

--

Objective of best bound

If the absolute value of this maximum percentage difference is equal to or less than the Integer Tolerance, the

Solver will stop and report the current integer solution as the optimal result, with the status, Solver found an

integer solution within tolerance. If you set the Integer Tolerance to zero, the Solver will "prove optimality" by

continuing to search until all alternatives have been explored and the optimal integer solution has been found.

This could take a great deal of computing time.

Max Feasible (Integer) Solutions

Name maxFeasibleSols

maxIntegerSols

Default Unlimited*

Min 1

Max Unlimited*

Type Integer

The value for the Max Feasible Sols parameter places a limit on the number of feasible integer solutions found

by the Branch & Bound algorithm before LP/Quadratic stops with the status result, The maximum number of

integer candidate/feasible solutions was found. Each feasible integer solution satisfies all of the constraints,

including the integer constraints; the Solver retains the integer solution with the best objective value so far,
called the "incumbent."

It is entirely possible that, in the process of exploring various subproblems with different bounds on the

variables, the Branch & Bound algorithm may find the same feasible integer solution (set of values for the

decision variables) more than once; the Max Feasible Solutions limit applies to the total number of integer

solutions found, not the number of "distinct" integer solutions.

Max Subproblems

Name maxSubproblems

Default Unlimited*

Min 1

Max Unlimited*

Type Integer

63

The value for the Max Subproblems parameter places a limit on the number of subproblems that may be

explored by the Branch & Bound algorithm before LP/Quadratic stops with the status result, The maximum

number of subproblems was reached. Each subproblem is a "regular" Solver problem with additional bounds

on the variables. In a problem with integer constraints, the Max Subproblems limit should be used in preference

to the Iterations limit.

Preprocessing

Name preprocessing

Default 1

Min 1

Max 3

Type Integer

1 – Automatic, 2 – None, 3 - Aggressive

When this parameter is set, the LP/Quadratic performs preprocessing on constraints involving integer variables,

to simplify the problem and speed up the solution process. Based on the settings of certain binary integer

variables, preprocessing can fix the values of other binary integer variables, tighten the bounds on continuous

variables, and in some cases, determine that the subproblem is infeasible, so it is unnecessary to solve it at all.

When the Preprocessing parameter is set to 1, the LP/Quadratic engine will automatically determine the best

preprocessing features to use on the problem. If the parameter is set to 2, then no preprocessing will be

performed and if the parameter is set to 3, then the LP/Quadratic Solver will apply the most aggressive forms of

preprocessing.

Solve Without Integer Constraints

Name solveWithout

Default 0 - Off

Min 0

Max 1 – On

Type Integer

If you solve your Problem with this parameter set to 1, LP/Quadratic ignores integer constraints (including

alldifferent constraints) and solves the "relaxation" of the problem.

SOCP Barrier Solver Parameters

If the SOCP Barrier Solver is selected as the engine to solve the problem, all parameters described above in the
Common Parameters section as well as the parameters described below (Precision, Gap Tolerance, Step Size

Factor, Feasibility Tolerance, and the Search Direction option group) will be available to the User.

Feasibility Tolerance

Name feasibilityTolerance

Default 1.0e-6

Min 0

Max 1.0

Type Double

The SOCP Barrier Solver considers a solution feasible if the constraints are satisfied to within this tolerance.

Gap Tolerance

Name gapTolerance

Default 1.0e-6

Min 0

Max 1.0

Type Integer

The SOCP Barrier Solver uses a primal-dual method that computes new objective values for the primal problem

and the dual problem at each iteration. When the gap or difference between these two objective values is less

than the Gap Tolerance, the SOCP Barrier Solver will stop and declare the current solution optimal.

Power Index

Name powerIndex

Default 1

Min 0

Max Unlimited*

Type Integer

This parameter is used to select a specific search direction when the Search Direction is computed via the Power

Class or Power Class with Predictor-Corrector methods.

Search Direction

Name searchDirection

Default 3

Min 0

Max 3

Type Integer

The SOCP Barrier Solver offers four options for computing the search direction on each iteration: 0-Power

Class, 1-Power Class with Predictor-Corrector, 2-Dual Scaling, and 3- Dual Scaling with Predictor-

Corrector.

Power Class

This option uses the power class, which is a subclass of the commutative class of search directions over

symmetric cones with the property that the long-step barrier algorithm using this class has polynomial

complexity.

Power Class with Predictor-Corrector

This option uses the power class as described above, plus a predictor-corrector term.

Dual Scaling

This option uses HKM (Helmberg, Kojima and Monteiro) dual scaling, a Newton direction found from the

linearization of a symmetrized version of the optimality conditions.

Dual Scaling with Predictor-Corrector

This option uses HKM dual scaling, plus a predictor-corrector term.

65

Step Size Factor

Name stepSizeFactor

Default 0.99

Min 0

Max 1.0

Type Integer

This parameter is the relative size (between 0 and 1) of the step that the SOCP Barrier Solver may take towards

the constraint boundary at each iteration.

Large Scale GRG Nonlinear Solver Parameters

If the GRG Nonlinear Solver is manually or automatically selected as the engine to solve the problem, all

parameters described above in the Common Parameters section as well as the parameters described in this

section will be available to the User. The Global Optimization options group and the Population Size
parameters are described in the next section, "Multistart Search Options."

The default choices for these options are suitable for the vast majority of problems; although it generally won’t

hurt to change these options, you should first consider other alternatives such as improved scaling before

attempting to fine-tune them. In some scientific and engineering applications, alternative choices may improve

the solution process.

Convergence

Name convergence

Default 0.0001

Min 0

Max 1

Type Double

The LSGRG Solver will stop with the status Solver has converged to the current solution. when the objective

function value is changing very slowly for the last few iterations or trial solutions. More precisely, the LSGRG

Solver stops if the absolute value of the relative change in the objective function is less than the value in the

Convergence edit box for the last 5 iterations. While the default value of 1.0E-4 (0.0001) is suitable for most

problems, it may be too large for some models, causing the LSGRG Solver to stop prematurely when this test is

satisfied, instead of continuing for more Trial Solutions until the optimality (KKT) conditions are satisfied.

If you are getting this message when you are seeking a locally optimal solution, you can change the parameter
setting to a smaller value such as 1.0E-5 (0.00001) or 1.0E-6 (0.000001); but you should also consider why it is

that the objective function is changing so slowly. Perhaps you can add constraints or use different starting

values for the variables, so that the Solver does not get "trapped" in a region of slow improvement.

Relax Bounds on Variables

Name relaxBounds

Default 0 – Do Not Relax

Min 0

Max 1 – Relax

Type Integer

By default, the LSGRG Solver ensures that any trial points evaluated during the solution process will not have

values that violate the bounds on the variables you specify, even by a small amount. If your problem functions

cannot be evaluated for values outside the variable bounds, this default behavior will ensure that the solution

process can continue. However, at times, the LSGRG Solver can make more rapid progress along a given

search direction by testing trial points with values slightly outside the bounds on the variables. If you want to

permit this to happen, set this option to 1. If you receive the Result, Float error status. (Internal float error.), as a

first step you should set this option back to the default, 0.

Step Size

Name stepSize

Default 1.0e-6

Min 1.0e-9

Max 1.0e-4

Type Double

This parameter determines the "delta" or amount of change used in computing numerical derivatives via finite
differencing. Changing the step size to a very small value could result in the GRG engine stopping prematurely.

However, a large step size could result in Solver "stepping over" a good solution. For the vast majority of

models, this parameter should be left at the default value.

Derivatives and Other Nonlinear Options

The default values for the Estimates, Derivatives and Search options can be used for most problems. If you’d

like to change these options to improve performance on your model, this section will provide some general

background on how they are used by the LSGRG Solver.

On each major iteration, the LSGRG Solver requires values for the gradients of the objective and constraints

(i.e. the Jacobian matrix). The Derivatives option is concerned with how these partial derivatives are computed.

The LSGRG (Generalized Reduced Gradient) solution algorithm proceeds by first "reducing" the problem to an
unconstrained optimization problem, by solving a set of nonlinear equations for certain variables (the "basic"

variables) in terms of others (the "nonbasic" variables). Then a search direction (a vector in n-space, where n is

the number of nonbasic variables) is chosen along which an improvement in the objective function will be

sought. The Search option is concerned with how this search direction is determined.

Once a search direction is chosen, a one-dimensional "line search" is carried out along that direction, varying a

step size in an effort to improve the reduced objective. The Step Size parameter controls the size of this step.

The initial estimates for values of the variables that are being varied have a significant impact on the

effectiveness of the search. The Estimates option is concerned with how these estimates are obtained.

Derivatives

Name derivatives

Default 1

Min 1

Max 2

Type Integer

1 – Forward, 2 –Central

On each major iteration, the LSGRG Solver requires values for the gradients of the objective and constraints

(i.e. the Jacobian matrix). In the Large Scale GRG Engine, the method used for finite differencing is

determined by the Derivatives setting.

Forward differencing (the default choice) uses the point from the previous iteration – where the problem

function values are already known – in conjunction with the current point. Central differencing relies only on

the current point, and perturbs the decision variables in opposite directions from that point. This requires up to

67

twice as much time on each iteration, but it may result in a better choice of search direction when the

derivatives are rapidly changing, and hence fewer total iterations.

Estimates

Name estimates

Default 0 – Tangent

Min 0

Max 1 – Quadratic

Type Integer

This option determines the approach used to obtain initial estimates of the basic variable values at the outset of

each one-dimensional search. The Tangent choice uses linear extrapolation from the line tangent to the reduced

objective function. The Quadratic choice extrapolates the minimum (or maximum) of a quadratic fitted to the

function at its current point. If the current reduced objective is well modeled by a quadratic, then the Quadratic
option can save time by choosing a better initial point, which requires fewer subsequent steps in each line

search. If you have no special information about the behavior of this function, the Tangent choice is "slower

but surer." Note: the Quadratic choice here has no bearing on quadratic programming problems.

Search Option

Name searchOption

Default 0 – Newton

Min 0

Max 1 – Conjugate

Type Integer

It would be expensive to determine a search direction using the pure form of Newton’s method, by computing

the Hessian matrix of second partial derivatives of the problem functions. Instead, a direction is chosen through

an estimation method. The default choice, Newton, uses a quasi-Newton (or BFGS) method, which maintains

an approximation to the Hessian matrix; this requires more storage (an amount proportional to the square of the

number of currently binding constraints) but performs very well in practice. The alternative choice, Conjugate,

uses a conjugate gradient method, which does not require storage for the Hessian matrix and still performs well

in most cases. The choice you make here is not crucial, since the LSGRG solver is capable of switching

automatically between the quasi-Newton and conjugate gradient methods depending on the available storage.

Multistart Search Parameters

This section discusses the Global Optimization options group and the Population Size parameters that are used

by the Large Scale GRG Solver Engine. For reproducible results when using the Multistart Search Parameters,

use the model option, Random Seed. (See the Engine Settings section for details.)

These parameters control the multistart methods for global optimization, which will automatically run the GRG

Solver (or certain field-installable Solver engines) from a number of starting points in order to seek the globally

optimal solution.

Multistart Search

Name multistart

Default 0 – Off

Min 0

Max 1 – On

Type Integer

If this parameter is set to 1, the multistart methods are used to seek a globally optimal solution. If this

parameter is set to 0, the other options described in this section are ignored. The multistart methods will

generate candidate starting points for the GRG Solver (with randomly selected values between the bounds you

specify for the variables), group them into "clusters" using a method called multi-level single linkage, and then
run the GRG Solver from a representative point in each cluster. This process continues with successively

smaller clusters that are increasingly likely to capture each possible locally optimal solution.

Population Size

Name populationSize

Default 0

Min 0

Max 200

Type Integer

The multistart methods generate a number of candidate starting points for the GRG Solver equal to the value

that you enter for the parameter. This set of starting points is referred to as a "population," because it plays a

role somewhat similar to the population of candidate solutions maintained by the Evolutionary Solver. The

minimum population size is 10 points; if you supply a value less than 10, or do not pass the parameter at all, the

multistart methods use a population size of 10 times the number of decision variables in the problem, but no

more than 200.

Require Bounds on Variables

Name requireBounds

Default 1 – On

Min 0 - Off

Max 1

Type Integer

This parameter is turned on, set to 1, by default, but it comes into play only when the Multistart Search box is

checked. The multistart methods generate candidate starting points for the GRG Solver by randomly sampling

values between the bounds on the variables that you specify. If you do not specify both upper and lower bounds

on each of the decision variables, the multistart methods can still be used, but because the random sample must

be drawn from an "infinite" range of values, this is unlikely to effectively cover the possible starting points (and

therefore have a good chance of finding all of the locally optimal solutions), unless the GRG Solver is run on a

great many subproblems, which will take a very long time.

The tighter the bounds on the variables that you can specify, the better the multistart methods are likely to

perform. (This is also true of the Evolutionary Solver.) Hence, this option is turned on by default, so that you

will be automatically reminded to include both upper and lower bounds on all of the variables whenever you

select Multistart Search. If both the Multistart Search and Require Bounds on Variables parameters are both set

to 1, but you have not defined upper and lower bounds on all of the variables, you will receive the Status result,

Missing bounds status. Returned for EV/MSL Require Bounds when bounds are missing.

If you get this result, you must either add both upper and lower variable bounds or else set the Require Bounds

parameter to 0 and resolve.

Topographic Search

Name topoSearch

69

Default 0 – Off

Min 0

Max 1 – On

Type Integer

If this parameter (and the Multistart parameter) are both set to 1, the multistart methods will make use of a

"topographic" search method. This method uses the objective value computed for the randomly sampled

starting points to compute a "topography" of overall "hills" and "valleys" in the search space, in an effort to find

better clusters and start the GRG Solver from an improved point (already in a "hill" or "valley") in each cluster.

Computing the topography takes extra time, but on some problems this is more than offset by reduced time

taken by the GRG Solver on each subproblem.

Evolutionary Solver Parameters

If the Evolutionary Solver is selected as the engine to solve the problem, all parameters described above in the

Common Parameters section as well as the parameters described in this section will be available to the User.

As with the other Solver engines, the Max Time option determines the maximum amount of time the

Evolutionary Solver will run before stopping with the status result, Time out status. Returned when the

maximum allowed time has been exceeded. Indicates an early exit of the algorithm. The Iterations option

rarely comes into play, because the Evolutionary Solver always uses the Max Subproblems and Max Feasible

Solutions parameters, whether or not the problem includes integer constraints. (The count of iterations is reset

on each new subproblem, so the Iterations limit normally is not reached.) The Precision option plays the same

role as it does in the other Solver engines – governing how close a constraint value must be to its bound to be

considered satisfied, and how close to an exact integer value a variable must be to satisfy an integer constraint.

It also is used in computing the "penalty" applied to infeasible solutions that are accepted into the population:

A smaller Precision value increases this penalty.

Convergence

Name convergence

Default 0.0001

Min 0

Max 1

Type Double

The Evolutionary Solver will stop with the Status result, The Solver has converged to the current solution, if
nearly all members of the current population of solutions have very similar "fitness" values. Since the

population may include members representing infeasible solutions, each "fitness" value is a combination of an

objective function value and a penalty for infeasibility. Since the population is initialized with trial solutions

that are largely chosen at random, the comparison begins after the Solver has found a certain minimum number

of improved solutions that were generated by the evolutionary process. The stopping condition is satisfied if

99% of the population members all have fitness values that are within the Convergence tolerance of each other.

If you believe that the engine is stopping prematurely with the status The Solver has converged to the current

solution, you can make the Convergence tolerance smaller, but you may also want to increase the Mutation Rate

and/or the Population Size, in order to increase the diversity of the population of trial solutions.

Fix Nonsmooth Variables

Name fixNonsmooth

Default 0 – Off

Min 0

Max 1 – On

Type Integer

This parameter determines how non-smooth variable occurrences in the problem will be handled during the

local search step. If this parameter is set to 1, the non-smooth variables are fixed to their current values

(determined by genetic algorithm methods) when a nonlinear Local Gradient or linear Local Gradient search is
performed; only the smooth and linear variables are allowed to vary. If this parameter is set to 0, all of the

variables are allowed to vary.

Since gradients are undefined for non-smooth variables at certain points, fixing these variables ensures that

gradient values used in the local search process will be valid. On the other hand, gradients are defined for non-

smooth variables at most points, and the search methods are often able to proceed in spite of some invalid

gradient values, so it often makes sense to vary all of the variables during the search. Hence, this parameter is

set to 0 by default; you can experiment with its setting on your model.

Local Search

Name localSearch

Default 3

Min 0

Max 3

Type Integer

0-Randomized Local Search, 1- Deterministic Pattern Search, 2-Gradient Local Search, 3-Automatic

Choice

This option determines the local search strategy employed by the Evolutionary Solver. As noted under the

Mutation rate option, a "generation" or subproblem in the Evolutionary Solver consists of a possible mutation

step, a crossover step, an optional local search in the vicinity of a newly discovered "best" solution, and a
selection step where a relatively "unfit" member of the population is eliminated. You have a choice of

strategies for the local search step. You can use Automatic Choice (the default), which selects an appropriate

local search strategy automatically based on characteristics of the problem functions.

Randomized Local Search

This local search strategy generates a small number of new trial points in the vicinity of the just-discovered

"best" solution, using a probability distribution for each variable whose parameters are a function of the best

and worst members of the current population. (If the generated points do not satisfy all of the constraints, a

variety of strategies may be employed to transform them into feasible solutions.) Improved points are accepted

into the population.

Deterministic Pattern Search

This local search strategy uses a "pattern search" method to seek improved points in the vicinity of the just-

discovered "best" solution. The pattern search method is deterministic – it does not make use of random

sampling or choices – but it also does not rely on gradient information, so it is effective for non-smooth

functions. It uses a "slow progress" test to decide when to halt the local search. An improved point, if found, is

accepted into the population.

Gradient Local Search

This local search strategy makes the assumption that the objective function – even if non-smooth – can be

approximated locally by a quadratic model. It uses a classical quasi-Newton method to seek improved points,

starting from the just-discovered "best" solution and moving in the direction of the gradient of the objective

function. It uses a classical optimality test and a "slow progress" test to decide when to halt the local search.

An improved point, if found, is accepted into the population.

71

Automatic Choice

This option allows the Solver to select the local search strategy automatically in the engine. The Solver uses

diagnostic information from the Polymorphic Spreadsheet Interpreter to select a linear Gradient Local Search

strategy if the problem has a mix of non-smooth and linear variables, or a nonlinear Gradient Local Search

strategy if the objective function has a mix of non-smooth and smooth nonlinear variables. It also makes

limited use of the Randomized Local Search strategy to increase diversity of the points found by the local

search step.

Mutation Rate

Name mutationRate

Default 0.075

Min 0

Max 1.0

Type Double

The Mutation Rate is the probability that some member of the population will be mutated to create a new trial

solution (which becomes a candidate for inclusion in the population, depending on its fitness) during each

"generation" or subproblem considered by the evolutionary algorithm. In the Evolutionary Solver, a

subproblem consists of a possible mutation step, a crossover step, an optional local search in the vicinity of a

newly discovered "best" solution, and a selection step where a relatively "unfit" member of the population is

eliminated.

There are many possible ways to mutate a member of the population, and the Evolutionary Solver actually

employs five different mutation strategies, including "permutation-preserving" mutation strategies for variables

that are members of an "alldifferent" group. The Mutation Rate is effectively subdivided between these

strategies, so increasing or decreasing the Mutation Rate affects the probability that each of the strategies will

be used during a given "generation" or subproblem.

Population Size

Name populationSize

Default 0

Min 0

Max 200

Type Integer

The Evolutionary Solver maintains a population of candidate solutions, rather than a "single best solution" so

far, throughout the solution process. This option sets the number of candidate solutions in the population. The

minimum population size is 10 members; if you supply a value less than 10 for this option, or not pass anything

for the population, the Evolutionary Solver uses a population size of 10 times the number of decision variables

in the problem, but no more than 200.

The initial population consists of candidate solutions chosen largely at random, but it always includes at least

one instance of the starting values of the variables (adjusted if necessary to satisfy the bounds on the variables),
and it may include more than one instance of the starting values, especially if the population is large and the

initial values represent a feasible solution.

A larger population size may allow for a more complete exploration of the "search space" of possible solutions,

especially if the rate is high enough to create diversity in the population. However, experience with genetic and

evolutionary algorithms reported in the research literature suggests that a population need not be very large to

be effective – many successful applications have used a population of 70 to 100 members.

Require Bounds on Variables

Name requireBounds

Default 1 – On

Min 0 – Off

Max 1

Type Integer

If the parameter "Require Bounds on Variables" is set to 1, and some of the decision variables do not have

upper or lower bounds specified at solve time, the engine will stop immediately with the Status result, Missing

bounds status. Returned for EV/MSL Require Bounds when bounds are missing. If this parameter is set to 0, the

Solver will not require upper and lower bounds on the variables, but will attempt to solve the problem without

them. Note that this parameter is turned on by default.

Bounds on the variables are especially important to the performance of the Evolutionary Solver. For example,
the initial population of candidate solutions is created, in part, by selecting values at random from the ranges

determined by each variable’s lower and upper bounds. Bounds on the variables are also used in the mutation

process – where a change is made to a variable value in some member of the existing population – and in

several other ways in the Evolutionary Solver. If you do not specify lower and upper bounds for all of the

variables in your problem, the Evolutionary Solver can still proceed, but the almost-infinite range for these

variables may significantly slow down the solution process, and make it much harder to find "good" solutions.

Hence, it pays for you to determine realistic lower and upper bounds for the variables.

Filtered Local Search

The Evolutionary engine applies two tests or "filters" to determine whether to perform a local search each time

a new point generated by the genetic algorithm methods is accepted into the population. The "merit filter"

requires that the objective value of the new point be better than a certain threshold if it is to be used as a starting

point for a local search; the threshold is based on the best objective value found so far, but is adjusted

dynamically as the engine proceeds. The "distance filter" requires that the new point’s distance from any

known locally optimal point (found on a previous local search) be greater than the distance traveled when that

locally optimal point was found.

Thanks to its genetic algorithm methods, improved local search methods, and the distance and merit filters, the

Evolutionary Solver performs exceedingly well on smooth global optimization problems, and on many non-

smooth problems as well.

The local search methods range from relatively "cheap" to "expensive" in terms of the computing time

expended in the local search step; they are listed roughly in order of the computational effort they require. On

some problems, the extra computational effort will "pay off" in terms of improved solutions, but in other

problems, you will be better off using the "cheap" Randomized Local Search method, thereby spending

relatively more time on the "global search" carried out by the Evolutionary Solver’s mutation and crossover

operations.

In addition to the Local Search options, the Evolutionary Solver employs a set of methods, corresponding to the

four local search methods, to transform infeasible solutions – generated through mutation and crossover – into

feasible solutions in new regions of the search space. These methods, which also vary from "cheap" to

"expensive," are selected dynamically (and automatically) via a set of heuristics. For problems in which a
significant number of constraints are smooth nonlinear or even linear, these methods can be highly effective.

Dealing with constraints is traditionally a weak point of genetic and evolutionary algorithms, but the hybrid

Evolutionary Solver is unusually strong in its ability to deal with a combination of constraints and non-smooth

functions.

Global Search

Name globalSearch

73

Default 1 – Genetic Algorithm

Min 0 – Scatter Search

-Max 1 – Genetic Algorithm

Type Integer

If this option is set to 1 (Genetic Algorithm), then the Evolutionary Solver will use methods from the literature

on genetic algorithms (its traditional methods) to solve the model. Otherwise, the Evolutionary Solver will use

methods from the literature on scatter search. On some models, the scatter search algorithm will result in better

answers in less time when compared to the genetic algorithm. However, for other models, the genetic algorithm

may be more successful. Since the scatter search algorithm tends to perform best, by a modest margin, on the

majority of models, it is the default choice. But we suggest you try both algorithms with your model to see

which works better for you.

Model Based Search

Name modelBasedSearch

Default 0 – None

Min 0

Max 2

Type Integer

0-None, 1- CPU Based, 2-GPU Based

This option takes effect only when the Legacy Mode option is set to False. When this option is set to "None",

the new Scatter Search algorithm is used without any Model Based Search. When this option is set to either

"CPU Based" or "GPU Based", an internal model of the problem is created (using the Radial Basis Functions

method) which closely fits the original problem. The Evolutionary Engine uses this internal model to evaluate
many points in parallel (either on the CPU or GPU - depending on the option setting) rather than calling the

Interpreter to evaluate each of these points sequentially. Only the most promising of these points are sent to the

Interpreter for actual evaluation using the new Scatter Search Algorithm. This new search method typically

results in better solutions in less time when compared to using only the Scatter Search algorithm.

Evolutionary Parameters for Integer Problems

Where the other Solver enignes use the Branch & Bound method to solve problems with integer constraints, the

Evolutionary Solver handles integer constraints on its own, and is subject to the limits set in the following

parameters, Max Subproblems, Max Feasible Solutions, Tolerance, Max Time Without Improvement, and

Solve Without Integer Constraints. Unlike the other Solver engines, the Evolutionary Solver always works on a

series of subproblems, even if there are no integer constraints in the model – so these options are always

important for the Evolutionary Solver.

Max Feasible Solutions

Name maxFeasibleSols

Default Unlimited*

Min 0

Max Unlimited*

Type Integer

The value for the Max Feasible Solutions parameter places a limit on the number of feasible solutions found by

the evolutionary algorithm before the engine stops with the status result, Branching and bounding node limit

reached. Indicates an early exit of the algorithm. A feasible solution is any solution that satisfies all of the
constraints, including any integer constraints.

Max Subproblems

Name maxSubproblems

Default Unlimited*

Min 0

Max Unlimited*

Type Integer

The value for the Max Subproblems parameter places a limit on the number of subproblems that may be

explored by the evolutionary algorithm before the engine stops with the Status result, Branching and bounding

maximum number of incumbent points reached. Indicates an early exit of the algorithm. In the Evolutionary

Solver, a subproblem consists of a possible mutation step, a crossover step, an optional local search in the

vicinity of a newly discovered "best" point, and a selection step where a relatively "unfit" member of the

population is eliminated.

Max Time without Improvement

Name maxTimeNoImp

Default 30

Min 0

Max Unlimited

Type Integer

This option works in conjunction with the Tolerance option to limit the time the evolutionary algorithm spends

without making any significant progress. If the relative (i.e. percentage) improvement in the best solution’s
"fitness" is less than the Tolerance parameter value, the engine stops with the

Status result, "No remedies" status. (All remedies failed to find better point.) unless the evolutionary algorithm

has discovered no feasible solutions at all, in which case the status is Feasible solution could not be found. If

you believe that this stopping condition is being met prematurely, you can either make the Tolerance value

smaller (or even zero), or increase the number of seconds allowed by the Max Time without Improvement

option.

Solve Without Integer Constraints

Name solveWithout

Default 0 - Off

Min 0

Max 1 – On

Type Integer

If you solve your Problem with this parameter set to 1, the Solver ignores integer constraints (including

alldifferent constraints) and solves the "relaxation" of the problem, which is often quite useful.

Tolerance

Name intTolerance

Default 0

Min 0

Max 1.0

Type Double

75

This option works in conjunction with the Max Time without Improvement option to limit the time the

evolutionary algorithm spends without making any significant progress. If the relative (i.e. percentage)

improvement in the best solution’s "fitness" is less than the Tolerance parameter’s value, the Evolutionary

Solver stops as described below. Since the population may include members representing infeasible solutions,

the "fitness" value is a combination of an objective function value and a penalty for infeasibility.

Mixed Integer Problem Parameters

This section describes parameters used when solving integer programming problems for all Solver engines

except the LP/Quadratic Solver. The LP/Quadratic Solver’s integer options are described in the section,

LP/Quadratic Solver MIP Parameters above. This section explains all of the options that pertain to the solution

of problems with integer constraints.

Integer Cutoff

Name intCutoff

Default 2e+30

Min -2e-30

Max 2e+30

Type Double

This option provides another way to save time in the solution of mixed-integer programming problems. If you

know the objective value of a feasible integer solution to your problem – possibly from a previous run of the

same or a very similar problem – you can enter this objective value for the Integer Cutoff parameter. This

allows the Branch & Bound process to start with an "incumbent" objective value (as discussed above under

Integer Tolerance) and avoid the work of solving subproblems whose objective can be no better than this value.

If you enter a value for this parameter, you must be sure that there is an integer solution with an objective value

at least this good: A value that is too large (for maximization problems) or too small (for minimization) may

cause the engine to skip solving the subproblem that would yield the optimal integer solution.

Integer Tolerance

Name intTolerance

Default 0

Min 0

Max 1.0

Type Integer

When you solve an integer programming problem, it often happens that the Branch & Bound method will find a
good solution fairly quickly, but will require a great deal of computing time to find (or verify that it has found)

the optimal integer solution. The Integer Tolerance setting may be used to tell the engine to stop if the best

solution it has found so far is "close enough."

The Branch & Bound process starts by finding the optimal solution without considering the integer constraints

(this is called the relaxation of the integer programming problem). The objective value of the relaxation forms

the initial "best bound" on the objective of the optimal integer solution, which can be no better than this. During

the optimization process, the Branch & Bound method finds "candidate" integer solutions, and it keeps the best

solution so far as the "incumbent." By eliminating alternatives as its proceeds, the B&B method also tightens

the "best bound" on how good the integer solution can be.

Each time the Solver finds a new incumbent – an improved all-integer solution – it computes the maximum

percentage difference between the objective of this solution and the current best bound on the objective:

Objective of incumbent - Objective of best bound

--

Objective of best bound

If the absolute value of this maximum percentage difference is equal to or less than the Integer Tolerance, the

Solver will stop and report the current integer solution as the optimal result. If you set the Integer Tolerance to

zero, the Solver will continue searching until all alternatives have been explored and the optimal integer

solution has been found. This could take a great deal of computing time.

Max Feasible (Integer) Solutions

Name maxIntegerSols

maxFeasibleSols

Default Unlimited*

Min 0

Max Unlimited*

Type Integer

The value for the Max Integer Solutions parameter places a limit on the number of "candidate" integer solutions

found by the Branch & Bound algorithm before the engine stops with the status result, Branching and bounding

node limit reached. Indicates an early exit of the algorithm. Each candidate integer solution satisfies all of the

constraints, including the integer constraints; the engine retains the integer solution with the best objective value

so far, called the "incumbent."

It is entirely possible that, in the process of exploring various subproblems with different bounds on the

variables, the Branch & Bound algorithm may find the same integer solution (set of values for the decision
variables) more than once; the Max Integer Solutions limit applies to the total number of integer solutions

found, not the number of "distinct" integer solutions.

Max Subproblems

Name maxSubproblems

Default Unlimited*

Min 0

Max Unlimited*

Type Integer

The value for the Max Subproblems parameter places a limit on the number of subproblems that may be

explored by the Branch & Bound algorithm before the engine stops with the status result, Branching and

bounding maximum number of incumbent points reached. Indicates an early exit of the algorithm. Each

subproblem is a "regular" Solver problem with additional bounds on the variables. In a problem with integer

constraints, the Max Subproblems limit should be used in preference to the Iterations limit.

Solve Without Integer Constraints

Name solveWithout

Default 0 - Off

Min 0

Max 1 – On

Type Integer

77

If you solve your problem with this parameter set to 1, the engine ignores integer constraints (including

alldifferent constraints) and solves the "relaxation" of the problem.

Simulation Engine Settings

When "modelType": "simulation, the Monte Carlo Simulation engine is selected. The options below control
simulation engine.

Simulation Random Seed

Name randomSeed

Default 0

Min 0

Max Unlimited*

Type Integer

Setting the random number seed to a nonzero value (any number of your choice is OK) ensures that the same

sequence of random numbers is used for each simulation. When the seed is zero, the random number generator

is initialized from the system clock, so the sequence of random numbers will be different in each simulation. If

you need the results from one simulation to another to be strictly comparable, you should set the seed.

Sampling Method

Name samplingMethod

Default 1

Monte

Carlo

1

Latin

HyperCube

2

Sobol

RQMC

3

Type Integer

Use this option to select Monte Carlo (1), Latin Hypercube (2), or Sobol RQMC (3) sampling. In standard

Monte Carlo sampling, numbers generated by the chosen random number generator are used directly to obtain

sample values for the uncertain variables (PSI Distribution functions) in the model. With this method, the
variance or estimation error in computed samples for uncertain functions is inversely proportional to the square

root of the number of trials; hence to cut the error in half, four times as many trials are required.

RASON provides two other sampling methods than can significantly improve the ‘coverage’ of the sample

space, and thus reduce the variance in computed samples for output functions. This means that you can

achieve a given level of accuracy (low variance or error) with fewer trials.

• Latin Hypercube Sampling. Latin Hypercube sampling begins with a stratified sample in each dimension

(one for each uncertain variable), which constrains the random numbers drawn to lie in a set of subintervals

from 0 to 1. Then these one-dimensional samples are combined and randomly permuted so that they

‘cover’ a unit hypercube in a stratified manner. This often reduces the variance of uncertain functions.

• Sobol numbers (Randomized QMC). Sobol numbers are an example of so-called “Quasi Monte Carlo”

or “low-discrepancy numbers,” which are generated with a goal of coverage of the sample space rather than

“randomness” and statistical independence. A “random shift” is added to Sobol numbers, which improves

their statistical independence. Sobol numbers are frequently used in quantitative finance applications,

where they are often effective at reducing variance.

Random Number Generator

Name randomGenerator

Default 1

Park-

Miller

0

CMRG 1

Well 2

Marsenne 3

HDR 4

Type Integer

Use this option to select a random number generation algorithm. RASON includes an advanced set of random

number generation capabilities – well beyond those found in other Monte Carlo products. In common

applications, any good random number generator is sufficient – but for challenging applications (for example in

financial engineering) that involve many uncertain variables and many thousands of trials, the advanced

features of RASON can make a real difference.

Computer-generated numbers are never truly “random,” since they are always computed by an algorithm – they

are called pseudorandom numbers. A random number generator is designed to quickly generate sequences of
numbers that are as close to statistically independent as possible. Eventually, an algorithm will generate the

same number seen sometime earlier in the sequence, and at this point the sequence will begin to repeat. The

period of the random number generator is the number of values it can generate before repeating.

A long period is desirable, but there is a tradeoff between the length of the period and the degree of statistical

independence achieved within the period. Hence, RASON offers a choice of four random number generators:

• Park-Miller (0) “Minimal” Generator with Bayes-Durham shuffle and safeguards. This generator has a

period of 231-2. Its properties are good, but the following choices are usually better.

• Combined Multiple Recursive Generator (CMRG) of L’Ecuyer (1) This generator has a period of 2191, and

excellent statistical independence of samples within the period.

• Well Equidistributed Long-period Linear (WELL1024) generator of Panneton, L’Ecuyer and Matsumoto.

(2) This very new generator combines a long period of 21024 with very good statistical independence.

• Mersenne Twister (3) generator of Matsumoto and Nishimura. This generator has the longest period of

219937-1, but the samples are not as “equidistributed” as for the WELL1024 and CMRG generators.

• HDR (4) Random Number Generator, designed by Doug Hubbard. Removes the requirement to distribute

simulation trials and permits simulations running on various computer platforms to generate identical or

independent streams of random numbers.

Random Number Streams

Name randomStreams

Default 0

79

Single

Stream

0

Double

Stream

1

Type Integer

You can use this option group to select a Single Stream for all Uncertain Variables, or an Independent

Stream for each Uncertain Variable. Most Monte Carlo simulation tools generate a single sequence of
random numbers, taking values consecutively from this sequence to obtain samples for each of the distributions

in a model. This introduces a subtle dependence between the samples for all distributions in one trial. In many

applications, the effect is too small to make a difference – but in some cases, found in financial engineering and

other demanding applications, better results are obtained if independent random number sequences (streams) are

used for each distribution in the model. RASON Decision Services offers this capability for Monte Carlo

sampling and Latin Hypercube sampling; it does not apply to Sobol numbers.

If you use a PsiSeed() property function as an argument to a PSI Distribution function call, the uncertain

variable defined by that distribution always has an independent stream of random numbers, regardless of the

setting of this option.

CLT Threshold

Name cltThreshold

Default 100

Min 1

Max 1000

Type Integer

RASON Decision Services includes the ability to sum multiple independent random variables using compound

distributions. A compound distribution generates values for the sum of N independent identically distributed

uncertain variables. A distribution is made compound through the use of the PsiCompound() property.

When calculating a compound distribution, RASON Decision Services first tries to compute the distribution
analytically. For example "=PsiExponential(par, PsiCompund(N))" can be computed as PsiGamma(N, par) If

RASON is unable to compute a compound distribution analytically, but the frequency of the severity function

(N) is greater than the value for the CLT Threshold option, then the distribution will be computed according to

the Central Limit Theorem as PsiNormal(m, s). (The parameters m and s will be computed analytically from

the corresponding analytical moments of the severity distribution.) Othewise, the compound distribution will be

computed using Monte Carlo simulation to sum up N independent variates of the severity distribution. The

maximum value allowed for this option is 1000 while the minimum value allowed is 1. The default setting is

100.

Censor Type

Name censorType

Default 0

Min 0

Max 2

Type Integer

Use this parameter only if you want to set global default bounds on the probability distributions of all uncertain

variables. This option specifies the "units of measure" for the values you enter for the Lower Censor and Upper

Cutoff options. Set this parameter to 0(None - the default) if you do not want to set these global bounds.

If you set this parameter to 1 (Percentile), then the Lower Censor and Upper Censor values must be between

0.01 and 0.99, and they specify percentiles of each uncertain variable’s probability distribution. If you set this

parameter to 2 (Std Deviation), then the Lower Censor and Upper Censor can be any positive or negative value,

and they specify the number of standard deviations away from the mean for each uncertain variable.

When you use Censor bounds, random samples from the distribution that lie above the upper bound are set

equal to the upper bound, and samples that lie below the lower bound are set equal to the lower bound; this

causes a "buildup of probability mass" at the bounds – which is appropriate in some situations, but not in others.

Cutoff Type

Name cutoffType

Default 0

Min 0

Max 2

Type Integer

Use this parameter only if you want to set global default bounds on the probability distributions of all uncertain

variables. This option specifies the "units of measure" for the values you enter for the Lower Cutoff and Upper

Cutoff parameters. Set this parameter to 0(None - the default) if you do not want to set these global bounds.

If you set this parameter to 1 (Percentile), then the Lower Cutoff and Upper Cutoff values must be between 0.01

and 0.99, and they specify percentiles of each uncertain variable’s probability distribution. If you set this

parameter to 2 (Std Deviation), then the Lower Cutoff and Upper Cutoff can be any positive or negative value,

and they specify the number of standard deviations away from the mean for each uncertain variable.

When you use Cutoff bounds, random samples from the distribution are effectively rescaled to lie within the

lower and upper bounds.

Lower Censor

Name lowerCensor

Default -1e+30

Min -1e+30

Max 1e+30

Type Double

Use this parameter to set a lower "censor" bound for values sampled from the probability for a specific

Uncertain Variable. A lower censor bound causes all random samples drawn from the distribution that are less

than this value to be set equal to this value. This means that there is a "buildup of probability mass" at the lower

bound. If you do not want this effect, use the Lower Cutoff option instead.

Lower Cutoff

Name lowerCutoff

Default -1e+30

Min -1e+30

81

Max 1e+30

Type Double

Use this parameter to set a lower cutoff for values sampled from the probability for a specific Uncertain

Variable. A lower cutoff has the effect of re-scaling the distribution so that random samples drawn from the

distribution will never be less than the value you enter here. Because the distribution is re-scaled, there is no
"buildup of probability mass" at the lower cutoff, as there is for the Lower Censor option.

Upper Censor

Name upperCensor

Default 1e+30

Min -1e+30

Max 1e+30

Type Double

Use this parameter to set an upper "censor" bound for values sampled from the probability for a specific

Uncertain Variable. An upper censor bound causes all random samples drawn from the distribution that are

greater than this value to be set equal to this value. This means that there is a "buildup of probability mass" at

the upper bound. If you do not want this effect, use the Upper Cutoff option instead.

Upper Cutoff

Name upperCutoff

Default 1e+30

Min -1e+30

Max 1e+30

Type Double

Use this parameter to set an upper cutoff for values sampled from the probability for a specific Uncertain

Variable. An upper cutoff has the effect of re-scaling the distribution so that random samples drawn from the

distribution will never be greater than the value you enter here. Because the distribution is re-scaled, there is no

"buildup of probability mass" at the upper cutoff, as there is for the Upper Censor option.

Formulas
This optional section can be used to perform calculations on data arrays or constant values which will be used in

a constraint, objective function or uncertain function definition. In the example below, c4, c5, c6,c7 and c8

calculate formulas based on three uncertain variables, uncVar1, uncVar2, and uncVar3.

formulas : {

 c4: { formula: "5 * uncVar2" },

 c5: { formula: "5 + 2.5* uncVar1" },

 c6: { formula: " 4.1 * uncVar3" },

 c7: { value: 100 + uncVar2 * 7 },

 c8: { formula: "100 + 80* uncVar1" }

 },

Note: The RASON modeling language supports all but a few of Excel's functions5 which means that you can

write a formula easily using functions such as SUM, SUMPRODUCT, etc. along with operators such as + and

*. You can define arrays and use Excel functions that return vector and matrix results and access your data from

within an Excel worksheet or a database.

See the table below for the properties available in the formula section of your RASON model.

Data Property Type Explanation

aliasName aliasName:

“num_parts_inventory”

This property is automatically inserted into the

converted RASON model when an Excel model is

deployed through Analytic Solver’s Deploy Model

button, if a block of cells containing formulas is

assigned a defined name in the Excel Solver model.

name name: "parts" Use this property to define the array name.

dimensions dimensions: [3,1]

dimensions: [3]

dimensions: [1,3]

dimensions: [3,2]

Defines a 1 – dimensional vertical array with 3

elements.

Defines a 1-dimensional vertical array with 3

elements.

Defines a 2 – dimensional horizontal array with 3
elements.

Defines a 2 – dimensional array with 3 rows and 2

columns.

All arrays are 1 – based. If missing, array shape will

be defined by the shape of the value property;

however, for easier readability of the code, the use of

the dimensions property is recommended.

value value: [1, 1, 1] Sets the value of the array. While it is unlikely that

this property would be required within formulas,

as typically the value of an object will be computed

by formula, it is permissible. See the example

model, RGSpace2.json for an example.

If dimensions property is missing, the shape of the

variable array will be determined by the shape of the

value property. However, it is recommended that the

dimensions property be used for readability

purposes.

5 Note: Excel functions not supported by the Rason modeling language are: Call(), Cell(), CubeX(), EuroConvert(),

GetPivotData(), HyperLink(), Indirect(), Info(), Offset(), RegisterID(), PivotDim(), PivotCube(), FormulaText(),

Dollar(), Fixed(), Replace(), Search(), Text() and SqlRequest().

 .

83

formula formula: "5 + 2.5*temp2"

formula: "MATOP(Supply,

'min', '+',

transpose(Demand))"

Enter a formula to calculate a result or array which

will be used in a constraint, uncertain function or in

the objective function.

comment comment: "partsReq" array

holds the number of parts

required to produce each

product"

Enter a comment here to describe the data.

Index Sets
RASON uses index sets exclusively to dimension tables and arrays. Typical mathematical programming

models include multiple tables and arrays indexed over various index sets. An index set should be created at

the beginning of the model to establish a basis of order for each dimension appearing in a table or array.

Otherwise, the user will be required to keep track of and maintain the correct order of elements in all arrays and

tables present in the model. An index set is always a 1-dimensional array and must be defined within the

indexSets section of the RASON model.

The example code below creates two ordered sets, part and prod. The part set contains five items (in order as

entered): chas, tube, cone, psup, and elec while the prod set contains 3 items: tv, stereo, and speakers. An

indexSet is always defined as a JSON object{}.
indexSets: {

 part: {

 value: ['chas', 'tube', 'cone', 'psup', 'elec']

 },

 prod: {

 value: ['tv', 'stereo', 'speaker']

 }

 },

data: {

 parts: {

 indexCols: ['part', 'prod'],

 value: [

 ['chas', 'tv', 1],

 ['elec', 'stereo', 1],

 ['tube', 'tv', 1],

 ['cone', 'tv', 2],

 ['cone', 'stereo', 2],

 ['chas', 'stereo', 1],

 ['cone', 'speaker', 1],

 ['psup', 'tv', 1],

 ['psup', 'stereo', 1],

 ['elec', 'tv', 2],

 ['elec', 'speaker', 1]

]

 },

 profits: {

 dimensions: ['prod'],

 value: [75, 50, 35]

 },

In the data section, a table is created that uses the dimensions part and prod as the index columns. Since the

index set prod exists, we can dimension the profits array according to this set in order to assign the correct

profit values to the appropriate products.

Members in a set are recorded as strings regardless of the name given to the element. Typically, the members

of the set describe or represent examples of the same type of item, i.e. product lines, cities, countries, inventory,
etc. The names of these items may be familiar (TVs, Stereos, Speakers) or not (Part 567, Part 987, Part 123).

Regardless, the names of the set objects must be surrounded by a single quote and the entire set must be

surrounded by [], for example: ['TVs', 'Stereos', 'Speakers'].

Note: The RASON modeling language does not consider upper and lower case letters distinct so one could not

include TVs, tvs, and Tvs in the same set. The name of an indexed set may be made up of letters, numbers, or

symbols.

A set may also be a collection of numbers. Numbers will be treated as strings when used in an index set. In the

example below, the index set birth contains five elements: 1950, 1951, 1952, 1953, and 1954.

indexSets :{

 birth: { value: [1950, 1951, 1952, 1953, 1954] }

}

Now let's assume that the following table is created that lists the year of birth and whether or not the person is

still alive (1) or not (0).
data: {

 status: {

 indexCols: ['birth'],

 value: [

 [1950, 0],

 [1951, 1]

 [1952, 1],

 [1953, 0],

 [1954, 1]

]

 },

To refer to the coefficient for the year 1952, we would use: status['1952'].

Note: If we were to use status[1952] (no quotes), this would obtain the 1,955th element of the status table,

which does not exist in this particular example. The only place you must reference index set components as

strings is within the index operator [] when attached to a table name.

This set contains five years as elements: 1950, 1951, 1952, 1953 and 1954. We could have specified this same

set by using the upper and lower properties to specify the lower and upper bounds of the set, respectively.
indexSets :

[

 { name: "birth", lower: 1950, upper: 1954

],

In the following example, the years are not given in chronological order.

indexSets: {

 { name: "years", value: [1958, 1930, 1940 , 1954, 1925]},

}

In this case, the order of the set is the same as the order entered. .

However, in the example below, the sort property ensures that the years index is sorted alphabetically in

ascending order. (Note: The properties sort and sortIndexCols perform the same function.)

indexSets: {

85

 { name: "years", value: [1958, 1930, 1940, 1954, 1925], sortIndexCols: true },

}

Note: In the current implementation of RASON, operations over index sets are not supported.

See the sections Array Formulas and/or Tables, appearing later on in this guide, for information on how to

reference an index set in an array or table.

Model Description
Use modelDescription to add a text string containing the description of the model (optional).
{

 "modelName": "CollegeFundModel2",

 "modelDescription": "This is a simulation model that simulates activity

 in a college savings account.",

…

}

Model Name
Use modelName to assign a name to the RASON model, optional. RASON V2020 supports both named and

unnamed models A model becomes "named" either by including modelName: "name" in the RASON model

text and then calling POST rason.net/api/model or by simply calling POST rason.net/api/model/<name> or

both. Either call returns a Location header with a new resource ID that identifies this unique model instance.

The "name" must be unique among models with a user's account. An unnamed model, or a model not containing

modelName, has no name.

• A model may be named by using a REST API call to POST rason.net/api/model/{name}, i.e. POST

rason.net/api/model/TestModel2. See the example response below, note the resource ID (

2590+TestModel2+2019-11-22-17-53-20-176350) that identifies the unique model instance.

Location: https://rason.net/api/model/2590+TestModel2+2019-11-22-17-53-

20-176350

• A model may also be named by using the property modelName: "name" in the body of the

RASON model. In the example code below, the model name is "TestModel1". The RASON model

will be "named" with a call to POST rason.net/api/model or POST rason.net/api/model/{name}. If

using POST rason.net/api/model/<name>, the name given to the modelName property and the name

passed to POST rason.net/api/model/<name> must be identical, otherwise, an error will be returned.

See the example response below, again, note the resource ID (2590+TestModel1+2019-11-22-18-25-

40-015004) that identifies the unique model instance.

Location: https://rason.net/api/model/2590+TestModel1+2019-11-22-18-25-40-

015004

The RASON Server maintains a simple, one-level directory of named models as ordinary text files using Azure

file storage.

https://rason.net/api/model/2590+TestModel1+2019-11-22-18-25-40-
https://rason.net/api/model/2590+TestModel1+2019-11-22-18-25-40-

Additionally, a RASON model may be saved to the user's OneDrive for Business account. If the model is

stored in OneDrive for Business, the user must give the RASON server permission to access the account on

OneDrive by adding a Data Connection on the MyAccount page at www.RASON.com.

For more information on creating a Data Connection, see the Data Connections section within the RASON

Subscriptions chapter in the RASON User Guide. Note: There is a 4 MB limit on the size of files written back

to OneDrive or OneDrive for Business.

Model Settings
In this optional section, you may specify options relevant to the solve such as the number of optimizations or

simulations to run, the number of trials to perform in a simulation model, what Stochastic Transformation

method to use when solving a stochastic optimization model, if a nonsmooth model should be transformed, etc.

The example code below sets Transform Nonsmooth to True and the number of optimizations to 2. The order

in which the options appear is not relevant.

modelSettings: {

 transformNonSmooth: true, numOptimizations:2

 },

See below for a complete description of each available model option.

*Note: Unlimited in the tables below equals the maximum 32-bit integer setting, 2,147,483,647.

Active Sheet

Auto Adjust Chance Constraint

Name activeSheet

Used (only) during automatic conversion from Analytic

Solver (desktop or online) to the RASON modeling

language.

Name chanceAutoAdjust

Default False

Min False

Max True

http://www.rason.com/

87

Set this option to True if you want your Robust Counterpart model to be automatically re-solved while adjusting

the size of uncertainty sets created for chance constraints, in an effort to find a better (less conservative)

solution. This can take significantly more time for a large model. If this option is set to False (the default), the

Robust Counterpart model will not automatically re-solve the model.

Big M Value

Use this option to set a "Big M" constant value to be used in newly generated constraints that result from a

Nonsmooth Model Transformation. The default value is 1E6 or 1 million – but if you are using transformation

features, you should ensure that this value is correct for your model: It must be bigger than any numeric value

that may appear in your intermediate calculations (for example, bigger than any value a in an expression

IF(a>=b,…)) but it should not be excessively large. If your value for the Big M option is smaller than the
largest value that occurs in your intermediate calculations, the generated constraints will not have the desired

effect, and your solution will not be valid for your original problem. If your Big M value is too large, the

transformed model will be poorly scaled, and the Solver engine will likely encounter problems with numerical

stability as it performs computations with your too-large values. So it pays to investigate the results computed

by your what-if spreadsheet model, and set the Big M option appropriately.

Chance Constraint Use

This option determines the norm (distance measure) used to constrain the size of uncertainty sets in the Robust

Counterpart model. Select from the L1 Norm, L2 Norm, L-Inf Norm, or D Norm (the default). The D norm is

equivalent to the intersection of the L1 norm and L-Inf (infinity) norm. If you choose the L2 norm, the Robust

Counterpart model will be a SOCP (second order cone programming) model, which requires an SOCP or

smooth nonlinear solver (such as the SOCP Barrier Solver or GRG Nonlinear Solver). If you choose the L1, L-

Inf or D norm, the Robust Counterpart model will be an LP (linear programming) model that can be solved

efficiently with an LP, QP, or SOCP Solver.

Uncertainty Sets and Norms

If a chance constraint is linear in the decision variables, you can use the USet (uncertainty set) criterion, in lieu

of the VaR or CVaR criterion. The advantage of using this criterion is that the robust counterpart model more

accurately reflects the degree to which you want the chance constraint to be satisfied, which can lead to less

Type True or False

Name BigM

Default 1E+6

Min -1.00E+30

Max +1.00E+30

Type Double

Name chanceConstraintNorm

Options L1, L2, Linf, D

conservative solutions, with better objective values. Consider a constraint: a1x1 + a2x2 + ... + anxn  b where =a1x1 +

a2x2 + ... + anxn is in A1, b is in B, and some or all of the coefficients ai may depend on uncertain variables z1, z2,

... It is useful to think of the vector [a1 a2 ... an] as having a nominal or expected value, and a variation from this

value for each realization of the uncertain variables. A constraint of the form USetΩ A1 <= B1 specifies that A1

<= B1 must be satisfied for all variations from the nominal value of [a1 a2 ... an] that do not exceed a bound Ω,

measured by a norm. The uncertainty set includes all the points formed by adding a vector of allowed variations

to the vector of nominal values; the bound Ω is often called the budget of uncertainty for the constraint.

RASON allows you to choose among four different norms to measure variation from the nominal value: The

L1, L2, L Inf (Infinity) and D norms. (One choice of norm applies to all chance constraints.) The graphs shown

on the following pages may help you visualize the shape of the uncertainty set (based on two uncertain variables

z1, z2) for each of the norms. The D norm represents the intersection of the L1 norm and the L-Inf norm; thus it

can define a ‘tighter’ uncertainty set than either of these norms alone. For the D norm, Ω can be interpreted as a

bound on the number of coefficients [a1 a2 ...an] that depart from nominal values. When the D norm is used, the

robust counterpart of a stochastic LP problem is a (larger, conventional) LP problem; when the L2 norm is used,

the robust counterpart is an SOCP problem.

L1 Norm L2 Norm

L Inf Norm D Norm

Nonsmooth Model Transformation

Name transformNonsmooth

Default False

89

Use this option to choose whether Solver will attempt to transform constraints in your model that are non-

smooth functions of the decision variables into equivalent linear constraints that depend on newly introduced

binary integer and continuous decision variables. Your model will be automatically diagnosed and if it contains

non-smooth functions that are candidates for transformation, Solver will attempt the transformation and will

diagnose the resulting expanded model. If your model is successfully transformed, you should be sure to check,

and probably adjust, the Big M Value option.

A simple example is the constraint:

 constraint1: {

 formula: "If(test1=0,test2,test3)",

 upper: 100

 },

If test1 is (or depends on) a decision variable, this constraint is non-smooth – in fact discontinuous – which

means that the model cannot be solved to optimality by either linear programming (fastest and most reliable) or

smooth nonlinear optimization.

Assuming for simplicity that test1 is a decision variable that is non-negative, this constraint can be transformed
by introducing a new binary integer variable Binary1, and a new constraint test1 <= BigM * Binary1, where

BigM is a constant larger than any possible value for Binary1 (you can set this value with the Big M Value

option).

The IF function is replaced internally with =test3*Binary1+test2*(1-Binary1). Now when Binary1=0, the first

term (test3 * Binary1) is forced to 0 (test3*0 = 0), and the function evaluates to test2 (test2 * (1-0)); when

Binary1=1, the second term (test2 * (1 – Binary1) is forced to 0 (test2 * (1-1)), and the function evaluates to

test3 (test3 * 1). The non-smooth IF function is transformed into a set of linear functions, so a faster and more

reliable linear programming Solver can potentially be used – but the overall size of the model is increased. The

Platform can perform much more complex transformations automatically, for constraints involving functions IF,

AND, OR, NOT, MIN, MAX, and the relational operators <=, = and >=. Such transformations can result in a

significantly larger model, but if the resulting model is entirely linear, this can be more than offset by the faster
speed and reliability of a linear programming Solver.

Optimizations to Run

Name numOptimizations

Default 1

Min 1

Max Unlimited*

Type Integer

Use this property to set the number of optimizations to run. This is useful only if you’ve defined one or more

optimization parameters, PsiOptParam(). You can use these features to run multiple, parameterized

optimizations. For example, in a product mix example you could define an optimization parameter to be varied

from (say) $100 to $50 to reflect different selling prices. If you set the Optimizations to Run value to 6, the

Solver engine would solve 6 portfolio optimization problems: the first one would use a selling price of $50, the

Min False

Max True

Type True or False

second would have a selling price of $60, and so on through the 6th problem with a selling price of $100. The

results of all 6 optimizations will be returned in the Result.

For more information on PsiOptParam(), please see the Parameters section explanation below.

Random Seed

Setting the random number seed to a nonzero value (any number of your choice is OK) ensures that the same

sequence of random numbers is used for each simulation. When the seed is zero, the random number generator

is initialized from the system clock, so the sequence of random numbers will be different in each simulation. If
you need the results from one simulation to another to be strictly comparable, you should set the seed. To do

this, click the spinner next to the Random Seed edit box, or type the number you want into the box.

You can specify a random seed for each uncertain variable if you wish (in the uncertainVariables

section) by including the PsiSeed() property function as an argument to the PSI Distribution function formula

for that variable. The seed value you set using the model option randomSeed affects only uncertain variables
that do not have PsiSeed() property functions.

Run Specific Optimization

Name optimizationIndex

Default

Min 1

Max NumOptimizations

Type Integer

The specific optimization the Solver will perform, if multiple optimizations are defined. If PsiOptParam()

exists, the parameter for the optimizationIndex specified will be used.

Run Specific Simulation

The specific simulation that will be performed if multiple simulations are defined. If PsiSimParam() exists, the

parameter for the simulationIndex specified will be used.

Name randomSeed

Default 1

Min 1

Max Unlimited*

Type Integer

Name simulationIndex

Default 1

Min 1

Max NumSimulations

Type Integer

91

Simulation Optimization

Name simulationOptimization

Default False

Min false

Max True

Type True or False

Use this option to determine how an optimization model with uncertainty will be solved. Your optimization

includes uncertainty if the formula for the objective, or any constraint, depends (directly or indirectly) on an

uncertain variable cell, where you’ve used a PSI distribution function (such as PsiNormal). If

simulationOptimization="True", then Simulation Optimization will be used to solve the RASON

model. This is the most general method (it can handle nonlinear and non-smooth models), but is also the

slowest and least reliable.

Simulations to Run

Use this property to set the number of simulations to run. This is useful only if you’ve defined one or more

simulation parameters, PsiSimParam(). You can use this feature to run multiple, parameterized simulations.

For example, in an airline yield management model where the number of "noshows" for a departing flight

depends on the number of tickets sold, you could define a simulation variable for the number of tickets sold as a
simulation parameter, varied from (say) 100 to 150. If you set the Simulations to Run value to 51, 51

simulations will be performed: the first simulation would use 100 tickets sold, the second would use 101 tickets

sold, and so on through the 51st problem with 150 tickets sold. The results for all 51 simulations will be

included in the Result. For more information on PsiSimParam() please see the Parameters section explanation

below.

Use Sparse Variables

Use this option to determine whether Rason should operate in (its own) Sparse mode or Dense mode. The

default setting is False, meaning that the Interpreter operates in its Dense mode.

If you set this option to True, Rason will use its own Sparse mode, which can save memory when your

optimization model is sparse, but possibly at the expense of extra time, since a Structure analysis is always

performed when analyzing or solving.

Name numSimulations

Default 1

Min 1

Max Unlimited*

Type Integer

Name Sparse

Default 0 (False)

Min 0 (False)

Max 1 (True)

Type Boolean

Use Sparse Cubes

Use this option to determine whether Rason should calculate a cube defined by PsiCube() or PsiTableCube()
using Sparse mode or Dense mode.

Most large cubes are sparse in nature. While they may contain thousands of elements, in practice, not all

combinations of dimension elements are possible. Hence, not all will define a model function during the Psi

Interpreter's evaluation of the problem. This means that most cubes will provoke output results as sparse cubes

(with missing constraints). Such sparsity in a cube, also known as structural sparsity, can be exploited to save

memory and gain speed.

A sparse cube is defined by missing values in cells for PsiCube() and by missing records for PsiTableCube(). If

this option is equal to False and you have defined a cube using PsiCube() or PsiTableCube(), elements missing

from the cube will be considered equal to 0. If you set this option to True, you have defined a cube using

PsiCube() with missing values or PsiTableCube() with missing records, and the percentage of elements missing
or empty is more than 30% of the total possible cube elements, those missing elements or records will not be

included in the model.

For an example of how to use a sparse cube see the Dimensional Modeling chapter in the Frontline Solvers

User Guide.

Stochastic Transformation

Use this option to determine how an optimization model with uncertainty will be solved. Your optimization

includes uncertainty if the formula for the objective, or any constraint, depends (directly or indirectly) on an

uncertain variable cell, where you’ve used a PSI distribution function (such as PsiNormal). Stochastic

Transformation works only with linear models that include uncertainty; it uses either stochastic programming or

robust optimization methods to solve the problem (see the Transformation options for further information).

You can choose Deterministic Equivalent or Robust Counterpart. This transformation can succeed only if

your objective and constraints are linear functions of the decision variables (they can also depend on uncertain

variables).

Use this option to determine if an attempt is made to transform your optimization model with uncertainty into a

conventional optimization model without uncertainty: either the Deterministic Equivalent model (as used in
stochastic linear programming), or a Robust Counterpart model (as used in robust optimization).

The result of a successful transformation is a conventional linear programming model, but with considerably

more decision variables and constraints than the original model. Generally, the Robust Counterpart model is

much smaller than the Deterministic Equivalent model, but the solution of this model may be only an

approximate (and conservative) solution of the original problem.

Name sparseCubes

Default 0 (False)

Min 0 (False)

Max 1 (True)

Type Boolean

Name transformStochastic

Options deterministicEquivalent

or robustCounterpart

93

Trials Per Simulation

Use this property to set the number of Monte Carlo trials to run in each simulation. The default value is 1,000

trials, which is enough for a good statistical sample in most models. But applications such as estimating the

value of options and other derivatives may need a higher number of trials.

Objective
This optional section is used for defining a normal, expected, or chance objective function in an optimization,

stochastic optimization or simulation optimization model. In the example below the objective is being

maximized. In return, the final value of the objective will appear in the result.

objective: {

 obj: {

 type: "maximize",

 formula: "sumproduct(parts, profits)",

 finalValue: []

 }

 }

Please see the table below for all input properties available in objective.

Input Property Example Definition

aliasName aliasName: “num_parts_inventory” This property is automatically inserted into

the converted RASON model when an

Excel model is deployed through Analytic

Solver’s Deploy Model button, if the cell

containing the objective function is

assigned a defined name in the Excel Solver

model.

comment comment: "Calculate Profit" Enter a comment here to describe the

objective function. (Optional)

name name: "obj" Enter a name for the objective function.

(Optional)

type 1. type: "min"

type: "minimize"

2. type: "max"

type: "maximize"

Required. Defines the problem as a
“maximum” or “minimum” optimization

model.

formula formula:

"sumproduct(X,partsReq[1,])"

Calculates the objective function; formula

must resolve to a scalar. (Required.)

Name numTrials

Default 1

Min 1

Max 100,000,000

Type Integer

where X and partsReq are predefined arrays.

chanceType chanceType: “ExpVal”

chanceType: “VaR”

chanceType: “CVaR”

chanceType: “USet”

Objective must contain uncertainties.

Expected (ExpVal) – Sets the objective

value to calculate the expected value of the

objective or average over all simulation

trials.

Value at Risk (VaR) – Specifies that the
chanceProbability percentile will be

maximized.

Conditional Value at Risk – Specifies the

expected value of all the realizations of the

objective up to the chanceProbability

percentile will be maximized.

Uncertainty Set – Specifies the objective

must be maximized (or minimized) for all

variations from the nominal value that does

not exceed the chanceProbability.

chanceProbability chanceProbability: 0.95 Defines the percentile for use with VaR,
CVaR, and USet objective types.

An output property must be specified within the objective definition as an empty array.

The Objective Function

The quantity you want to maximize or minimize is called the objective function. This could be a calculated value for

projected profits (to be maximized), or costs, risk, or error values (to be minimized). If the objective function depends on

uncertainties, we must specify how we want to ‘optimize’ this function. The most common practice is to maximize or

minimize the expected value (informally, the mean value) of the objective, over all realizations of the uncertainties.
Instead of maximizing or minimizing the expected value of a function of the decision variables and uncertainties, you

can maximize or minimize a measure of the uncertainty in a function. The objective will be converted to the form max t

or min t, where t is a new variable, and a chance constraint will be inserted (A1 >= t or A1 <= t) with the measure of

uncertainty that you specify.

Implicit and Explicit Forms for the Objective

When you set chanceType: "ExpVal", your objective cell will be treated as implicitly containing E[objective], or

using sample realizations of the uncertainty PsiMean(objective).

Output Property Example Definition

finalValue finalValue: [] Creates an empty array to hold the final objective value for the

objective function.

initialValue initialValue: [] Creates an empty array to hold the initial value for the objective

function.

95

Parameters
The RASON Modeling language supports two kinds of parameters: optimization and simulation parameters.

• An optimization parameter (PsiOptParam) is automatically varied when you perform multiple

optimizations. An optimization parameter is defined in the parameters section. The model option,

numOptimizations, must be set to an integer value greater than 1 in modelSettings. For more

information on how to set this option, please see the Model Settings section above.

• A simulation parameter (PsiSimParam) is automatically varied when you perform multiple

simulations. A simulation parameter is defined in the parameters section. The model option,

numSimulations, must be set to an integer value greater than 1 in modelSettings. For more

information on how to set this option, please see the Model Settings section above.

The example below is for an optimization parameter. A simulation parameter could be setup in the same way

using PsiSimParam() and following the same steps below.

parameters: {

desired: {

 formula: "PsiOptParam(0.10, 0.6)", finalValue: []

},

}

In this example, formula contains the PsiOptParam function with two arguments "0.10" and "0.60". The

first argument ("0.10") is the lower limit for the optimization parameter and the second argument ("0.60") is the

upper limit for the optimization parameter. If numOptimizations is set to 6 in modelSettings, desired

will equal 0.10 in the first optimization, 0.20 in the second optimization, 0.30 in the third optimization and

ending with 0.60 in the sixth and final optimization. The increment value is calculated as: (upper –

lower)/(numoptimizations-1).

Alternatively, a list of values may be passed to PsiOptParam().

parameters: {

desired: {

 formula: "PsiOptParam({0.18,0.08,0.45,0.35,0.50,0.60})",

finalValue: []

},

}

PsiOptParam will use the values in order as they are given. In the example above, in the first optimization

desired will equal 0.18, in the 2nd optimization 0.08, in the third, 0.45, and so on. If numOptimizations is

set to a number that is greater than the number of values passed, PsiOptParam() will return to the beginning of

the sequence. For example, if numOptimizations is set to 8, desired will equal 0.18 in the 7th optimization

and 0.08 and in the 8th optimization.

Variables
The "variables" section is required in an optimization, simulation optimization or stochastic optimization model.

Here you will define a variable or a block of variables, specify the variable "type" (integer, binary,

semicontinuous, all different or conic), stipulate if the variable is to be a recourse variable (for use with

stochastic optimization), identify lower or upper bounds for the variable(s), add a comment to describe the

variables, and/or assign an initial value to the variable or variable block. In return you may ask for the

variable's final value, dual value, dual upper value and/or dual lower value. In the example code below, three

variables are defined (x[0], x[1], and x[2]). All are given an initial value and lower bound of 0. In return, the

variable's final value (finalValue: []) will be returned in the result.

variables: {

 x: { dimensions: [3], value: 0, lower: 0, finalValue: []

 }

 },

We also could have created the variable x array by using an alternate syntax, shown below.

variables : [

 { name: "X", value: [1.0, 1.0, 1.0], finalValue:[], dualUpper: [],

 dualLower: [], dualValue: [] }

],

Please see the table below for all input properties available in variables.

Input

Property

Example Definition

aliasName aliasName: “variables” This property is automatically inserted into the converted
RASON model when an Excel model is deployed

through Analytic Solver’s Deploy Model button, if a

block of cells containing decision or recourse variables is

assigned a defined name in the Excel Solver model.

comment comment: "number of

parts to produce"

Enter a comment here to describe the variable or block of

variables. (Optional)

name name: "numProducts" Enter a name for a variable or block of variables.

(Optional)

dimensions 1. dimensions: [3,1]

2. dimensions: [3]

3. dimensions: [1,3]

4. dimensions: [3,2]

1. Defines a 1 – dimensional vertical array with 3

elements.

2. Defines a 1 - dimensional vertical array with 3

elements.

3. Defines a 2 – dimensional horizontal array with

3 elements.

4. Defines a 2 – dimensional array with 3 rows and

2 columns.

All arrays are 1 – based. If missing, variable array shape

will be implicitly defined by the shape of the lower,

upper, or value properties, however, for readability of the

code, the use of the dimensions property is

recommended.

value value: [1, 1, 1] Sets the initial values of the variables to "1".

If dimensions property is missing, the shape of the

variable array will be determined by the shape of the

value property. If value is missing, the shape of the array

will be determined by the lower or upper properties.

However, it is recommended that the dimensions

property be used for readability purposes.

type 1. type: "int"

 type: "integer"

2. type: "bin"

 type: "binary"

1. Defines the variable or variable block as integers.

2. Defines the variable or variable block as binary

integers.

3. If present or missing, defines variable or variable

block as a "real" variable.

97

3. type: "real"

4. type: "dif"

 type: "alldif"

5. type: "sem"

 type: "semCon"

4. Defines the variable or variable block as having to be

alldifferent. Variables in an alldifferent group

always have a lower bound of 1 and an upper bound

of N, where N is the number of variables in the group.

5. Defines the variable or variable block as
semicontinuous variables. This specifies that, at the

solution, the variable must be either 0, or else a

continuous value within a range, determined by the

bounds on the variable

recourse recourse: true

recourse: false

Defines the variable or variable block as recourse

variable(s). The default setting for this option is false.

For more information on these types of variables, please

see the topics below. (Optional)

lower* lower: 0

lower: [1, 2, 3]

lower: ‘availInvent’

where availInvent is an

array of constants.

Specifies the lower bound of the variable or variable

block. If an array is passed and dimensions or value

properties are missing, the shape of the variable array

will be determined by the shape of the lower property.

However, it is recommended that the dimensions
property be used for readability purposes. If missing, the

lower bound is defined as "unbounded". (Optional)

Note: Only constant values are supported for this

property. If a formula is provided to lower:[], the error:

"Can not be parsed" will be returned.

upper* upper: 0

upper: [1, 2, 3]

upper: ‘availInvent’

where availInvent is an

array of constants.

Specifies the upper bound of the variable or variable

block. If an array is passed and dimensions or value

properties are missing, the shape of the variable array

will be determined by the shape of the upper property.

However, it is recommended that the dimensions

property be used for readability purposes. If missing, the
upper bound is defined as "unbounded". (Optional)

Note: Only constant values are supported for this

property. If a formula is provided to upper:[], the error:

"Can not be parsed" will be returned.

*The RASON Server currently ONLY supports constant values (i.e. 3, 8.54, etc.) or an array containing

constant values for the lower and upper properties.

An output property must be specified within the variable definition as an empty array.

Output Property Example Definition

dualLower dualLower: [] Creates an empty array to hold the Allowable Decrease for

the variable or variable block. See the topic, Interpreting

Reduced Costs below for more information on this property.

dualUpper dualUpper: [] Creates an empty array to hold the Allowable Increase for the

variable or variable block. See the topic, Interpreting

Reduced Costs below for more information on each of these

properties.

dualValue dualValue: [] Creates an empty array to hold the reduced cost for the

variable or variable block. The reduced cost for a variable is

nonzero only when the variable is equal to its lower or upper

Interpreting Reduced Costs

Reduced Costs are the most basic form of sensitivity analysis information. The reduced cost for a variable is

nonzero only when the variable’s value is equal to its upper or lower bound at the optimal solution. This is

called a nonbasic variable, and its value was driven to the bound during the optimization process. Moving the

variable’s value away from the bound (or tightening the bound) will worsen the objective function’s value;

conversely, “loosening” the bound will improve the objective. The reduced cost measures the increase in the

objective function’s value per unit increase in the variable’s value. The properties dualLower and

dualUpper report the amount by which the variable's coefficient could be decreased or increased,

respectively, without changing the dual value.

Recourse Variables

Conventional optimization deals with only one type of decision variable, which represents a decision that must

be made ‘here and now,’ irrespective of any uncertainty in the model. We call this a normal or first-stage

variable. If we are dealing with uncertainty that will be resolved in the future, then at some point the array of

sample values for the uncertainty is effectively replaced by a single value, the realization of the uncertainty as it

actually occurs.

If the situation we are modeling allows us to make certain decisions after the uncertainty becomes known, on a

‘wait and see’ basis, we can model these decisions with recourse variables, also called second-stage variables.

(At the ‘second stage,’ the uncertainty has become known.)

Uncertain Functions
This section is required in a simulation model. In return you may ask for the final value and/or any of the nine

statistical values computed for the uncertain functions such as mean, standard deviation, variance, skewness,

etc. In the example code below, the uncertain function revenue is defined according to the formula property.

In return, all 100 percentile values as well as the standard deviation will appear in the Result.

uncertainFunctions: {

 revenue: {

 formula: "price*(sold - refund_no_shows*Round(no_shows, 0) –

 refund_overbook*overbook)",

 percentiles: [],

 stdev:[]

 }

 }

We also could have created the uncertain function revenue by using an alternate syntax, shown below.

uncertainFunctions : {

 [name: "revenue",

bound. See the topic, Interpreting Reduced Costs below for

more information on each of these properties.

finalValue finalValue: [] Creates an empty array to hold the final value for the variable

or variable block.

initialValue initialValue: [] Creates an empty array to hold the initial value of the

variable.

indexValue indexValue: [] Creates an empty array to hold the index value for each

variable in the block of variables.

99

formula: "price*(sold - refund_no_shows*Round(no_shows, 0) –

 refund_overbook*overbook)",

 percentiles: [],

stdev: []

]

}

Please see the table below for all input properties available in uncertainFunctions.

Input

Property

Example Definition

aliasName aliasName: “OutputFunctions” This property is automatically inserted into

the converted RASON model when an

Excel model is deployed through Analytic

Solver’s Deploy Model button, if a block of

cells containing uncertain functions are

assigned a defined name in the Excel Solver

model.

comment comment: "number of no-shows for a

flight"

Enter a comment here to describe the

uncertain function. (Optional)

name name: "no_shows" Enter a name for the uncertain function.

(Optional)

dimensions 1. dimensions: [3,1]

2. dimensions: [3]

3. dimensions: [1,3]

4. dimensions: [3,2]

1. Defines a 1 – dimensional vertical array
with 3 rows and 1 column.

2. Defines a 1-dimensional vertical array

with 3 rows and 1 column.

3. Defines a 2 – dimensional horizontal

array with 1 row and 3 columns.

4. Defines a 2 – dimensional array with 3

rows and 2 columns.

All arrays are 1 – based. If creating a block

of uncertain functions, you must use the

dimensions property to define the size and
shape of the array.

formula formula: "price*(sold -

refund_no_shows*Round(no_shows,

0) –

refund_overbook*overbook)"

Use this property to calculate the uncertain

function.

Statistics Functions

An output property must be specified within the uncertain function definition as an empty array. An output

property for an uncertain function is a statistic function such as mean or standard deviation. During a

simulation of 1,000 trials, 1,000 random sample values will be drawn for the uncertain function, and used to

compute the statistic . Hence, you can think of the uncertain function as ‘containing’ an array of 1,000 values.

But the output property (i.e. mean) will contain one value, which is the average or mean of the 1,000 values

computed for the uncertain function.

Accessing Statistics from Different Simulations

Each PSI Statistic function is assigned to an optional simulation index (default=1). If you want statistic values

from a specific simulation, say simulation #2, then you must set simulationIndex: 2 in

modelSettings. For more information, please see this option description in the Model Settings topic above.

A Note to Analytic Solver Users

• Selecting a specific simulation value within a statistic function is not supported. If interested on a particular simulation then users

should use simulationIndex in modelSettings. Then output pertaining (only) to that simulation will be available in the results.

• PsiTheo functions are currently not supported in RASON.

• Statistics in an Analytic Solver model may be translated into a Rason model using Analytic Solver's Create App functionality when

function arguments are explicitly provided as constants or cell references, if the cell references point to constant values. For example,

=PsiPercentile(cell, A1) where A1 = 0.5 or simply =PsiPercentile(cell, 0.5).

101

Output Property Example Definition

absDev absDev:[] AbsDev returns the average of the absolute deviations of the

specified uncertain function’s sample values from their mean. This
is also known as Mean Absolute Deviation (MAD), especially in

time series analysis applications. It is defined as:

𝑀𝐴𝐷(𝑋) =
1

𝑛
∑|𝜇 − 𝑥𝑖|

𝑛

𝑖=1

Here μ is the mean of the sample values.

bvar

bvar(confidence_level): []

BVaR returns the Value at Risk for the specified uncertain function

cell at the specified ‘confidence level,’ which is better described as a

percentile – for example, 0.95 or 0.99. (The “B” stands for “Basel”

or “building block,” and is used to distinguish this function name

from a function named PsiVar().)

In finance applications, the Value at Risk is the maximum loss that

can occur at a given confidence level. In a distribution of returns or

profits, losses would lie at the “left end” of the distribution and

would be represented by negative numbers and smaller percentiles
(say 0.01 or 0.05). But it is customary in Value at Risk analysis to

treat losses as positive numbers at the “right end” of the distribution.

Consider a Normal distribution, bvar (percentile) would be

converted as –percentile(1- percentile).

citrials citrials(confidence_level, tolerance):[]

CITrials returns the estimated number of simulation trials needed to

ensure that the specified uncertain function's sample mean value

(returned by the PsiMean() function) lies within the confidence

interval specified by confidence level (for example 0.95 or 0.99) and

the half-interval size given by tolerance.

Note that this number of trials is sufficient only to ensure that the

single output value specified by cell lies within the confidence
interval. To ensure that N output cells lie within confidence

intervals at level 1 -  (e.g. 0.95 = 1 – 0.05), use a confidence level

of  / N.

coeffVar coeffVar: [] CoeffVar finds the coefficient of variation for the specified
uncertain function. This function is defined as the ratio of the

standard deviation to the mean and is calculated as:

vc



=

This statistic measures the magnitude of the variability in relation to

the mean of the population.

correlation correlation(unc_func_or_var): []

Example where correlation statistic is

used to return a correlation coefficient

between two uncertain functions,

uncFunc1 and uncFunc2.

uncertainFunctions: {

 "uncFunc1": {"formula": "e17"},

 "uncFunc2": {"formula": "d17",

 "correlation(uncFunc1)": []}

The correlation statistic returns the Pearson product moment

correlation coefficient betweentwo uncertain variables or functions.

Correlation is a measure of linear dependence between two

uncertain variables or functions. The correlation coefficient can

take on values between -1 and +1. A correlation of -1 indicates a

perfect negative correlation (the cells move linearly in opposite

directions); a correlation of +1 indicates a perfect positive

correlation (the cells move linearly in the same direction). If the two

random variables are independent, then their correlation coefficient
is zero; but if the correlation coefficient is zero, this does not

necessarily mean that the two variables are independent.

Pearson’s product moment correlation coefficient between random

variables X and Y is defined as:

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌

=
𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌])]

𝜎𝑋𝜎𝑌

In Monte Carlo simulation, this value is computed from the sample

values x[] and y[] over n trials as:

𝑟𝑥,𝑦 =
𝑛 ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 − (∑ 𝑥𝑖

𝑛
𝑖=1)(∑ 𝑦𝑖

𝑛
𝑖=1)

√[𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1 − (∑ 𝑥𝑖
𝑛
𝑖=1)2][𝑛 ∑ 𝑦𝑖

2𝑛
𝑖=1 − (∑ 𝑦𝑖

𝑛
𝑖=1)2]

count count(type): [] The count statistic returns the number of trials of the specified type

executed in the most recent simulation for the uncertain function.

The type argument may be 0 for all trials, 1 for normal or ‘success’

trials (where the calculated uncertain function resulted in a number),

or 2 for error or ‘failed’ trials (where the calculated uncertain

function resulted in an error value).

cvar cvar(percentile):[] CVaR returns the conditional Value at Risk for the specified

uncertain function cell, at the specified ‘confidence level’ which is

better described as a percentile – for example, 0.95 or 0.99. The

conditional Value at Risk is defined as the expected value of a loss

given that a loss at the specified percentile occurs.

Like PsiBVaR, PsiCVaR returns a loss as a positive number. It is

computed as the negative of the mean value of the specified

uncertain function for the trials that lie between Min:[] and

Percentile(1-percentile), inclusive.

expGain expGain:[] PsiExpGain returns the average of all positive data multiplied by 1 -

percentrank of 0 among all data. It is always a positive number.

expGainRatio expGainRatio: [] PsiExpGain returns the expected gain ratio for a specified uncertain
function. This function is calculated as:

𝐸𝑥𝑝𝐺𝑎𝑖𝑅𝑎𝑡𝑖𝑜 =
𝐸𝑥𝑝𝐺𝑎𝑖𝑛

𝐸𝑥𝑝𝐺𝑎𝑖𝑛+|𝐸𝑥𝑝𝐿𝑜𝑠𝑠|

This value ranges between 0 and 1 inclusive.

expLoss expLoss:[] ExpLoss returns the average of all negative data multiplied by the

percentrank of 0 among all data. It is always a negative number.

expLossRatio expLossRatio:[] ExpLoss returns the expected loss ratio for a specified uncertain

function. This function is calculated as:

This value ranges between 0 and 1 inclusive.

expValMargin expValMargin:[] ExpValMargin is calculated as:

ExpValMargin = ExpGainRatio – ExpLossRatio.

This statistic ranges between -1 and 1 inclusive.

frequency frequency(frequency_type, bin bounds):

[]

example: frequency(0, -125000, -100000

100000,200000): []

Frequency returns an array of frequencies describing the distribution of

trial values for the specified uncertain function. Use this statistic to

obtain the data required to draw a histogram chart in your application.

The freq_type argument affects the contents of each element of the array

result and can be 0, 1 or 2:

0 0 – Each element contains the frequency of trial values falling into the

corresponding bin (like a probability density function)

103

1 1 – Each element contains the cumulative frequency of trial values

falling into the corresponding bin plus all lower bins (like a cumulative

distribution function)

2 2– Each element contains the cumulative frequency of trial values falling

into the corresponding bin plus all higher bins (like a reverse cumulative
distribution function)

In RASON, the bin_bounds argument is an array of values (e.g. { 5,

10, 15, 20 }) given in strictly increasing order. The number of

elements in the array result will be one more than the number of

values or cells in the bin bounds argument; the last element contains

the number of trial values larger than the highest bin bound value.

indexValue indexValue: []
Creates an empty array to hold the indexValue of the uncertain

function.

kendallTau kendallTau(unc_func_or_var): []

Example where KendallTau statistic is

used to return a correlation coefficient

between two uncertain functions,
uncFunc1 and uncFunc2.

uncertainFunctions: {

 "uncFunc1": {"formula": "e17"},

 "uncFunc2": {"formula": "d17",

 "kendallTau(uncFunc1)": []}

The KendallTau statistic returns a non-parametric correlation

coefficient (based on the relative ordering of ranks) between two

uncertain variables or functions. This statistic can be used to

determine how (if at all) the two uncertain variables or functions are

correlated.

The Kendall Tau rank correlation coefficient measures the ordinal

association between two uncertain variables or functions. It is a

measure of rank correlation. This correlation coefficient is high

when observations have a similar rank between the two variables,

and low when observations have a dissimilar rank between the two

variables.

kurtosis

kurt

kurtosis: []

kurt: []

Kurtosis returns the kurtosis for the specified uncertain function

cell. Kurtosis is the 4th moment and measures the peakedness of the

distribution of trial values. It is computed as:

()
()

()

4

1

2

2

1

n

i

i

n

i

i

n x

kurtosis X

x





=

=

−

=
 

− 
 





where μ is the mean of the trial values. A higher kurtosis indicates a
distribution with a sharper peak and heavier tails, and that more of

the variability is due to a small number of extreme outliers or

values; a lower kurtosis indicates a distribution with a rounded peak

and that more of the variability is due to many modest-sized values.

maximum

max

maximum: []

max: []

Max returns the maximum value attained by the specified uncertain

function over all the trials in the simulation.

mean

average

expectation

mean: []

average: []

expectation: []

Mean returns the mean value for the specified uncertain function.

The mean or average value is the 1st moment of the distribution of

trials and is computed as:

1

n

i

i

x

n
 ==



The mean is frequently used as a measure of central tendency or the

“middle” of an uncertain variable; but for skewed distributions, care

must be taken in using the mean as a measure of central tendency

because the mean is easily distorted by extreme outlier values.

meanCI meanCI(confidence_level) MeanCI returns the confidence “half-interval” for the estimated

mean value (returned by mean: []) for the specified uncertain
function, at the specified confidence level (for example 0.95 or

0.99). If μ is the value returned by mean:[] and δ is the value

returned by meanCI(confidence_level):[], the true mean is estimated

to lie within the interval μ - δ to μ + δ.

The confidence level can be interpreted as follows: If we compute a

large number of independent estimates of confidence intervals on

the true mean of the uncertain function, each based on n

observations with n sufficiently large, then the proportion of these

confidence intervals that contain the true mean of the function

should equal the confidence level.

If σ2 (n) is the sample variance from n trial values,  = 1 –

confidence level, and tn-1, 1-α/2 is the upper 1-α/2 critical point of the
Student’s t-distribution with n-1 degrees of freedom, the confidence

half-interval δ is computed as:

()2

1,1
2

n

n
t

n



− −

The confidence interval measures the precision with which we have

estimated the true mean. Larger half widths imply that there is a lot

of variability in our estimates. The above formula for the half-width

assumes that the individual xis are normally distributed; when this is

not the case, the above formula still gives us an approximate

confidence interval on the true mean of the uncertain function.

meanCIB meanCIB(confidence_level,

[lowerbound]):[]

MeanCIB returns the lower or upper bound of the confidence

interval (half width) of the mean value for the specified uncertain
function.

Confidence_level – Enter the desired confidence level, i.e. 0.95 or

0.99.

lowerbound – (Optional) Enter true for the lower (default) or false

for the upper bound.

Example: meanCIB(.99, true, 5) returns the lower bound for the

99% confidence interval for the distribution for simulation index 5.

median median: [] Mean:[] returns the median value for the specified uncertain

function. The median value is the 50th percentile of the distribution

of trials and is computed as:

 () 1 /2

n
X

+ if n is odd

()/2 /2 1

2

n n
X X

+
+

 if n is even

105

The median is a very useful statistic for measuring the center of a

distribution.

minimum

min

minimum: []

min: []

Min returns the minimum value attained by the specified uncertain

function over all the trials in the simulation.

mode mode: [] Mode returns the mode of the specified uncertain function. For

discrete distributions, this is the most frequently occurring value
(where the probability mass function has its greatest value). For

continuous distributions, Mode() returns the half-sample mode as

defined by D.R. Bickel, a robust estimator that is less sensitive to

outliers than most other estimators of location.

percentileCI percentile(percentile, confidence_level):

[]

PercentileCI returns the confidence “half-interval” for a given

percentile (.01-.99) value for the specified uncertain function.

This function is computed as: Lower: Percentile-PercentileCI,

Upper: Percentile + PercentileCI.

Since the output of PercentileCI is symmetric, the mean and median

are theoretically the same, i.e. MeanCI(0.95) is expected to be

approximately equal to PercentileCI(0.5, 0.95).

This function together with MeanCI, MeanCIB, StdDevCI, CITrials

and the newly added TargetCI, make up the confidence interval

functions in RASON.

Example: PercentileCI (0.95, 0.99,2):[] - Finds the confidence half-

interval for the uncertain function using the 95th percentile and a

confidence level of 99% for the 2nd simulation.

percentileD percentileD(percentile): [] PercentileD returns a descending percentile (.01-.99) value for the

specified uncertain function: This means that m (or m%) of the

simulation trials have values less than the returned value, where m is

the percentile.

percentiles percentiles: []

 percentile(confidence_level):[]

percentiles: [] returns all percentile (.01-.99) values for the specified

uncertain function: This means that m (or 100m%) of the
simulation trials have values less than the returned value, where m is

the percentile.

percentile(0.X) - Returns the specific percentile value. Values must

be between 0.01 and 0.99.

range range: [] Range returns the range of the specified uncertain function cell. The

range is the difference between the maximum and minimum values

attained in the distribution of trial values.

semiDev semiDev(q, [target]): [] SemiDev returns the semideviation for the specified uncertain

function, relative to the target if specified. If the target is omitted,

the mean value is used. This is a one-sided measure of dispersion of

values of the uncertain function. The semideviation is the square
root of the semivariance, described directly below. If a q argument

different from 2 is specified, SemiDev(): [] returns the qth root of

the lower partial moment at power q of the uncertain function.

semiDev2 semiDev2([lowerdata]): [] SemiDev2 returns the standard deviation of the values in the

distribution below or above the mean or the square root of

SemiVar2.

lowerdata – (Optional) Enter true for the lower (default) or false for

the upper data.

Example: semiDev2(true, 5) returns the standard deviation of the

values below the mean for the distribution for simulation index 5.

semiVar semiVar(q, target): [] SemiVar returns the semivariance for the specified uncertain

function, if the argument q is omitted, or the ‘lower partial moment’
for the function, if an argument q different from 2 is specified. The

semivariance is computed relative to the target if specified, or

relative to the mean value if target is omitted. This is a measure of

the dispersion of values of an uncertain function, but unlike the

variance which measures (or penalizes) both positive and negative

deviations from the target, the semivariance or lower partial moment

is only concerned with one-sided deviations from the target. It is

usually used in finance and insurance applications, when we are

only concerned with downside risks (or loss in portfolio value). The

semivariance is computed by summing only the downside

differences from the target of all the trials, raised to the given power
q, divided by the number of trials:

()

() ()
1

1

max ,0

target value

n
q

i

i

t x
n

x x

t

+
=

+

−

=

=



All trials – not just the trials with downside deviations – are

included in n. Again if q is different from 2, the result is called the

‘lower partial moment.

semiVar2 sermiVar2([lowerdata]): [] SemiVar2 returns the variance of the values in the distribution

below or above the mean.

lowerdata – (Optional) Enter true for the lower (default) or false for

the upper data.

Example: =SemiVar2(true, 5) returns the variance of the values
below the mean for the distribution for simulation index 5.

sigmaCP sigmaCP(lower_limit, upper_limit): [] A Six Sigma index, PsiSigmaCP predicts what the process is

capable of producing if the process mean is centered between the

lower and upper limits. This index assumes the process output is

normally distributed.

𝐶𝑝 =
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

6𝜎̂

where 𝜎̂ is the estimated standard deviation of the process.

sigmaCPK sigmaCPK(lower_limit, upper_limit,): [] A Six Sigma index, PsiSigmaCPK predicts what the process is

capable of producing if the process mean is not centered between

the lower and upper limits. This index assumes the process output is

normally distributed and will be negative if the process mean falls
outside of the lower and upper specification limits.

𝐶𝑝𝑘 =
𝑀𝐼𝑁(𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂,𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡)

3𝜎̂

where 𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the

process.

107

sigmaCPKLower sigmaCPKLower(lower_limit,

[simulation]): []

A Six Sigma index, PsiSigmaCPKLower calculates the one-sided

Process Capability Index based on the lower specification limit.

This index assumes the process output is normally distributed.

𝐶𝑝, 𝑙𝑜𝑤𝑒𝑟 =
𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

3𝜎̂

where 𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the

process.

sigmaCPKUpper sigmaCPKUpper(lower_limit): [] A Six Sigma index, PsiSigmaCPKUpper calculates the one-sided

Process Capability Index based on the upper specification limit.

This index assumes the process output is normally distributed.

𝐶𝑝, 𝑢𝑝𝑝𝑒𝑟 =
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

3𝜎̂

where 𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the

process.

sigmaCPM sigmaCPM(lower_limit, upper_limit: [] A Six Sigma index, PsiSigmaCPM calculates the capability of the

process around a target value. This index is referred to as the

Taguchi Capability Index. This index assumes the process output is

normally distributed and is always positive.

𝐶𝑝𝑚 =
𝐶̂𝑝

√1+(
𝜇̂−𝑇

𝜎̂
)2

where 𝐶̂𝑝 is the process capability (PsiSigmaCP), 𝜇̂ is the process

mean, 𝜎̂ is the standard deviation of the process and T is the target

process mean.

sigmaDefectPPM sigmaDefectPPM(lower_limit,

higher_limit)

A Six Sigma index, PsiSigmaDefectPPM calculates the Defective

Parts per Million.

𝐷𝑃𝑀𝑂 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
) +

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
)) ∗ 1000000

where𝜇̂ is the process mean, 𝜎̂ is the standard deviation of the

process and 𝛿−1 is the standard normal inverse cumulative

distribution function.

sigmaDefectShiftPPM sigmaDefectShiftPPM(lower_limit,

upper_limit, shift): []

A Six Sigma index, PsiSigmaDefectShiftPPM calculates the

Defective Parts per Million with an added shift.

𝐷𝑃𝑀𝑂𝑆ℎ𝑖𝑓𝑡 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) +

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)) ∗ 1000000

where𝜇̂ is the process mean, 𝜎̂ is the standard deviation of the

process and 𝛿−1 is the standard normal inverse cumulative

distribution function.

sigmaDefectShiftPPMLower sigmaDefectShiftPPMLower(lower_limit,
shift)

A Six Sigma index, PsiSigmaDefectShiftPPMLower calculates the
Defective Parts per Million, with a shift, below the lower

specification limit.

𝐷𝑃𝑀𝑂𝑠ℎ𝑖𝑓𝑡, 𝑙𝑜𝑤𝑒𝑟 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) ∗

1000000

where𝜎̂ is the standard deviation of the process and 𝛿−1 is the

standard normal inverse cumulative distribution function.

sigmaDefectShiftPPMUpper sigmaDefectShiftPPMUpper(upper_limit) A Six Sigma index, PsiSigmaDefectShiftPPMUpper calculates the
Defective Parts per Million, with a shift, above the lower

specification limit.

𝐷𝑃𝑀𝑂𝑠ℎ𝑖𝑓𝑡, 𝑢𝑝𝑝𝑒𝑟 = (𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) ∗

1000000

where𝜎̂ is the standard deviation of the process and 𝛿−1 is the

standard normal inverse cumulative distribution function.

sigmaK sigmaK(lower_limit, upper_limit): [] A Six Sigma index, PsiSigmaK calculates the Measure of Process

Center and is defined as:

1 −
2∗𝑀𝐼𝑁(𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂,𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡)

𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

where𝜇̂ is the process mean.

sigmaLowerBound sigmaLowerBound(number_stdev) A Six Sigma index, PsiSigmaLowerBound calculates the Lower

Bound as a specific number of standard deviations below the mean

and is defined as:

𝜇̂ − 𝜎̂ ∗ #𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the

process.

sigmaProbDefectShift sigmaProbDefectShift(lower_limit,

upper_limit, shift)

A Six Sigma index, PsiSigmaProbDefectShift calculates the

Probability of Defect, with a shift, outside of the upper and lower
limits. This statistic is defined as:

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) +

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)

where𝜇̂ is the process mean ,𝜎̂ is the standard deviation of the

process and 𝛿−1 is the standard normal inverse cumulative

distribution function.

sigmaProbDefectShiftLower sigmaProbDefecShiftLower(lower_limit,

shift)

A Six Sigma index, PsiSigmaProbDefectShiftLower calculates the

Probability of Defect, with a shift, outside of the lower limit. This

statistic is defined as:

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)

where𝜇̂ is the process mean ,𝜎̂ is the standard deviation of the

process and 𝛿−1 is the standard normal inverse cumulative

distribution function.

sigmaProbDefecShiftUpper sigmaProbDefecShiftUpper(upper_limit,

shift)

A Six Sigma index, PsiSigmaProbDefectShiftUpper calculates the

Probability of Defect, with a shift, outside of the upper limit. This

statistic is defined as:

109

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)

where𝜇̂ is the process mean ,𝜎̂ is the standard deviation of the

process and 𝛿−1 is the standard normal inverse cumulative
distribution function.

sigmaUpperBound sigmaUpperBound(number_stdev) A Six Sigma index, PsiSigmaUpperBound calculates the Upper

Bound as a specific number of standard deviations above the mean

and is defined as:

𝜇̂ − 𝜎̂ ∗ #𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the

process.

sigmaYield sigmaYield(lower_limit, upper_limit,

shift)

A Six Sigma index, PsiSigmaYield calculates the Six Sigma Yield

with a shift, or the fraction of the process that is free of defects.

This statistic is defined as:

𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) −

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)

where𝜇̂ is the process mean, 𝜎̂ is the standard deviation of the

process and 𝛿−1 is the standard normal inverse cumulative

distribution function.

sigmaZLower sigmaZLower(lower_limit): [] A Six Sigma index, PsiSigmaZLower calculates the number of

standard deviations of the process that the lower limit is below the

mean of the process. This statistic is defined as:

𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the

process.

sigmaZMin sigmaZMin(lower_limit, upper_limit,

[simulation])

A Six Sigma index, PsiSigmaZLower calculates the minimum of

PsiSigmaZLower and PsiSigmaZUpper. This statistic is defined as:

𝑀𝐼𝑁(𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡,𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂)

𝜎̂

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the

process.

sigmaZUpper sigmaZLower(upper_limit): [] A Six Sigma index, PsiSigmaZUpper calculates the

number of standard deviations of the process that the upper limit is

above the mean of the process. This statistic is defined as:

𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the
process.

skewness

skew

Skewness: []

Skew: []

Skewness returns the skewness for the specified uncertain function.

Skewness is the 3rd moment of an uncertain function, and describes

the asymmetry of its distribution. Skewness can be either positive

or negative: Positive skewness implies that the distribution is right

skewed (longer right tails), and negative skewness implies that the

distribution is left skewed (longer left tails). Skewness is computed

as:

()
()

()

3

1

3
2

2

1

n

i

i

n

i

i

n x

skewness X

x





=

=

−

=

 
− 

 





where μ is the mean of the trial values.

spearmanRho spearmanRho(unc_func_or_var): []

Example where SpearmanRho statistic is
used to return a correlation coefficient

between two uncertain functions,

uncFunc1 and uncFunc2.

uncertainFunctions: {

 "uncFunc1": {"formula": "e17"},

 "uncFunc2": {"formula": "d17",

 "spearmanRho(uncFunc1)": []}

The SpearmanRho statistic returns a non-parametric measure (based

on trial ranks). This function measures the correlation between two

uncertain variables or functions. This statistic can be used to
determine how (if at all) the two uncertain variables or functions are

correlated.

The Spearman correlation between two variables is equal to the

Pearson correlation between the rank values of those two variables;

while Pearson's correlation assesses linear relationships, Spearman's

correlation assesses monotonic relationships (whether linear or not).

If there are no repeated data values, a perfect Spearman correlation

of +1 or −1 occurs when each of the variables is a perfect monotone

function of the other.

The Spearman correlation between two variables will be high when
observations have a similar rank between the two variables or

functions, and low when observations have a dissimilar rank

between the two variables or functions.

stdDevCI stdDevCI(confidence_level): [] StdDevCI returns the confidence ‘half-interval’ for the estimated

standard deviation of the simulation trials (returned by the

stdDev():[] function) for the specified uncertain function cell, at

confidence level (for example 0.95 or 0.99). If σ is the value

returned by stdDev():[] and δ is the value returned by stdDevCI():[],

the true mean is estimated to lie within the interval σ - δ to σ + δ.

If σ2 (n) is the sample variance from n trial values,  = 1 –

confidence level, and tn-1, 1-α/2 is the upper 1-α/2 critical point of the

Student’s t-distribution with n-1 degrees of freedom, the confidence

half-interval δ is computed as:

𝑡
𝑛−1,1−

𝛼
2

𝜎(𝑛)√
𝑘 − 1

4(𝑛 − 1)

See also the description of the MeanCI() function.

stdev stdev: [] StdDev returns the standard deviation for the specified uncertain

function. Standard deviation is a measure of the dispersion of an

uncertain function, and accounts for both positive and negative

deviations from the mean. The square of standard deviation is the

Variance. Standard deviation is defined as:

()  ()

() ()

22

2

1

The sampled population standard deviation is given by

1

1

n

i

i

stddev X E X E X

stddev X x
n


=

 = − 

= −
−



111

where E[.] is the expected value, and µ is the mean of the trial

values. As a rough rule, about ¾ of the values of any uncertain

variable are within two standard deviations from the mean. A large

standard deviation indicates that most of the trial values are away

from the mean, and a small standard deviation indicates that most of

the trial values are close to the mean.

sterr sterr: [] StdErr finds the standard error of the mean of the specified uncertain

function. This function can be defined as the standard deviation of

the sample mean ans is calculated as:

𝑆𝐸𝑥 =
𝑠

√𝑛

where s is the sample standard deviation and n is the size of the
sample.

target target(target_value_[simulation]: [] Target returns the cumulative frequency of the target value in the

distribution of trial values for the specified uncertain function. This

function returns the proportion of simulated values for the uncertain

function that are less than or equal to target value.

targetCI targetCI(target_value, confidence_level) TargetCI returns the confidence “half-interval” for the cumulative

probability of the target value in a distribution of trial values for the

specified uncertain function. This means that Target is accurate

within Target +/- TargetCI with a given confidence level.

This function is computed as: Lower: Target-TargetCI, Upper:

Target + TargetCI.

This function together with MeanCI, MeanCIB, StdDevCI, CITrials

and the newly added PercentileCI, make up the confidence interval

functions in Rason Services.

Example: TargetCI (7, 0.99,2) - Finds the confidence half-interval

for the uncertain function for the target value = 7, using a confidence

level of 99% for the 2nd simulation.

targetD targetD(target_value) TargetD returns the descending cumulative probability of the target

value in the distribution of trial values for the specified uncertain

function. This function returns the proportion of simulated values

for the uncertain function that are less than or equal to target value.

trials trials: [] Returns the trial values of the uncertain function.

variance

var

Variance: []

var: []

Variance returns the variance for the specified uncertain function.

Like standard deviation, variance is a measure of the spread or

dispersion of the distribution of trial values for the uncertain

function, and takes into account both positive and negative

deviations from the mean. The square root of variance is the

standard deviation. The variance is the 2nd moment of the

distribution of trials and is computed as:

()  ()

() ()

22

2

1

var

The sampled population variance is given by

1
var

1

n

i

i

X E X E X

X x
n


=

 = − 

= −
−



Uncertain Variables
The "uncertain variables" section is required in a simulation, simulation optimization or stochastic optimization

model. Here you will define an uncertain variable or block of uncertain variables using a PSI distribution such

as PSILogNormal or PSITriangular. In return you may ask for the final value and/or any of the twelve

statistical values computed for the uncertain variables such as mean, standard deviation, variance, skewness,

etc.

In the example code below, the uncertain variable no_shows follows the PsiLogNormal distribution with

parameters mean = 5 and standard deviation = 1. In return, the expected mean of the function (mean: [])

and the standard deviation (stdev: []) will be returned in the Result.

uncertainVariables: {

 no_shows: {

 formula: "PsiNormal(5, 1)",

 mean: [],

 stdev: []

 }

 },

We also could have created the uncertain variable no_show array by using an alternate syntax, shown below.

 uncertaionVariables : {

 { name: "no_shows",

formula: "PsiNormal(5,1)" ,

mean: [],

stdev: []

 }

}

Note: Psi Distribution functions, such as PsiNormal(), PsiBeta(), etc., must be assigned to a single variable

within the uncertainVariable section, in a RASON model. The use of Psi Distribution functions in an array is

not supported.

Please see the table below for all input properties available in uncertainVariables.

Input

Property

Example Definition

aliasName aliasName: “variables” This property is automatically inserted into the converted

RASON model when an Excel model is deployed
through Analytic Solver’s Deploy Model button, if a

block of cells containing uncertain variables is assigned a

defined name in the Excel Solver model.

comment comment: "number of no-shows

for a flight"

Enter a comment here to describe the uncertain variable.

(Optional)

name name: "no_shows" Enter a name for the uncertain variable. (Optional)

dimensions 5. dimensions: [3,1]

6. dimensions: [3]

7. dimensions: [1,3]

8. dimensions: [3,2]

5. Defines a 1 – dimensional vertical array with 3 rows

and 1 column.

6. Defines a 1-dimensional vertical array with 3 rows

and 1 column.

7. Defines a 2 – dimensional horizontal array with 1

row and 3 columns.

113

8. Defines a 2 – dimensional array with 3 rows and 2

columns.

All arrays are 1 – based. If creating a block of variables,

you must use the dimensions property to define the size

and shape of the array.

formula formula: "PsiNormal(5,1)" Use this property to define the Psi Distribution function
used in the uncertain variable.

To add cutoffs values, censor values, a correlation

matrix, shift, etc, use the appropriate Psi function within

this property, i.e.

formula: =PsiNormal(5,1,PsiTruncate(3,

7)).

See below for a list of all Psi Distributions and Psi

Distribution function properties supported.

Psi Distribution Functions

The PSI Distribution functions are used to define the ‘nature of the uncertainty’ assumed by uncertain variables.

They can be broadly classified into four groups:

• Continuous analytic distributions such as PsiUniform() and PsiNormal()

• Discrete analytic distributions such as PsiBinomial() and PsiGeometric()

• Custom distributions such as PsiCumul() and PsiGeneral()

• Special distributions such as PsiSip() and PsiSlurp()

On each trial of a simulation, Risk Solver Engine (RSE) draws a random sample value from each PSI

Distribution function you use. PsiSip() and PsiSlurp() operate differently: On each trial, RSE draws the next

sequential value listed in the SIP or SLURP for that uncertain variable. Then Risk Solver uses these sample

values to calculate your model and its uncertain functions

The sample values drawn for PSI Distribution functions other than PsiSip() and PsiSlurp() depend on the type of

distribution function, the parameters of the distribution (for example, mean and variance for the PsiNormal

distribution), and the property functions that you pass as additional arguments to the distribution function call,

which can shift, truncate, or lock the distribution, or correlate its sample values with samples drawn for other

uncertain variables. To learn more about the analytic probability distributions supported by the RASON

modeling language, see the Appendix.

Statistic Functions

An output property must be specified within the uncertain variable definition as an empty array. An output

property for an uncertain variable is a statistic function such as mean or standard deviation. During a simulation

of 1,000 trials, 1,000 random sample values will be drawn for the uncertain variable, and used to compute the

statistic . Hence, you can think of the uncertain variable as ‘containing’ an array of 1,000 values. But the

output property (i.e. mean) will contain one value, which is the average or mean of the 1,000 values computed

for the uncertain variable. See the ta

Accessing Statistics from Different Simulations

Each PSI Statistic function is assigned to a simulation index. If you want statistic values from a specific

simulation, say simulation #2, then you must set simulationIndex: 2 in modelSettings as well as

use the optional simulation index for the function. For more information, please see this option description in
the Model Settings topic above.

A Note to Analytic Solver Users

• Selecting a specific simulation value within a statistic function is not supported. If interested on a particular simulation then users

should use simulationIndex in modelSettings. Then output pertaining (only) to that simulation will be available in the results.

• PsiTheo functions are supported in RASON. However, the translation of PisTheo functions from Excel into RASON is currently not

supported.

• Statistics in an Analytic Solver model may be translated into a Rason model using Analytic Solver's Create App functionality when

function arguments are explicitly provided as constants or cell references, if the cell references point to constant values. For example,

=PsiPercentile(cell, A1) where A1 = 0.5 or simply =PsiPercentile(cell, 0.5).

115

Output Property Example Definition

absDev absDev:[] AbsDev returns the average of the absolute deviations of the

specified uncertain function’s sample values from their mean. This
is also known as Mean Absolute Deviation (MAD), especially in

time series analysis applications. It is defined as:

𝑀𝐴𝐷(𝑋) =
1

𝑛
∑|𝜇 − 𝑥𝑖|

𝑛

𝑖=1

Here μ is the mean of the sample values.

bvar

bvar(confidence_level): []

BVaR returns the Value at Risk for the specified uncertain function

cell at the specified ‘confidence level,’ which is better described as a

percentile – for example, 0.95 or 0.99. (The “B” stands for “Basel”

or “building block,” and is used to distinguish this function name

from a function named PsiVar().)

In finance applications, the Value at Risk is the maximum loss that

can occur at a given confidence level. In a distribution of returns or

profits, losses would lie at the “left end” of the distribution and

would be represented by negative numbers and smaller percentiles
(say 0.01 or 0.05). But it is customary in Value at Risk analysis to

treat losses as positive numbers at the “right end” of the distribution.

Consider a Normal distribution, bvar (percentile) would be

converted as –percentile(1- percentile).

citrials citrials(confidence_level, tolerance):[]

CITrials returns the estimated number of simulation trials needed to

ensure that the specified uncertain function's sample mean value

(returned by the PsiMean() function) lies within the confidence

interval specified by confidence level (for example 0.95 or 0.99) and

the half-interval size given by tolerance.

Note that this number of trials is sufficient only to ensure that the

single output value specified by cell lies within the confidence
interval. To ensure that N output cells lie within confidence

intervals at level 1 -  (e.g. 0.95 = 1 – 0.05), use a confidence level

of  / N.

coeffVar coeffVar: [] CoeffVar finds the coefficient of variation for the specified
uncertain function. This function is defined as the ratio of the

standard deviation to the mean and is calculated as:

vc



=

This statistic measures the magnitude of the variability in relation to

the mean of the population.

correlation correlation: []

example:
uncertainVariables: {

 "uncVar1": {"formula":

 "PsiNormal(10,5)"},

 "uncVar2": {"formula":

 "PsiNormal(20,10)",

 "correlation(uncVar1)": []}

The correlation statistic returns the Pearson product moment

correlation coefficient betweentwo uncertain variables or functions.

Correlation is a measure of linear dependence between two

uncertain variables or functions. The correlation coefficient can

take on values between -1 and +1. A correlation of -1 indicates a

perfect negative correlation (the cells move linearly in opposite

directions); a correlation of +1 indicates a perfect positive

correlation (the cells move linearly in the same direction). If the two

random variables are independent, then their correlation coefficient
is zero; but if the correlation coefficient is zero, this does not

necessarily mean that the two variables are independent.

Pearson’s product moment correlation coefficient between random

variables X and Y is defined as:

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌

=
𝐸[(𝑋 − 𝐸[𝑋])(𝑌 − 𝐸[𝑌])]

𝜎𝑋𝜎𝑌

In Monte Carlo simulation, this value is computed from the sample

values x[] and y[] over n trials as:

𝑟𝑥,𝑦 =
𝑛 ∑ 𝑥𝑖𝑦𝑖

𝑛
𝑖=1 − (∑ 𝑥𝑖

𝑛
𝑖=1)(∑ 𝑦𝑖

𝑛
𝑖=1)

√[𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1 − (∑ 𝑥𝑖
𝑛
𝑖=1)2][𝑛 ∑ 𝑦𝑖

2𝑛
𝑖=1 − (∑ 𝑦𝑖

𝑛
𝑖=1)2]

count count(type): [] The count statistic returns the number of trials of the specified type

executed in the most recent simulation for the uncertain function.

The type argument may be 0 for all trials, 1 for normal or ‘success’

trials (where the calculated uncertain function resulted in a number),

or 2 for error or ‘failed’ trials (where the calculated uncertain

function resulted in an error value).

cvar cvar(percentile):[] CVaR returns the conditional Value at Risk for the specified

uncertain function cell, at the specified ‘confidence level’ which is

better described as a percentile – for example, 0.95 or 0.99. The

conditional Value at Risk is defined as the expected value of a loss

given that a loss at the specified percentile occurs.

Like PsiBVaR, PsiCVaR returns a loss as a positive number. It is

computed as the negative of the mean value of the specified

uncertain function for the trials that lie between Min:[] and

Percentile(1-percentile), inclusive.

expGain expGain:[] PsiExpGain returns the average of all positive data multiplied by 1 -

percentrank of 0 among all data. It is always a positive number.

expGainRatio expGainRatio: [] PsiExpGain returns the expected gain ratio for a specified uncertain
function. This function is calculated as:

𝐸𝑥𝑝𝐺𝑎𝑖𝑅𝑎𝑡𝑖𝑜 =
𝐸𝑥𝑝𝐺𝑎𝑖𝑛

𝐸𝑥𝑝𝐺𝑎𝑖𝑛+|𝐸𝑥𝑝𝐿𝑜𝑠𝑠|

This value ranges between 0 and 1 inclusive.

expLoss expLoss:[] ExpLoss returns the average of all negative data multiplied by the

percentrank of 0 among all data. It is always a negative number.

expLossRatio expLossRatio:[] ExpLoss returns the expected loss ratio for a specified uncertain

function. This function is calculated as:

This value ranges between 0 and 1 inclusive.

expValMargin expValMargin:[] ExpValMargin is calculated as:

ExpValMargin = ExpGainRatio – ExpLossRatio.

This statistic ranges between -1 and 1 inclusive.

frequency frequency(frequency_type, bin bounds):

[]

example: frequency(0, -125000, -100000

100000,200000): []

Frequency returns an array of frequencies describing the distribution of

trial values for the specified uncertain variable. Use this statistic to

obtain the data required to draw a histogram chart in your application.

The freq_type argument affects the contents of each element of the array

result and can be 0, 1 or 2:

0 0 – Each element contains the frequency of trial values falling into the

corresponding bin (like a probability density function)

117

1 1 – Each element contains the cumulative frequency of trial values

falling into the corresponding bin plus all lower bins (like a cumulative

distribution function)

2 2– Each element contains the cumulative frequency of trial values falling

into the corresponding bin plus all higher bins (like a reverse cumulative
distribution function)

In RASON, the bin_bounds argument is an array of values (e.g. { 5, 10,

15, 20 }) given in strictly increasing order. The number of elements in

the array result will be one more than the number of values or cells in the

bin bounds argument; the last element contains the number of trial values

larger than the highest bin bound value.

indexValue indexValue: []
Creates an empty array to hold the indexValue of the uncertain

function.

kendallTau kendallTau(unc_func_or_var): []

Example where KendallTau statistic is

used to return a correlation coefficient

between two uncertain variables, uncVar1
and uncVar2.

uncertainVariables: {

 "uncVar1": {"formula":

 "PsiNormal(10,5)"},

 "uncVar2": {"formula":

 "PsiNormal(20,10)",

 "kendallTau(uncVar1)": []}

The KendallTau statistic returns a non-parametric correlation

coefficient (based on the relative ordering of ranks) between two

uncertain variables or functions. This statistic can be used to

determine how (if at all) the two uncertain variables or functions are

correlated.

The Kendall Tau rank correlation coefficient measures the ordinal

association between two uncertain variables or functions. It is a

measure of rank correlation. This correlation coefficient is high

when observations have a similar rank between the two variables,

and low when observations have a dissimilar rank between the two

variables.

kurtosis

kurt

kurtosis: []

kurt: []

Kurtosis returns the kurtosis for the specified uncertain function

cell. Kurtosis is the 4th moment and measures the peakedness of the

distribution of trial values. It is computed as:

()
()

()

4

1

2

2

1

n

i

i

n

i

i

n x

kurtosis X

x





=

=

−

=
 

− 
 





where μ is the mean of the trial values. A higher kurtosis indicates a

distribution with a sharper peak and heavier tails, and that more of

the variability is due to a small number of extreme outliers or

values; a lower kurtosis indicates a distribution with a rounded peak

and that more of the variability is due to many modest-sized values.

maximum

max

maximum: []

max: []

Max returns the maximum value attained by the specified uncertain

function over all the trials in the simulation.

mean

average

expectation

mean: []

average: []

expectation: []

Mean returns the mean value for the specified uncertain function.

The mean or average value is the 1st moment of the distribution of
trials and is computed as:

1

n

i

i

x

n
 ==



The mean is frequently used as a measure of central tendency or the

“middle” of an uncertain variable; but for skewed distributions, care

must be taken in using the mean as a measure of central tendency

because the mean is easily distorted by extreme outlier values.

meanCI meanCI(confidence_level) MeanCI returns the confidence “half-interval” for the estimated

mean value (returned by mean: []) for the specified uncertain
function, at the specified confidence level (for example 0.95 or

0.99). If μ is the value returned by mean:[] and δ is the value

returned by meanCI(confidence_level):[], the true mean is estimated

to lie within the interval μ - δ to μ + δ.

The confidence level can be interpreted as follows: If we compute a

large number of independent estimates of confidence intervals on

the true mean of the uncertain function, each based on n

observations with n sufficiently large, then the proportion of these

confidence intervals that contain the true mean of the function

should equal the confidence level.

If σ2 (n) is the sample variance from n trial values,  = 1 –

confidence level, and tn-1, 1-α/2 is the upper 1-α/2 critical point of the
Student’s t-distribution with n-1 degrees of freedom, the confidence

half-interval δ is computed as:

()2

1,1
2

n

n
t

n



− −

The confidence interval measures the precision with which we have

estimated the true mean. Larger half widths imply that there is a lot

of variability in our estimates. The above formula for the half-width

assumes that the individual xis are normally distributed; when this is

not the case, the above formula still gives us an approximate

confidence interval on the true mean of the uncertain function.

meanCIB meanCIB(confidence_level,

[lowerbound]):[]

MeanCIB returns the lower or upper bound of the confidence

interval (half width) of the mean value for the specified uncertain
function.

Confidence_level – Enter the desired confidence level, i.e. 0.95 or

0.99.

lowerbound – (Optional) Enter true for the lower (default) or false

for the upper bound.

Example: meanCIB(.99, true, 5) returns the lower bound for the

99% confidence interval for the distribution for simulation index 5.

median median: [] Mean:[] returns the median value for the specified uncertain

function. The median value is the 50th percentile of the distribution

of trials and is computed as:

 () 1 /2

n
X

+ if n is odd

()/2 /2 1

2

n n
X X

+
+

 if n is even

119

The median is a very useful statistic for measuring the center of a

distribution.

minimum

min

minimum: []

min: []

Min returns the minimum value attained by the specified uncertain

function over all the trials in the simulation.

mode mode: [] Mode returns the mode of the specified uncertain function. For

discrete distributions, this is the most frequently occurring value
(where the probability mass function has its greatest value). For

continuous distributions, Mode() returns the half-sample mode as

defined by D.R. Bickel, a robust estimator that is less sensitive to

outliers than most other estimators of location.

percentileCI percentile(percentile, confidence_level):

[]

PercentileCI returns the confidence “half-interval” for a given

percentile (.01-.99) value for the specified uncertain function.

This function is computed as: Lower: Percentile-PercentileCI,

Upper: Percentile + PercentileCI.

Since the output of PercentileCI is symmetric, the mean and median

are theoretically the same, i.e. MeanCI(0.95) is expected to be

approximately equal to PercentileCI(0.5, 0.95).

This function together with MeanCI, MeanCIB, StdDevCI, CITrials

and the newly added TargetCI, make up the confidence interval

functions in RASON.

Example: PercentileCI (0.95, 0.99,2):[] - Finds the confidence half-

interval for the uncertain function using the 95th percentile and a

confidence level of 99% for the 2nd simulation.

percentileD percentileD(percentile): [] PercentileD returns a descending percentile (.01-.99) value for the

specified uncertain function: This means that m (or m%) of the

simulation trials have values less than the returned value, where m is

the percentile.

percentiles percentiles: []

 percentile(confidence_level):[]

percentiles: [] returns all percentile (.01-.99) values for the specified

uncertain function: This means that m (or 100m%) of the
simulation trials have values less than the returned value, where m is

the percentile.

percentile(0.X) - Returns the specific percentile value. Values must

be between 0.01 and 0.99.

range range: [] Range returns the range of the specified uncertain function cell. The

range is the difference between the maximum and minimum values

attained in the distribution of trial values.

semiDev semiDev(q, [target]): [] SemiDev returns the semideviation for the specified uncertain

function, relative to the target if specified. If the target is omitted,

the mean value is used. This is a one-sided measure of dispersion of

values of the uncertain function. The semideviation is the square
root of the semivariance, described directly below. If a q argument

different from 2 is specified, SemiDev(): [] returns the qth root of

the lower partial moment at power q of the uncertain function.

semiDev2 semiDev2([lowerdata]): [] SemiDev2 returns the standard deviation of the values in the

distribution below or above the mean or the square root of

SemiVar2.

lowerdata – (Optional) Enter true for the lower (default) or false for

the upper data.

Example: semiDev2(true, 5) returns the standard deviation of the

values below the mean for the distribution for simulation index 5.

semiVar semiVar(q, target): [] SemiVar returns the semivariance for the specified uncertain

function, if the argument q is omitted, or the ‘lower partial moment’
for the function, if an argument q different from 2 is specified. The

semivariance is computed relative to the target if specified, or

relative to the mean value if target is omitted. This is a measure of

the dispersion of values of an uncertain function, but unlike the

variance which measures (or penalizes) both positive and negative

deviations from the target, the semivariance or lower partial moment

is only concerned with one-sided deviations from the target. It is

usually used in finance and insurance applications, when we are

only concerned with downside risks (or loss in portfolio value). The

semivariance is computed by summing only the downside

differences from the target of all the trials, raised to the given power
q, divided by the number of trials:

()

() ()
1

1

max ,0

target value

n
q

i

i

t x
n

x x

t

+
=

+

−

=

=



All trials – not just the trials with downside deviations – are

included in n. Again if q is different from 2, the result is called the

‘lower partial moment.

semiVar2 sermiVar2([lowerdata]): [] SemiVar2 returns the variance of the values in the distribution

below or above the mean.

lowerdata – (Optional) Enter true for the lower (default) or false for

the upper data.

Example: =SemiVar2(true, 5) returns the variance of the values
below the mean for the distribution for simulation index 5.

sigmaCP sigmaCP(lower_limit, upper_limit): [] A Six Sigma index, PsiSigmaCP predicts what the process is

capable of producing if the process mean is centered between the

lower and upper limits. This index assumes the process output is

normally distributed.

𝐶𝑝 =
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

6𝜎̂

where 𝜎̂ is the estimated standard deviation of the process.

sigmaCPK sigmaCPK(lower_limit, upper_limit,): [] A Six Sigma index, PsiSigmaCPK predicts what the process is

capable of producing if the process mean is not centered between

the lower and upper limits. This index assumes the process output is

normally distributed and will be negative if the process mean falls
outside of the lower and upper specification limits.

𝐶𝑝𝑘 =
𝑀𝐼𝑁(𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂,𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡)

3𝜎̂

where 𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the

process.

121

sigmaCPKLower sigmaCPKLower(lower_limit,

[simulation]): []

A Six Sigma index, PsiSigmaCPKLower calculates the one-sided

Process Capability Index based on the lower specification limit.

This index assumes the process output is normally distributed.

𝐶𝑝, 𝑙𝑜𝑤𝑒𝑟 =
𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

3𝜎̂

where 𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the

process.

sigmaCPKUpper sigmaCPKUpper(lower_limit): [] A Six Sigma index, PsiSigmaCPKUpper calculates the one-sided

Process Capability Index based on the upper specification limit.

This index assumes the process output is normally distributed.

𝐶𝑝, 𝑢𝑝𝑝𝑒𝑟 =
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

3𝜎̂

where 𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the

process.

sigmaCPM sigmaCPM(lower_limit, upper_limit: [] A Six Sigma index, PsiSigmaCPM calculates the capability of the

process around a target value. This index is referred to as the

Taguchi Capability Index. This index assumes the process output is

normally distributed and is always positive.

𝐶𝑝𝑚 =
𝐶̂𝑝

√1+(
𝜇̂−𝑇

𝜎̂
)2

where 𝐶̂𝑝 is the process capability (PsiSigmaCP), 𝜇̂ is the process

mean, 𝜎̂ is the standard deviation of the process and T is the target

process mean.

sigmaDefectPPM sigmaDefectPPM(lower_limit,
higher_limit)

A Six Sigma index, PsiSigmaDefectPPM calculates the Defective
Parts per Million.

𝐷𝑃𝑀𝑂 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
) +

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
)) ∗ 1000000

where𝜇̂ is the process mean, 𝜎̂ is the standard deviation of the

process and 𝛿−1 is the standard normal inverse cumulative
distribution function.

sigmaDefectShiftPPM sigmaDefectShiftPPM(lower_limit,

upper_limit, shift): []

A Six Sigma index, PsiSigmaDefectShiftPPM calculates the

Defective Parts per Million with an added shift.

𝐷𝑃𝑀𝑂𝑆ℎ𝑖𝑓𝑡 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) +

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)) ∗ 1000000

where𝜇̂ is the process mean, 𝜎̂ is the standard deviation of the

process and 𝛿−1 is the standard normal inverse cumulative

distribution function.

sigmaDefectShiftPPMLower sigmaDefectShiftPPMLower(lower_limit,

shift)

A Six Sigma index, PsiSigmaDefectShiftPPMLower calculates the

Defective Parts per Million, with a shift, below the lower

specification limit.

𝐷𝑃𝑀𝑂𝑠ℎ𝑖𝑓𝑡, 𝑙𝑜𝑤𝑒𝑟 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) ∗

1000000

where𝜎̂ is the standard deviation of the process and 𝛿−1 is the

standard normal inverse cumulative distribution function.

sigmaDefectShiftPPMUpper sigmaDefectShiftPPMUpper(upper_limit) A Six Sigma index, PsiSigmaDefectShiftPPMUpper calculates the

Defective Parts per Million, with a shift, above the lower

specification limit.

𝐷𝑃𝑀𝑂𝑠ℎ𝑖𝑓𝑡, 𝑢𝑝𝑝𝑒𝑟 = (𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) ∗

1000000

where𝜎̂ is the standard deviation of the process and 𝛿−1 is the

standard normal inverse cumulative distribution function.

sigmaK sigmaK(lower_limit, upper_limit): [] A Six Sigma index, PsiSigmaK calculates the Measure of Process

Center and is defined as:

1 −
2∗𝑀𝐼𝑁(𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂,𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡)

𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

where𝜇̂ is the process mean.

sigmaLowerBound sigmaLowerBound(number_stdev)
A Six Sigma index, PsiSigmaLowerBound calculates the Lower Bound

as a specific number of standard deviations below the mean and is

defined as:

𝜇̂ − 𝜎̂ ∗ #𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the

process.

sigmaProbDefectShift sigmaProbDefectShift(lower_limit,

upper_limit, shift)

A Six Sigma index, PsiSigmaProbDefectShift calculates the

Probability of Defect, with a shift, outside of the upper and lower

limits. This statistic is defined as:

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) +

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)

where𝜇̂ is the process mean ,𝜎̂ is the standard deviation of the

process and 𝛿−1 is the standard normal inverse cumulative

distribution function.

sigmaProbDefectShiftLower sigmaProbDefecShiftLower(lower_limit,

shift)

A Six Sigma index, PsiSigmaProbDefectShiftLower calculates the

Probability of Defect, with a shift, outside of the lower limit. This

statistic is defined as:

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)

where𝜇̂ is the process mean ,𝜎̂ is the standard deviation of the

process and 𝛿−1 is the standard normal inverse cumulative

distribution function.

sigmaProbDefecShiftUpper sigmaProbDefecShiftUpper(upper_limit,

shift)

A Six Sigma index, PsiSigmaProbDefectShiftUpper calculates the

Probability of Defect, with a shift, outside of the upper limit. This

statistic is defined as:

123

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)

where𝜇̂ is the process mean ,𝜎̂ is the standard deviation of the

process and 𝛿−1 is the standard normal inverse cumulative
distribution function.

sigmaUpperBound sigmaUpperBound(number_stdev) A Six Sigma index, PsiSigmaUpperBound calculates the Upper

Bound as a specific number of standard deviations above the mean

and is defined as:

𝜇̂ − 𝜎̂ ∗ #𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the

process.

sigmaYield sigmaYield(lower_limit, upper_limit,
shift)

A Six Sigma index, PsiSigmaYield calculates the Six Sigma Yield
with a shift, or the fraction of the process that is free of defects.

This statistic is defined as:

𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 − 𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) −

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)

where𝜇̂ is the process mean, 𝜎̂ is the standard deviation of the

process and 𝛿−1 is the standard normal inverse cumulative

distribution function.

sigmaZLower sigmaZLower(lower_limit): [] A Six Sigma index, PsiSigmaZLower calculates the number of

standard deviations of the process that the lower limit is below the

mean of the process. This statistic is defined as:

𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the

process.

sigmaZMin sigmaZMin(lower_limit, upper_limit,

[simulation])

A Six Sigma index, PsiSigmaZLower calculates the minimum of

PsiSigmaZLower and PsiSigmaZUpper. This statistic is defined as:

𝑀𝐼𝑁(𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡,𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂)

𝜎̂

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the

process.

sigmaZUpper sigmaZLower(upper_limit): [] A Six Sigma index, PsiSigmaZUpper calculates the

number of standard deviations of the process that the upper limit is

above the mean of the process. This statistic is defined as:

𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂

where𝜇̂ is the process mean and 𝜎̂ is the standard deviation of the

process.

skewness

skew

Skewness: []

Skew: []

Skewness returns the skewness for the specified uncertain function.

Skewness is the 3rd moment of an uncertain function, and describes

the asymmetry of its distribution. Skewness can be either positive

or negative: Positive skewness implies that the distribution is right

skewed (longer right tails), and negative skewness implies that the

distribution is left skewed (longer left tails). Skewness is computed

as:

()
()

()

3

1

3
2

2

1

n

i

i

n

i

i

n x

skewness X

x





=

=

−

=

 
− 

 





where μ is the mean of the trial values.

spearmanRho spearmanRho(unc_func_or_var): []

Example where SpearmanRho statistic is

used to return a correlation coefficient

between two uncertain variables, uncVar1

and uncVar2.

uncertainVariables: {

 "uncVar1": {"formula":

 "PsiNormal(10,5)"},

 "uncVar2": {"formula":

 "PsiNormal(20,10)",

 "spearmanRho(uncVar1)": []}

The SpearmanRho statistic returns a non-parametric measure (based
on trial ranks). This function measures the correlation between two

uncertain variables or functions. This statistic can be used to

determine how (if at all) the two uncertain variables or functions are

correlated.

The Spearman correlation between two variables is equal to the

Pearson correlation between the rank values of those two variables;

while Pearson's correlation assesses linear relationships, Spearman's

correlation assesses monotonic relationships (whether linear or not).

If there are no repeated data values, a perfect Spearman correlation

of +1 or −1 occurs when each of the variables is a perfect monotone

function of the other.

The Spearman correlation between two variables will be high when

observations have a similar rank between the two variables or

functions, and low when observations have a dissimilar rank

between the two variables or functions.

stdDevCI stdDevCI(confidence_level): [] StdDevCI returns the confidence ‘half-interval’ for the estimated

standard deviation of the simulation trials (returned by the

stdDev():[] function) for the specified uncertain function cell, at

confidence level (for example 0.95 or 0.99). If σ is the value

returned by stdDev():[] and δ is the value returned by stdDevCI():[],

the true mean is estimated to lie within the interval σ - δ to σ + δ.

If σ2 (n) is the sample variance from n trial values,  = 1 –

confidence level, and tn-1, 1-α/2 is the upper 1-α/2 critical point of the
Student’s t-distribution with n-1 degrees of freedom, the confidence

half-interval δ is computed as:

𝑡
𝑛−1,1−

𝛼
2

𝜎(𝑛)√
𝑘 − 1

4(𝑛 − 1)

See also the description of the MeanCI() function.

stdev stdev: [] StdDev returns the standard deviation for the specified uncertain

function. Standard deviation is a measure of the dispersion of an

uncertain function, and accounts for both positive and negative

deviations from the mean. The square of standard deviation is the

Variance. Standard deviation is defined as:

125

()  ()

() ()

22

2

1

The sampled population standard deviation is given by

1

1

n

i

i

stddev X E X E X

stddev X x
n


=

 = − 

= −
−



where E[.] is the expected value, and µ is the mean of the trial

values. As a rough rule, about ¾ of the values of any uncertain

variable are within two standard deviations from the mean. A large
standard deviation indicates that most of the trial values are away

from the mean, and a small standard deviation indicates that most of

the trial values are close to the mean.

sterr sterr: [] StdErr finds the standard error of the mean of the specified uncertain

function. This function can be defined as the standard deviation of

the sample mean ans is calculated as:

𝑆𝐸𝑥 =
𝑠

√𝑛

where s is the sample standard deviation and n is the size of the

sample.

target target(target_value_[simulation]: [] Target returns the cumulative frequency of the target value in the

distribution of trial values for the specified uncertain function. This

function returns the proportion of simulated values for the uncertain

function that are less than or equal to target value.

targetCI targetCI(target_value, confidence_level) TargetCI returns the confidence “half-interval” for the cumulative

probability of the target value in a distribution of trial values for the

specified uncertain function. This means that Target is accurate

within Target +/- TargetCI with a given confidence level.

This function is computed as: Lower: Target-TargetCI, Upper:

Target + TargetCI.

This function together with MeanCI, MeanCIB, StdDevCI, CITrials

and the newly added PercentileCI, make up the confidence interval

functions in Rason Services.

Example: TargetCI (7, 0.99,2) - Finds the confidence half-interval

for the uncertain function for the target value = 7, using a confidence

level of 99% for the 2nd simulation.

targetD targetD(target_value) TargetD returns the descending cumulative probability of the target
value in the distribution of trial values for the specified uncertain

function. This function returns the proportion of simulated values

for the uncertain function that are less than or equal to target value.

theoKurtosis* theoKurtosis:[] Returns the analytic kurtosis (4th moment) value for the specified

distribution.

theoMax* theoMax:[] Returns the maximum value of the specified distribution.

theoMean* theoMean:[] Returns the mean of the specified distribution.

theoMedian* theoMedian:[] Returns the median of the specified distribution.

theoMin* theoMin:[] Returns the minimum of the specified distribution.

theoMode* theoMode:[] Returns the mode of the specified distribution.

*Theo Functions are statistics functions that return a statistic on a simulation input distribution, or uncertain variable. If a theoXXX

function is applied to an output function or if the statistic can not be computed, the function will be ignored and will not appear in the
results. The theoXXX functions compute the moment only when distribution parameters are not dependent on other distributions or
decision variables in order to guarantee that the moment is constant throughout solving. These functions were designed to aid in the
visualization of results and for comparison of the exact analytic moment with the trial statistics.

theoPercentile*

theoPtoX

theoPercentile(percentile):[]

theoPtoX(percentile):[]

The functions theoPercentile and theoPtoX are alternate names for the

same function.

Both functions return the analytic percentile (CDFInv) value for the

specified distribution specified. Enter the desired percentile (in decimal

form) for the percentile argument, i.e. .01, .30, or .98. The

percentile value must be between 0 and 1.

theoPercentileD*

theoQtoX

theoPercentileD(percentile):[]

theoQtoX(percentile):[]

The functions theoPercentileD and PsiTheoQtoX are alternate names for

the same function. Both return the percentile (CDFInv descending)

value for the specified distribution. Enter the desired percentile (in

decimal form) for the percentile argument, i.e. .01, .30, or .98. The

percentile value must be between 0 and 1.

theoRange* theoRange:[] Returns the range information for the specified distribution.

theoSkewness* theoSkewness:[] Returns the skewness of the specified distribution.

theoStdDev* theoStdDev:[] Returns the standard deviation of the specified distribution.

theoTarget*

theoXtoP

theoTarget(target):[]

theoXtoP(target):[]

Returns the cumulative probability for target for the specified

distribution. The cumulative probability returned is the probability of a

value less than or equal to target occurring. (The functions theoTarget

and theoXtoP are alternative names for the same function.)

theoTargetD*

theoXtoQ

theoTargetD(target):[]

theoXtoP(target):[]

Returns the cumulative descending probability for target for the

specified distribution. The cumulative probability returned is the

probability of a value greater than or equal to target occurring. (The

functions theoTargetD and theoXtoQ are alternative names for the same

function.)

theoVariance* theoVariance:[] Returns the variance of the specified distribution.

theoXtoY* theoXtoY(value):[] Returns the probability for value for the specified distribution. For a

continuous distribution, the value returned is the probability density

value at value. For a discrete distribution, the value returned is the

probability value at value.

trials trials: [] Returns the trial values of the uncertain function.

variance

var

Variance: []

var: []

Variance returns the variance for the specified uncertain function.

Like standard deviation, variance is a measure of the spread or

dispersion of the distribution of trial values for the uncertain

function, and takes into account both positive and negative
deviations from the mean. The square root of variance is the

standard deviation. The variance is the 2nd moment of the

distribution of trials and is computed as:

()  ()

() ()

22

2

1

var

The sampled population variance is given by

1
var

1

n

i

i

X E X E X

X x
n


=

 = − 

= −
−



127

A Note on Excel Ranges in a Converted RASON Model
When a model built using Analytic Solver, in Destop Excel or Excel Online, is converted to the RASON

modeling language using Create App, you'll notice that many RASON components, such as names for

variables/constraints, uncertain variables/functions/, the objective function, etc. These Excel ranges are defined

as in Excel using the row and column notations[a1 or A1:B2]. These ranges behave as they do in Excel. The

Excel range, A1:C3, is a double array containing 9 elements. To access the contents of B2, you would use B2.

Extreme care should be taken when removing these ranges from a converted model as inadvertent errors may

result. For example, assumg the data definition "A1:C3" is changed to simply "A1C3". If cell "B2" is defined

in another RASON component, an error will be generated since B2 references a value within "A1:C3" but not

"A1C3".

Rason Data Mining Model
Components

Introduction
This section introduces each of the nine components or sections which make up a data mining RASON model:

"data", "datasources", "datasets", "weakLearner", "estimator", "transformer", "actions", "model" and
"preProcessor". This chapter explains how each component of your model should be defined.

All algorithms featured in Analytic Solver and XLMiner SDK can be expressed using a standardized structure

in RASON DM. This basic structure includes four major "sections" or "segments": datasources, datasets,

estimator/transformer, and actions.

{

 "datasources": {},

 "datasets":{},

 "estimator"/"transformer": {

 "type":"",

 "algorithm":"",

 "parameters":",

 },

 "actions":{}

}

• datasources -- The "datasources" section is where the data for the model is acquired. Most times, the

data is contained in an external data source such as a database or delimited file.

• datasets -- The "datasets" section is where the external dataset is "bound" to a RASON dataset.

• estimator/transformer – These sections are mutually exclusive -- A model may not contain both a

transformer and an estimator. An "estimator" object estimates a model from the training data and

stores the fitted model, which may be used later. Examples of estimators are classification or

regression algorithms. These algorithms fit a model which can be used later to score new data. A

"transformer" applies to estimators that do not fit a model but rather transform data, such as Feature
Selection or Sampling.

• actions -- The function of the estimator or transformer is carried out within the "actions" section. If a

model was "fit" within the estimator section, then the model is applied to the desired dataset (training,

validation, test partitions or to new data) within this section. If a transformer was initiated, then the

actual data transformation will be performed within this segment.

Rason DM also features several additional optional sections that can be used to further refine the Rason model.

These additional sections are: data, model, preprocessor and weakLearner.

129

• data -- Data arrays may be defined and calculated in this optional section, to be used later in a data

mining method. Scalars, arrays or tables containing scalars maybe be defined in the data section. If

pulling data from an external source, this section may be used to "bind" the data to an array or table.

• model -- Used (only) when scoring a model. This section is similar to "datasets" but rather than

refining imported data, this section defines a model that you can bind to when performing an "action"
such as "forecast", "predict", "fit" or "transform".

Note: Currently it is not possible to manually match features in the dataset with features in the

new data, as is possible in Excel via the Scoring dialog. Rather, features are always matched

sequentially.

• preProcessor -- This optional section may be used for preliminarily data preparation or to

compute values of some properties, which are passed later, at parse-time, to the RASON DM

engine. This section is parsed once, before the model is parsed.

• weakLearner -- This section is only required when a bagging or boosting estimator is specified in

"estimator", and is used to define the weak learner used in these algorithms.

It is important to note that order inside the Rason model is very important as the Rason interpreter does not

parse the model to determine the correct order beforehand. Therefore, "actions" may not appear before

"estimator", "estimator" may not appear before "datasets" and so on.

Data
Data arrays may be defined and calculated in this optional section to be used later in a data mining method. If

you are pulling data from an external source, use this section to "bind" the data to an array or table.

In the example code below, data from the qty column from the parts_data data source is assigned to the

parts table. Note: A table is created here, rather than an array, by the use of the valueCol property.

"data": {

 "parts": {

 "binding": "parts_data", "valueCol": "qty"

 },

}

Scalars, arrays or tables containing scalars maybe be defined in the data section.

The following is an example of a scalar constant, which is neither an array nor a table.

"time": { "value": 10 }

In the example below, the array wine with size equal to 3 contains the values, A, B, and C. In this instance, the

binding property allows write access to the profit array outside of the model environment using the

keyword "get".

"wine": {

 "dimensions": [3], "value": [A, B, C], "binding": "get" },

},

To change the array elements in "wine" to C, D, E; you can pass new data directly in the REST API call, via

standard HTTP GET parameters, for example:

$.get(https://rason.net/api/optimize?wine=C,D,E...

To change only one element, say the middle element from B to D, your call to the REST API, via standard

HTTP GET parameters would change to:

$.get(https://rason.net/api/optimize?wine[2]=...

https://rason.net/api/optimize?wine%5b2

We also could have created the profit array by using an alternate syntax, shown below. However, when a

parameter is defined in this way, you will not be able to pass new values to the array outside of the RASON

model environment (as shown above).

"data" : [

 { "name": "wine", "value": [A, B, C], "binding": "get" }

],

All properties available for data, can be found in the table below.

Data Property Type Explanation

name "name": "parts" Use this property to define the table, array or scalar

name.

dimensions "dimensions": [3,1]

"dimensions": [3]

"dimensions": [1,3]

"dimensions": [3,2]

Defines a 1-dimensional vertical array.

Defines a 1-dimensional vertical array.

Defines a 2 – dimensional horizontal array with three

elements.

Defines a 2 – dimensional array or table with 3 rows

and 2 columns.

All arrays are 1 – based. If missing, array shape will

be defined by the shape of the value property;

however, for easier readability of the code, the use of

the dimensions property is recommended.

value "value": [1, 1, 1]

"value": [[1, 1, 1],

 [2, 2, 2],

 [3, 3, 3]]

Sets the values of the array.

Sets the values of a table.

If dimensions property is missing, the shape of the

variable array will be determined by the shape of the

value property. However, it is recommended that the

dimensions property be used for readability

purposes.

valuecol "valueCol":

["initials"]

Used with binding property to bind imported

values from a readable data source. If omitted, the

RASON interpreter assumes the last column in the

table as the input to valueCol.

binding "binding": "get"

"Profit": { "binding":

"profit_data" }

Allows data to be edited outside of the model from a

URL or when calling the RASONTM interpreter to

solve an optimization or simulation model.

Used to bind imported table from the

profit_data datasource to a new table named

profit.

comment "comment": "partsReq

array holds the number

of parts required to

produce each product"

Enter a comment here to describe the data.

131

Datasources ("datasources")
External data sources are defined in this section. Data from these sources is imported into parametric tables or

arrays to be used in a data mining model. Currently the RASON modeling language supports ten different

data sources: "excel" (Microsoft Excel), "access" or "msaccess" (Microsoft Access), "odbc" (ODBC database),

"odata" (OData database), "mssql" (Microsoft Sequel), "oracle" (Oracle database), CSV (Comma Separated

Value), "json" (JSON file), or "xml" (XML file). Data sources such as "Access", "ODBC", "CSV", etc, contain

data in tables with records described by index and value columns. Binding to these data sources results in table

objects. Data source types such as Excel and CSV may contain data in 2-dimensional arrays without any

descriptions. Binding to these data sources results in array objects. Objects are bound to data sources within

the data section.

Importing

In the example below, three data sources are defined: "myTrainingData", "myValidationData" and

"myTestData". In the first data source, myTrainingData, data is imported from the hald-small-binary-train.txt

file. In the second data source, myValidationData, data is imported from hald-small-binary-valid.txt and in the

third data source, myTestData, data is imported from hald-small-binary-test.txt.

The first property, type, specifies the type of file where the data is contained. In this example, the file is a CSV

(Comma Separated Values) file. (A screenshot of hald-small-binary-train.txt is shown below the example code.

The remaining files, hald-small-binary-validation.txt and hald-small-binary-test.txt are similar. The second

property, connection, specifies the file name and location within quotes ("/datafiles/hald-small-

binary-train.txt"). The third property "direction": "import" tells the RASON Server that the

contents of each data source will be imported. (This is the default setting for this property.)

 "datasources": {

"myTrainingData": {

 "type": "csv",

 "connection": "/datafiles/hald-small-binary-train.txt",

 "direction": "import"

 }

"myValidationData": {

 "type": "csv",

 "connection": "/datafiles/hald-small-binary-valid.txt",

 "direction": "import"

 }

"myTestData": {

 "type": "csv",

 "connection": "/datafiles/hald-small-binary-test.txt",

 "direction": "import"

 }

},

 hald-small-binary-train.txt CSV file

In this next example, data is imported from an Excel table.

"datasources": {

 "msExcelSrc": {

 "type": "excel",

 "connection": "hald.xlsx",

 "selection": "Data!A2:E14",

 "headerExists": "true",

 "direction": "import"

 }

 },

The first property, type, specifies that the data is contained in an Excel file. The second property,

connection, specifies the name of the file, "hald.xlsx".

The 3rd property,selection: "Data!A2:E14", specifies the Excel range where the data is contained.

Alternatively, we could also pass "selection": "Data_Table" where "Data_Table" is an Excel

defined name given to the Excel Range, Data!A1:E14. The 4th property, headerExists (may also use

simply "header") indicates whether the columns contain titles, or headers, or not, and is set to True by

default.

Note: Column headings are contained in cells Data!A1:E1 and the data is contained in cells Data!A2:E14.

Since headerExists is set to true, the default, RASON assumes the headings are contained in the next row up,

which in this case in Row 1. If headerExists is set to false, the selection property would still be
"selection":"Data!A2:E14"; the row containing the headings is never passed.

The 5th property, "direction": "import", indicates that the contents of hald.xlsx will be imported.

133

 hald.xlsx Excel file

In this next example, data is imported using the "colIndex" and "rowIndex" properties. Recall that colIndex and

rowIndex create a dataframe, rather than a RASON Table.

"datasources" : {

"msExcelSrc": {

"type": "excel",

"connection": "HaldRaw.xlsx",

"selection": "Sheet1!A1:F13",

 "colIndex": "features",

"rowIndex": "records",

"direction": "import"

}

}

As in the example above, the first property, type, specifies that the data is contained in an Excel worksheet,

"excel"; the second property, connection, passes the name of the Excel file, "HaldRaw.xlsx"; and

the third property, selection, passes the Excel cell range that contains the data, in this instance,
"Sheet1!A1:F13".

 HaldRaw.xlsx Excel file

However in this example, the 4th property, colIndex, binds the index name features to the columns and

the 5th property, rowIndex, binds the index name records to the rows. The property colIndex binds a

set of integers from 1 to the number of columns and the property rowIndex binds a set of integers from 1 to

the number of rows to the 2-dimensional array . The 5th property, "direction": "import", indicates

that the contents of haldraw.xlsx will be imported.

As a result, if a new product or new part is added, there will be no changes required to this section of the model.

It is completely scalable.

This next example illustrates how to import data from an SQL database residing on an Azure server in the

Cloud using an ODBC connection string.

"datasources": {

"mssqlSrc": {

 "type": "mssql",

"connection": "Server=Test-

DELL;Database=Test;trusted_connection=Yes",

 "selection": "SELECT * FROM dbo.Data",

 "direction": "import"

 }

 },

The first property, type, specifies the type of file containing the data, in this case the file is an Microsoft SQL

database. The second property, connection, passes the connection string as obtained from the server. The

third property, selection, performs an SQL query from dbo.Data (<db_name>.<table_name>).

The next example illustrates how to import data from an OData data source. This model is also completely

scalable. For more information on OData, see http://www.odata.org. Note: OData data sources are not

currently writeable due to limitations in the common OData specification.

"datasources": {

"odataSrc": {

 "type": 'odata',

 "connection": 'http://localhost:12345/',

"selection": "Hald?$select=TriAlum,TriSil,TetraAlumFer,DicSil,

 Heat,Comment", "direction"="import"

 }

http://www.odata.org/

135

 }

The first property for odataSrc, type, specifies the type of file containing the data. In this case, the type is

an OData data source. The second property, connection, specifies the location of the OData data source on

the internet or distributed server. The third property, "selection",imports six fields from the Hald table,

TriAlum, TriSil, TetraAlumFer, DicSil, Heat and Comment.

In this example, the last selection property, $format=json, is not passed. This property stipulates the type

of OData format (JSON or XML) in which the table should be returned. This is an optional argument. If

passed, the OData service will return the data in the format specified, $format=json for JSON or $format=atom

for XML. If omitted, the OData service will return the data in preferred format: JSON or XML. The RASON

server will automatically recognize the format if not specified.

Using a Named Data Connection

In previous versions of RASON, models that accessed external databases required actual credentials to be

passed, such as database URLs, port numbers, usernames, and passwords, in the text of the RASON model, in a
dataSource declaration, as shown above and in the example code below.

Previous versions of RASON

 "parts_data": {

 "type": "odbc",

 "connection": "Driver={SQL Server Native Client

11.0};Server=tcp:solver.database.windows.net,1433;Database=Rason;Uid=ra

sonread;Pwd=Rason1234;Encrypt=yes;TrustServerCertificate=no;Connection

Timeout=30;",

 "selection": "SELECT Parts as parts, Products as prods, Qty as qty

FROM Parts ORDER BY ID",

 "indexCols": ["parts", "prods"],

 "valueCols": ["qty"],

 "direction": "import"

 },

RASON 2020 offers an alternative to tackle this security risk by substituting

"connection": "Driver={SQL Server Native Client

11.0};Server=tcp:solver.database.windows.net,1433;Database=Rason;Uid=ra

sonread;Pwd=Rason1234;Encrypt=yes;TrustServerCertificate=no;Connection

Timeout=30;",

with three options: a file containing the contents of "connection" as in (1) below, a named Data Connection as

shown in (2) or a URL pointing to Microsoft Common Data Service as shown in (3).

4. "connection": "File = filename",

RASON 2020 will interpret this as (i) get the text contents of filename, which must be attached to the

current model instance and (ii) substitute this text for the string "File=filename". Therefore, if

filename contains the text "Driver={SQLServerNativeClient…Timeout=30;", the effect

will be the same as in previous versions of RASON.

5. "connection": "Name=myname", where myname is the name given to the Data Connection. See

below for instructions on how to create a named Data Connection.

6. "connection": "secret=uri", where uri is the Microsoft Common Data Service URL

"connection": "xxxx.crm.dynamics.com" where the actual Microsoft Common Data Service

URL is passed directly to "connection".

If using a with "secret=url" in the dataSources section of your RASON model, enter a URI of the

form https://subdomain.crm.dynamics.com. , i.e.

http://xxxx.crm.dynamics.com/
https://subdomain.crm.dynamics.com/

"https://www.cdatacloud.net/solver/api.rsc/GoogleSheets1_ODataSourceExa

mple_Sheet1",

RASON 2020 will interpret this as (i) get the text contents of the "secret" represented by the URL and (ii)

substitute this text for the string "Secret=url". So if the "secret" contains the text

"Driver={SQLNativeClient…Timeout=30;", the effect will be the same as in previous versions of RASON.

Similarly, if using CData Cloud Hub with "connection": "xxxx.crm.dynamics.com", enter a

URI of the form https://subdomain.crm.dynamics.com.

RASON 2020 will interpret this as (i) get the text contents of the connection represented by the URL and

(ii) substitute this text for the string "connection".

Currently, RASON 2020 supports "secrets" maintained, only, in an Azure Key Vault. Enterprise customers

can provision their own Key Vault and arrange to authenticate the RASON Server to this Key Vault if so

desired.

For more information on how to setup and maintain a named Data Connection, see the RASON Services WEB

IDE chapter within the RASON User Guide.

See the table below for more examples illustrating how to import data in Rason DM.

Importing From:

JSON file
"datasources": {

 "jsonSrc": {

 "type": "json",

 "connection": "hald-small-nested.json",

 "selection": "test.data",

 "direction": "import"

 }

},

ODBC Database
"datasources": {

 "odbcSrc": {

 "type": "odbc",

 "connection": "Driver={SQL Server Native

 Client 11.0};Server=Frontline;Database=Test;

 trusted_connection=Yes;

 Connection Timeout=30;",

 "selection": "SELECT * FROM dbo.Data",

 "direction": "import"

 }

},

MS Access Source
"datasources": {

 "msAccessSrc": {

 "type": "access",

 "connection": "ms-access-db.accdb",

 "Selection": "SELECT * FROM Hald",

 "direction": "import"

 }

},

Exporting

Evaluation results may either be 1. A part of the RASON response or 2. Bound to a writeable datasource. In

the example below, "fittedModelJson" and "regressionSummary" are part of the RASON response while

"influenceDiagnostics" is bound to the writeable datasource "myExportSrc". To view this complete example,

see LinearRegression.json on the Try It page on RASON.com. Note: Some code has been removed from the
example below for simplicity.

mlr: {

https://www.cdatacloud.net/solver/api.rsc/GoogleSheets1_ODataSourceExample_Sheet1
https://www.cdatacloud.net/solver/api.rsc/GoogleSheets1_ODataSourceExample_Sheet1
http://xxxx.crm.dynamics.com/
https://subdomain.crm.dynamics.com/

137

 comment: 'regression: linear model',

 datasources: {

 myTrainSrc: {

 type: 'csv',

 connection: 'hald-small-train.txt',

 direction:"import"

 },

 …

 myExportSrc: {

 type: 'csv',

 connection: 'Results/Export/influence-diagnostics.csv',

 direction:"export"

 }

 },

 datasets: {

 myTrainData: {

 binding: 'myTrainSrc',

 targetCol: 'Y'

 },

 …

 },

 estimator: {

 mlrEstimator: {

 type: 'regression',

 algorithm: 'linearRegression',

 parameters: {

 fitIntercept: true

 }

 }

 },

 actions: {

 mlrModel: {

 trainData: 'myTrainData',

 estimator: 'mlrEstimator',

 binding: 'myJSONSrc',

 action: 'fit',

 evaluations: [

 'fittedModelJson',

 {

 name: 'influenceDiagnostics',

 binding: 'myExportSrc'

 },

 'regressionSummary'

 …

]

 …

 }

}

Notes on exporting to a writable data source.

1. "Type": "CSV" and "Type": "JSON" simply create or overwrite the files with the

dataframe/table evaluation.

2. The "selection" property specifies the Excel worksheet and is optional when "Type":"Excel". If

not provided, the worksheet name will be automatically assigned based on the rason script’s

name, action, and evaluation, i.e mlr-mlrmodel-influenceDiagnostics.

3. The "selection" property specifies the Database table name and is optional for all database types.

If not provided, the table name will be automatically assigned as in 2 above.

4. Users can write to the same Excel workbook or same database – adding new worksheets/tables

with subsequent evaluations.

5. It's also possible to create a new MS Access database file and write evaluations there.

6. Creating a new database for MS SQL/Oracle types or when using an ODBC connection string is

not supported. As a result, "connection" must point to an existing database.

7. See the table below for more examples illustrating how to import data in Rason DM.

8. Importing data and exporting results to the same data source is not supported when using the data

mining solve endpoint. This is only supported when solving an optimization or simulation model

where the initial variable values are imported and the final variable values are exported (to the same

data source).

See the table below for more examples on exporting datamining/forecasting results to a writeable file.

Importing From:

CSV File
myExportSrc: {

 type: 'csv',

 connection: 'Results/Export/influence-

diagnostics.csv',

 direction: "import"

}

JSON File
myExportSrc: {

 type: 'json',

 connection: 'Results/Export/influence-

diagnostics.json',

 direction: "import"

}

Excel Workbook
myExportSrc: {

 type: 'excel',

 connection: 'Results/Export/excel-export.xlsx',

 selection: 'InfluenceDiagnosticsWorksheet',

 direction: "import"

}

Access Database
myExportSrc: {

 type: 'access',

 connection: 'Results/Export/access-export.accdb',

 selection: 'InfluenceDiagnosticsTable',

 direction: "import"

}

MSSQL Database
myExportSrc: {

 type: 'mssql',

 connection: 'Server=OLEG-

DELL;Database=test;trusted_connection=Yes',

 selection: 'InfluenceDiagnosticsTable',

 direction: "import"

}

ODBC Connection
myExportSrc: {

 type: 'odbc',

 connection: 'Driver={SQL Server Native Client

11.0};Server=OLEG-

DELL;Database=test;trusted_connection=Yes;Timeout=30;',

 selection: 'InfluenceDiagnosticsTable',

 direction: "import"

}

139

All properties available for dataSources, can be found in the table below.

Data Source

Property

Example Explanation

Binding "binding":"mySrc" Binds dataset to new data source.

colIndex "colIndex": "prods"

This property creates a dataframe and should only be used in

conjunction with rowIndex, not indexCols and valueCols

which create a RASON table.

Use this property to create an implicit

index set consisting of integer

numbers from 1 to the number of

columns. This property should be

used when importing data not

organized as a table, and thus not

having index columns or value

columns.

connection "connection": "ProductMix.xlsx" Use this property to pass the filename
of the data source. Note: Columns

are assumed to have headers. If no

header exists, set "headerExists" :

false.

When referring to excel ranges with

"headerExists": true/false, do not

include the header row in the range.

content "content": "corpus"

Parameter Options

• corpus

• itemset

• json-model

• pmml-model

• table

• time-series

Use this property to read data in some

specific manner such as:

corpus – text corpus

itemset – item list

json-model – Model in JSON format

pmml-model – Model in PMML

format

table – table

time-series – time series dataset

direction direction: "import"

direction: "export"

Use direction: "import"

when importing the contents of a file.

Use direction: "export"

when exporting results.

headerExists

header

"headerExists": true

"header": true

Set to True by default. Parameter
indicates if the data file contains

column headings (true) or not (false).

When referring to excel ranges with

"headerExists": true/false, do not

include the header row in the range.

indexCols "indexCols": ["parts", "prods"]

This property creates a RASON table and should only be used

in conjunction with valueCols, not colIndex and rowIndex

which create a dataframe.

Used in conjunction with

valueCols. Use this property to

index by dimension(s).

rowIndex "rowIndex": "parts"

This property creates a dataframe and should only be used in

conjunction with rowIndex, not indexCols and valueCols

which create a RASON table.

Use this property to create an implicit

index set consisting of integer

numbers from 1 to the number of

rows. This property should be used

when importing data not organized as

a table, and thus not having index
columns or value columns.

selection Importing

1a. "selection": "Sheet1!B2:D6"

1b. "selection": "Sheet1!Parts_Table"

2. "selection": "SELECT Parts,

 Products, Qty FROM Parts ORDER BY ID"

Exporting

1. "selection":
"InfluenceDiagnosticsSheet"

2. "selection":
"InflusenceDiagnosticsTable"

Use this property to select the

columns/fields to import.

3. If data source is an Excel file,

pass A. the Excel Range or B. an

Excel defined name.

4. If data source is an odbc database

use: SELECT + desired fields

separated by commas + FROM +

name of table containing desired

field(s) + ORDER BY + field

name containing order index.

When exporting use this property to:

1. Specify the Excel worksheet.

This property is optional when

"Type":"Excel". If not

provided, the worksheet name

will be automatically assigned

based on the rason script’s

name, action, and evaluation, i.e

mlr-mlrmodel-

influenceDiagnostics.

2. Specify the Database table

name. This property is optional

for all database types. If not

provided, the table name will be

automatically assigned as in 1

above.

Note: When referring to excel ranges,

do not include the header row in the

range.

sortIndexCols

or

sort

"sortIndexCols": true Use this property to sort the columns

alphabetically.

Type "type": "excel"

"type": "odbc"

"type": "csv"

Use this property to pass the file type:

"excel" (Microsoft Excel), "access" or

"msaccess" (Microsoft Access),

"odbc" (ODBC database), "odata"

(OData database), "mssql" (Microsoft

Sequel), "oracle" (Oracle database),

"csv" (Comma Separated Value),

"json" (JSON file), "stage" or "xml"

(XML file).

141

The last two file types "json" and

"xml", may be used for referencing

stored models in external JSON and

XML (PMML) files. The "json" file

type may also be used for reading

XLMiner::DataFrame serialized into
JSON and stored in an external JSON

file.

valuecol "valueCol": ["Initials"]

This property creates a RASON table and should only be used

in conjunction with valueCols, not colIndex and rowIndex

which create a dataframe.

Used with binding property to bind

imported values from a readable data

source. If omitted, the RASON
interpreter assumes the last column in

the table as the input to valueCol.

valueCols "valueCols": ["qty"] Used in conjunction with

indexCols. Use this property to

import columns/fields containing

values

Datasets ("datasets")
You'll use this section to further refine data imported from within "datasources". The section, "datasets", is an

object with user defined attributes where each attribute defines an object containing the following properties.

See the example below.

"datasets": {

"myData": {

 "binding": "mySrc",

 "targetCol":"Y"

 }

 },

Properties associated with "datasets" are listed in the table below.

Data Set Property Example Explanation

binding "binding":"mySrc"

In the example above, this property

binds imported data, mySrc, (from

within dataSource) to a new

dataset, "myData". (String property)

colNames "colNames": ["A", "B", "C", "D", "E",

"F", "G"]

Assigns column names. (Array

property)

dataCol "dataCol":"CHAS" Selects input variables. (String
property)

excludedCols "excludedCols": ["CHAS", "MEDV"] Excludes specified columns from the

data mining method. (Array property)

indexCols indexCols: ["parts", "prods"] Used in conjunction with

valueCols. Use this property to

index by dimension(s).

rowNames "rowNames": ["record1", "record2"] Assigns row names. (Array property)

selectedCols "selectedCols": ['X1', 'X2', 'X3', 'X4'] Selects specified columns. (Array

property)

strataCol "strataCol":"Y" Selects the stratum variable when

performing stratified random

sampling. (String property)

targetCol "targetCol":"Y" Use this property to pass the name of

the output column. (String property)

timeVariable "timeVariable":"Year" Selects the Time variable in a time

series dataset. (String property)

value
"value": [

["black", null, 6.0, 2.0, 1.0, "nan", 1],

["", 3.0, 9.0, 5.1, null, "", 2],

["red", 7.0, 8.0, null, 9.2, "small", 3],

["red", 10000.0, null, 4.4, 4.4, "large",

-1],

["blue", 2, 3, 5.6, 3.4, "unknown", 5]

],

Sets the values of the array.

Sets the values of a table.

weights "weights": [1.0,2.1,...] Using a Weight variable allows the

user to allocate a weight to each

record. A record with a large weight

will influence the model more than a

record with a smaller weight. (Array

property)

Weaklearner ("weakLearner")
This section is used (only) to specify a weak learner in a bagging or boosting estimator algorithm.

Two examples are displayed below. The first example selects the decision tree algorithm to perform a

classification and the second selects the decision tree algorithm to perform a regression.

weakLearner: {

 treeWeakLearner: {

 type: 'classification',

 algorithm: 'decisionTree',

 parameters: {

 minNumRecordsInLeaves: 2

 }

 }

 },

 weakLearner: {

 treeWeakLearner: {

 type: 'regression',

 algorithm: 'decisionTree',

 parameters: {

 minNumRecordsInLeaves: 2

 }

 }

 },

The following properties are available for use.

weakLearner

Property

Example Explanation

143

type "type":"classification"

"type":"regression"

Use this property to specify whether

the estimator will be a classification or

regression estimator.

algorithm "algorithm":"decisionTree"

Parameter Options

• decisionTree

• discriminantAnalysis

• linearRegression

• logisticRegression

• naiveBayes

• nearestNeighbors

• neuralNetwork

Use this property to select the weak

learner. See the Example column for a

list of choices.

parameters "parameters" : {

 "method": "M1_BREIMAN",

 "numWeakLearners": 2,

 "resamplingSeed": 10

}

Use this property to set parameter

values or turn parameters on or off

using "true" or "false". For a full list of

parameters, see below.

Algorithm Parameters: Decision Tree

Parameters Option Settings or Example Explanation

priorProbMethod "priorProbMethod":"EMPIRICAL"

Parameter Options

• EMPIRICAL

• UNIFORM

• MANUAL

For classification only

Use EMPIRICAL when the

probability of encountering a

particular class in the dataset is the

same as the frequency with which it

occurs in the training data.

Use UNIFORM when all classes
occur with equal probability.

Use MANUAL to enter the desired

class and probability.

maxNumLevels "maxNumLevels":3 This option specifies the maximum

number of levels in the tree.

maxNumNodes "maxNumNodes":5 This option specifies the maximum

number of nodes in the tree.

minNumRecordsInLeaves "minNumRecordsInLeaves":5 This option specifies the minimum ,

number of records allowed in

terminal nodes, or leaves of the tree.

maxNumSplits "maxNumSplits":10 This option specifies the maximum

number of splits in the tree.

Algorithm Parameters: Discriminant Analysis

Parameters Option Settings or Example Explanation

priorProbMethod "priorProbMethod":"EMPIRICAL"

Use EMPIRICAL when the probability of
encountering a particular class in the dataset is

Parameter Options

• EMPIRICAL

• UNIFORM

• MANUAL

the same as the frequency with which it occurs

in the training data.

Use UNIFORM when all classes occur with

equal probability.

Use MANUAL to enter the desired class and
probability.

quadratic "quadratic": true

"quadratic": false

Use True to use Quadratic Discriminant

Analysis (QDA). QDA

produces a quadratic decision boundary.

Use False to use Linear Discriminant

Analysis (LDA).

LDA produces a linear decision boundary.

Both QDA and LDA assume that the data is

normally distributed and each class has it’s

own mean. However, while LDA assumes

that the covariance matrix for each class is the
same, QDA assumes that the covariance

matrices for each class are different.

QDA is a more flexible technique when

compared to LDA. QDA's performance

improves over LDA when the class

covariance matrices are disparate. Since each

class has a different covariance matrix, the

number of parameters that must be estimated

increases significantly as the number of

dimensions (predictors) increase. As a result,

LDA might be a better choice over QDA on
datasets with small numbers of

observations and large numbers of

classes. It’s advisable to try both techniques

to determine which one performs best on your

model. You can easily switch between LDA

and QDA simply by setting this option to true

or false.

Algorithm Parameters: Linear Regression

Parameters Option Settings or Example Explanation

fitIntercept "fitIntercept": true When this option is set to true, the default

setting, the linear regression intercept will be

fit. When this option is set to false, the

intercept term will be forced to 0.

Algorithm Parameters: Logistic Regression

Parameters Option Settings or Example Explanation

fitIntercept "fitIntercept": true When this option is set to true, the default

setting, the logistic regression intercept will be

fit. When this option is set to false, the

intercept term will be forced to 0.

145

priorProbMethod "priorProbMethod":"EMPIRICAL"

Parameter Options

• EMPIRICAL

• UNIFORM

• MANUAL

For classification only

Use EMPIRICAL when the probability of

encountering a particular class in the dataset is

the same as the frequency with which it occurs

in the training data.

Use UNIFORM when all classes occur with

equal probability.

Use MANUAL to enter the desired class and

probability.

maxIterations "maxIterations": 30 Estimating the coefficients in the Logistic

Regression algorithm requires an iterative

non-linear maximization procedure. You can

specify a maximum number of iterations to

prevent the program from getting lost in very

lengthy iterative loops. This value must be an

integer greater than 0 or less than or equal to
200 (0 < value <= 200).

Algorithm Parameters: Naïve Bayes

Parameters Option Settings or Example Explanation

laplaceSmoothing "laplaceSmoothing": true If a particular realization of some feature

never occurs in a given class in the training

partition, then the corresponding frequency-

based prior conditional probability estimate

will be zero. To mitigate this problem, this

parameter allows users to specify a small

correction value, known as a pseudocount, so

that no probability estimate is ever set to 0. A

Pseudocount set to zero is equivalent to no

smoothing. Any positive value for this

parameter is accepted.

priorProbMethod "priorProbMethod":"EMPIRICAL"

Parameter Options

• EMPIRICAL

• UNIFORM

• MANUAL

For classification only

Use EMPIRICAL when the probability of

encountering a particular class in the dataset is

the same as the frequency with which it occurs

in the training data.

Use UNIFORM when all classes occur with

equal probability.

Use MANUAL to enter the desired class and

probability.

smoothingAlpha "smoothingAlpha":1 Setting this option to zero is equivalent to no
smoothing.

Algorithm Parameters: Nearest Neighbors

Parameters Option Settings or Example Explanation

priorProbMethod "priorProbMethod":"EMPIRICAL" For classification only

Parameter Options

• EMPIRICAL

• UNIFORM

• MANUAL

Use EMPIRICAL when the probability of

encountering a particular class in the dataset is

the same as the frequency with which it occurs

in the training data.

Use UNIFORM when all classes occur with
equal probability.

Use MANUAL to enter the desired class and

probability.

numNeighbors "numNeighbors":3 This is the parameter k in the k-Nearest

Neighbor algorithm.

Algorithm Parameters: Neural Network

Parameters Option Settings or Example Explanation

dataForErrorComputation
"dataForErrorComputation" :

"TRAIN_AND_VALID"

Parameter Options

• ONLY_TRAIN

• ONLY_VALID

• TRAIN_AND_VALID

Specifies the data partition to be used to

estimate the error after each training epoch.

errorTolerance
"errorTolerance": 0.01

Use this option to set the error tolerance. The

error in a particular iteration is

backpropagated only if it is greater than the

value specified for this option. Typically error

tolerance is a small value in the range from 0
to 1.

hiddenLayerActivation
"hiddenLayerActivation":

"LOGISTIC_SIGMOID"

Parameter Options

• LOGISTIC_SIGMOID

• SOFTMAX

• TANH

Nodes in the hidden layer receive input from

the input layer. The output of the hidden

nodes is a weighted sum of the input values.

This weighted sum is computed with weights

that are initially set at random values. As the

network “learns”, these weights are adjusted.

This weighted sum is used to compute the

hidden node’s output using a transfer function.

Select Sigmoid (the default setting) to use a

logistic function for the transfer function with

a range of 0 and 1. This function has a
“squashing effect” on very small or very large

values but is almost linear in the range where

the value of the function is between 0.1 and

0.9. Select Hyperbolic Tangent to use the

tanh function for the transfer function, the

range being -1 to 1. If more than one hidden

layer exists, this function is used for all layers.

learningOrder
"learningOrder": "RANDOM"

Parameter Options

• ORIGINAL

• RANDOM

This option sets the order in which the records

in the training dataset are processed. It is

recommended to shuffle the training data to

avoid the possibility of processing correlated

records in order which can help the neural
network algorithm to converge faster. Use

147

RANDOM to randomly shuffle the data.

ORIGINAL uses the original order of records.

learningOrderSeed
"learningOrderSeed":12345

This option specifies the seed for shuffling the

training records. Note that different random

shuffling may lead to different results, but as

long as the training data is shuffled, different

ordering typically does not result in drastic
changes in performance.

learningRate
"learningRate":0.4

This option sets the multiplying factor for the

error correction during backpropagation; it is

roughly equivalent to the learning rate for the

neural network. A low value produces slow

but steady learning, a high value produces

rapid but erratic learning. Values for the step

size typically range from 0.000001 to 1.0.

maxNumEpochsWithNoImprovem

ent

"maxNumEpochsWithNoImprovement":

30
The algorithm will stop after this number of

epochs has been completed and no

improvement has been realized.

maxTrainingTimeSeconds
"maxTrainingTimeSeconds":5.0

The algorithm will stop once this time (in

seconds) has been exceeded.

minRelativeErrorChangeComp

aredToNullModel

"minRelativeErrorChangeComparedT

oNullModel":0.0001

If the relative change in error compared to the

Null Model is less than this value, the

algorithm will stop. Null Model is the

baseline model used for comparing the
performance of the neural network model.

minRelativeErrorChange
"minRelativeErrorChange":

0.00001,

If the relative change in error is less than this

value, the algorithm will stop.

numEpochs
"numEpochs":100

Use this option to set the number of epochs, or

one sweep through all records in the training

set.

numNeurons "numNeurons":[5,4]

Use this open to specify the number of

neurons in the Neural Network Architecture

i.e. the number of neurons in the hidden

layer(s). The first value will determine the

number of neurons in the 1st hidden layer, the
second value determines the number of

neurons in the 2nd layer, and so on.

outputLayerActivation
"outputLayerActivation": "TANH"

Parameter Options

• LOGISTIC_SIGMOID

• SOFTMAX

• TANH

The output layer is also computed using the

same transfer function as described for

setHiddenLayerActivation. Select

Sigmoid (the default setting) to use a logistic
function for the transfer function with a range

of 0 and 1. Select Hyperbolic Tangent to use

the tanh function for the transfer function, the

range being -1 to 1. In neural networks, the

Softmax function is often implemented at the

final layer of a classification neural network to

impose the constraints that the posterior

probabilities for the output variable must be

>= 0 and <= 1 and sum to 1.

priorProbMethod "priorProbMethod": "EMPIRICAL"

Parameter Options

• EMPIRICAL

• MANUAL

• UNIFORM

For classification only

Use EMPIRICAL when the probability of

encountering a particular class in the dataset is

the same as the frequency with which it occurs
in the training data.

Use MANUAL to enter the desired class and

probability.

Use UNIFORM when all classes occur with

equal probability.

responseCorrection "responseCorrection":0.01 This option specifies the value applied to the

Normalization rescaling formula, if the output

layer activation is Sigmoid (or Softmax in

Classification) or Adjusted Normalization, if

the output layer activation is Hyperbolic
Tangent. The rescaling correction ensures

that all response values stay within the range

of activation function.

weightDecay
"weightDecay":0.0

Use this option to prevent over-fitting of the

network on the training data. Set a weight

decay to penalize the weight in each iteration.

Each calculated weight will be multiplied by

(1-decay).

weightInitSeed
"weightInitSeed":12345

Use this option to initialize the Random Seed

for Weights Initialization. This value is used

to set the seed for the initial assignment of the

neuron values. Setting the random number
seed to a nonzero value (any number of your

choice is OK) ensures that the same sequence

of random numbers is used each time the

neuron values are calculated. The default

value is “12345”.

weightMomentum
"weightMomentum":0.0

This option controls the weight change

momentum in the neural network algorithm.

In each new round of error correction, some

memory of the prior correction is retained so

that an emerging outlier does not spoil the

accumulated learning.

Estimator ("estimator")
This section is where the "estimator" is defined and is applicable only to algorithms that "fit" a model. In other
words, an "estimator" estimates "something" from the training data and stores it in a fitted model to be used

later. Every algorithm that implements a "fit()" interface has an Estimator – Model pair. This section is

mutually exclusive with the "transformer" section. Both may not appear in the same Rason model. Data

mining algorithms that "fit" a model include: Rescaler, Principal Components Analysis, Binning, Factorization,

Encoding, Canonical Variate Analysis, Imputation, k-Means Clustering, Hierarchical Clustering, TF-IDF (Text

Mining), Latent Semantic Analysis (Text Mining), ARIMA, all Smoothing methods (Exponential, Double

149

Exponential, Moving Average, and Holt Winters) and all classification and regression methods (Decision Trees,

Ensemble Methods, Discriminant, Linear Regression, Logistic Regression, Naïve Bayes, Nearest Neighbors,

and Neural Networks).

In the example below, the estimator "mlrEstimator" uses the linear regression algorithm to fit a model.

"estimator": {

 "mlrEstimator": {

 "type": "regression",

 "algorithm": "linearRegression",

 "parameters": {

 "fitIntercept": true

 }

 }

 },

This section includes the following properties.

Property Example Definition

type "type":"regression"

Parameter Options

"classification"

"clustering"

"regression"

"textMining"

"timeSeries"

"transform"

Use this property to specify the type of algorithm

to be applied: classification, regression, clustering,

text mining, transformation or time series.

algorithm "algorithm": "boosting"

Available option settings will vary depending on

the type setting. Use this property to specify the

algorithm to be used to "fit" the model. See the

chart below for all options.

parameters "parameters" : {

 "method": "M1_BREIMAN",

 "numWeakLearners": 2,

 "resamplingSeed": 10

}

Available parameter settings will vary depending

on the algorithm setting. Use this property to set

parameter values or turn parameters on or off using

"true" or "false". For a full list of parameters, see

below.

The chart below contains the available options for "algorithm" based on the "type" argument.

If "type" = Algorithm option settings Definition

"classification"
"algorithm" : "boosting"

Parameter Options

• bagging

• boosting

• decisionTree

• findBestModel

• DiscriminantAnalysis

boosting – Runs the Boosting ensemble method
for classification.

bagging – Runs the Bagging ensemble method for

classification.

decisionTree – Runs the Decision Tree algorithm

for classification.

• logisticRegression

• naïveBayes

• nearestNeighbors

• neuralNetwork

• randomTrees

findBestModel – Runs the Find Best Model

method. For more details, see the Data Mining

chapter within the RASON User Guide.

DiscriminantAnalysis – Runs the Discriminant

Analysis classification algorithm.

logisticRegression – Runs the Logistic Regression

classification algorithm.

naïveBayes – Runs the Naïve Bayes classification

algorithm.

nearestNeighbors – Runs the k-Nearest Neighbors

algorithm for classification.

neuralNetwork – Runs the Neural Network

algorithm for classification.

randomTrees – Runs the Random Trees ensemble
method for classification.

"clustering" "algorithm" : "hierarchical"

Parameter Options

• hierarchical

• kMeans

kmeans – Performs clustering using the k Means

Clustering algorithm.

hierarchical – Performs clustering using the

Hierarchical Clustering algorithm.

"regression" "algorithm" : "boosting"

Parameter Options

• bagging

• boosting

• decisionTree

• findBestModel

• linearRegression

• nearestNeighbors

• neuralNetwork

• randomTrees

• findBestModel

boosting – Runs the Boosting ensemble method

for regression.

bagging – Runs the Bagging ensemble method for

regression.

decisionTree – Runs the Decision Tree algorithm

for regression.

findBestModel – Runs the Find Best Model

method. For more details, see the Data Mining

chapter within the RASON User Guide.

linearRegression – Runs the Linear Regression

regression algorithm.

nearestNeighbors – Runs the k-Nearest Neighbors

algorithm for regression.

neuralNetwork – Runs the Neural Network

algorithm for regression.

randomTrees – Runs the Random Trees ensemble

method for regression.

"textMining" "algorithm" : "tfIdf"

Parameter Options

• latentSemanticAnalysis

• tfIdf

tfIdf – Performs text mining using Term

Frequency – Inverse Document Frequency

Vectorization (TF-IDF).

latentSemanticAnalysis – Performs text mining

using Latent Semantic Analysis (LSA).

"transform" "algorithm" : "binning"

binning – Use to group measured data into data

classes.

151

Parameter Options

• binning

• canonicalVariateAnalysis

• factorization

• imputation

• linearWrapping

• logisticWrapping

• oneHotEncoding

• principalComponentAnalysis

• rescaling

• univariate

canonicalVariateAnalysis – Produces the

Canonical Variates.

factorization – Use to create category scores.

imputation – Use to handle missing values.

linearWrapping – Performs Feature Selection (on

a continuous output variable) using linear

wrapping.

logisticWrapping - Performs Feature Selection

(on a categorical output variable) using logistic

wrapping.

oneHotEncoding – Use to create dummy

variables.

principalComponentAnalysis – Use to run PCA.

rescaling – Use to rescale data

univariate – Performs Feature Analysis by ranking

variables according to one or more univariate

measures.

"timeSeries" "algorithm" : "addHoltWinters"

Parameter Options

• addHoltWinters

• arima

• doubleExponential

• exponential

• lagAnalysis

• movingAverage

• mulHoltWinters

• noTrendHoltWinters

addHoltWinters – Runs the Additive Holt Winters

Smoothing method.

arima – Performs Time Series Analysis using

ARIMA.

doubleExponential – Runs the Double

Exponential Smoothing method.

exponential – Runs the Exponential Smoothing
method.

lagAnalysis -- Performs Time Series Analysis

using lag analysis.

movingAverage – Runs the Moving Average

smoothing method.

mulHoltWinters - Runs the Multiplicative Holt

Winters Smoothing method.

noTrendWintersHoltWinters - Runs the No Trend

Holt Winters Smoothing method.

The chart below contains the available options for "parameters" based on the "algorithm" argument.

Algorithm Parameters Common to All Classification Algorithms

Parameters Option Settings or Example Explanation

priorProb
"priorProb": [

 ['1', 0.4],

['0', 0.6]

],

For classification models only.

Specifies the desired class and probability

values

priorProbMethod "priorProbMethod":"EMPIRICAL"

Parameter Options

For classification models only.

Use EMPIRICAL when the probability of

encountering a particular class in the dataset is

• EMPIRICAL

• UNIFORM

• MANUAL

the same as the frequency with which it occurs

in the training data.

Use UNIFORM when all classes occur with

equal probability.

Use MANUAL to enter the desired class and
probability. See the example to the left.

Algorithm Parameters: Find Best Model for Classification & Regression

Parameters Option Settings or Example Explanation

learners
Full Specification

"estimator": {

 "fbmEstimator": {

 "type": "regression",

 "algorithm":

 "findBestModel",

 "learners": {

 "linearRegression": {

 "fitIntercept": false

 },

 "nearestNeighbors": {

 "numNeighbors": 5

 },

 "neuralNetwork": {}

 }

 }

}

Partial Specification

"estimator": {

 "fbmEstimator": {

 "type": "regression",

 "algorithm":

 "findBestModel",

 "learners": [

 "linearRegression",

 "nearestNeighbors",

 "neuralNetwork"

]

 }

}

Default Specification

"estimator": {

 "fbmEstimator": {

 "type": "regression",

 "algorithm":

 "findBestModel",

 }

}

Full Specification: User specifies all

available learners and may edit parameter

settings. In the Full Specification example to

the left, three learners will be available to the

Find Best Model method: linearRegression,

nearestNeighbors and neuralNetwork.

Parameter settings are defined for just two

learners: linearRegression and

nearestNeighbors. The nueralNetwork learner

will use it's default parameter settings. Refer
to each learner's chart in this section for a list

of all available parameters.

Partial Specification: User specifies all

available learners. Default parameter settings

will be used. In the Partial Specification

example to the left, three learners will be

available to the Find Best Model method:

linearRegression, nearestNeighbors and

neuralNetwork.

When using the Default Specification, no
learners are specified. All learners will be

available to the Find Best Model method.

Learners available to classification models

are: bagging, boosting, decisionTree,

discriminantAnalysis, logisticRegression,

nearestNeighbors, neuralNetwork and

randomTrees.

Learners available to regression models are:

bagging, boosting, decisionTree,
linearRegression, nearestNeighbors,

neuralNetwork and randomTrees.

153

Algorithm Parameters: Discriminant Analysis for Classification

Parameters Option Settings or Example Explanation

quadratic
"quadratic": true

"quadratic": false

Use True to use Quadratic Discriminant

Analysis (QDA). QDA

produces a quadratic decision boundary.

Use False to use Linear Discriminant

Analysis (LDA).

LDA produces a linear decision boundary.

Both QDA and LDA assume that the data is

normally distributed and each class has it’s

own mean. However, while LDA assumes

that the covariance matrix for each class is the

same, QDA assumes that the covariance

matrices for each class are different.

QDA is a more flexible technique when

compared to LDA. QDA's performance

improves over LDA when the class

covariance matrices are disparate. Since each
class has a different covariance matrix, the

number of parameters that must be estimated

increases significantly as the number of

dimensions (predictors) increase. As a result,

LDA might be a better choice over QDA on

datasets with small numbers of

observations and large numbers of

classes. It’s advisable to try both techniques

to determine which one performs best on your

model. You can easily switch between LDA

and QDA simply by setting this option to true

or false.

Algorithm Parameters: Logistic Regression for Classification

Parameters Option Settings or Example Explanation

categoricalFeaturesNames "categoricalFeaturesNames": [

"X1"]

Enter categorical variables by name using this

parameter.

Any non-numeric columns are automatically

considered as categorical (nominal) variables.

confidenceLevel "confidenceLevel":0.95 Sets the confidence level for the Coefficients

Confidence Interval.

fitIntercept "fitIntercept":false Set "fitIntercept":false to force the intercept

term to 0. Set this option to "true", the

default, to fit the Logistic Regression

intercept.

maxIterations

"maxIterations": 30 Estimating the coefficients in the Logistic

Regression algorithm requires an iterative

non-linear maximization procedure. You can

specify a maximum number of iterations to

prevent the program from getting lost in very

lengthy iterative loops. This value must be an

integer greater than 0 or less than or equal to

200 (1 < value <= 200).

successClass "successClass":"1" Select the success value for the output

variable here (i.e. 0 or 1 or “yes” or “no”).

weights "weights": [1.0,2.1,...] Provides a weight variable allowing the user
to allocate a weight to each record. A record

with a large weight will influence the model

more than a record with a smaller weight.

Algorithm Parameters: Naïve Bayes for Classification

Parameters Option Settings or Example Explanation

laplaceSmoothing "laplaceSmoothing": true Set this option to True to turn on LaPlace

Smoothing. Set the Pseudocount using the

option, smoothingAlpha.

smoothingAlpha "smoothingAlpha":1 Use this option to specify a small correction

value, known as a pseudocount, so that no

probability estimate is ever set to 0. A

pseudocount set to zero is equivalent to no

smoothing. When Laplace Smoothing is

turned on, any positive value for psuedocount
will be accepted.

Algorithm: Bagging for Classification or Regression

Parameters Example/Parameter Options Definition

bootstrapSeed "bootstrapSeed": 10 This value specifies the seed for random

resampling of the training data for each
weak learner. Setting the random number

seed to a nonzero value (any number of

your choice is OK) ensures that the same

sequence of random numbers is used each

time the dataset is chosen for the classifier.

The default value is "12345".

num num b numWeakLearners "numWeakLearners" : 4

This option controls the number of “weak”

classification/regression models that will be

created. The ensemble method will stop

when the number of models created reaches

the value set for this option. The algorithm

will then compute the weighted sum of
votes for each class and assign the

“winning” classification to each record.

Algorithm: Boosting for Classification or Regression

Parameter Example/Parameter Options Definition

method "method" : "M1_BREIMAN"

Parameter Options

For Classification models only.

155

• M1_BREIMAN

• M1_FREUND

• SAMME

The difference in the algorithms is the way in which

the weights assigned to each observation or record

are updated.

In AdaBoost.M1 (Freund), the constant is calculated

as:

αb= ln((1-eb)/eb)

In AdaBoost.M1 (Breiman), the constant is

calculated as:

αb= 1/2ln((1-eb)/eb)

In SAMME, the constant is calculated as:

αb= 1/2ln((1-eb)/eb + ln(k-1) where k is the number

of classes

(When the number of categories is equal to 2,

SAMME behaves the same as AdaBoost Breiman.)

num num b numWeakLearners "numWeakLearners" : 4

This option controls the number of “weak”

classification/regression models that will be created.

The ensemble method will stop when the number of

models created reaches the value set for this option.

The algorithm will then compute the weighted sum of

votes for each class and assign the “winning”

classification to each record.

resamplingSeed "resamplingSeed": 10 For Classification models only.

This value specifies the seed for random resampling

of the training data for each weak learner. Setting the

random number seed to a nonzero value (any number

of your choice is OK) ensures that the same sequence
of random numbers is used each time the dataset is

chosen for the classifier. The default value is

"12345".

stepSize "stepSize": 0.3 For Regression models only.

The Adaboost algorithm minimizes a loss function

using the gradient descent method. The Step size

parameter is used to ensure that the algorithm does

not descend too far when moving to the next step. It

is recommended to leave this option at the default of

0.3, but any number between 0 and 1 is acceptable. A

Step size setting closer to 0 results in the algorithm
taking smaller steps to the next point, while a setting

closer to 1 results in the algorithm taking larger steps

towards the next point.

Algorithm Parameters: Neural Network for Classification or Regression

Parameters Option Settings or Example Explanation

categoricalFeaturesNames "categoricalFeaturesNames": [

'X1']

Enter categorical variables by name using this

parameter.

Any non-numeric columns are automatically

considered as categorical (nominal) variables.

costFunction
"costFunction": "SUM_OF_SQUARES"

Parameter Options for

Classification

• SUM_OF_SQUARES

• CROSS_ENTROPY

• LOG_LOSS

Parameter Options for Regression

• SUM_OF_SQUARES

Sets the cost function. The cost function

measures "how well" a neural network

performed with respect to a given training

dataset and the expected output.

If not set, this option will be set automatically
based on the classification/regression and

output layer activation.

dataForErrorComputation
"dataForErrorComputation" :

"TRAIN_AND_VALID"

Parameter Options

• ONLY_TRAIN

• ONLY_VALID

• TRAIN_AND_VALID

Specifies the data partition to be used to

estimate the error after each training epoch.

errorTolerance
"errorTolerance": 0.01

Use this option to set the error tolerance. The

error in a particular iteration is

backpropagated only if it is greater than the

value specified for this option. Typically error

tolerance is a small value in the range from 0

to 1.

hiddenLayerActivation
"hiddenLayerActivation":"LOGISTI

C_SIGMOID"

Parameter Options

• LOGISTIC_SIGMOID

• SOFTMAX

• TANH

Nodes in the hidden layer receive input from

the input layer. The output of the hidden
nodes is a weighted sum of the input values.

This weighted sum is computed with weights

that are initially set at random values. As the

network “learns”, these weights are adjusted.

This weighted sum is used to compute the

hidden node’s output using a transfer function.

Select Sigmoid (the default setting) to use a

logistic function for the transfer function with

a range of 0 and 1. This function has a

“squashing effect” on very small or very large

values but is almost linear in the range where

the value of the function is between 0.1 and
0.9. Select Hyperbolic Tangent to use the

tanh function for the transfer function, the

range being -1 to 1. If more than one hidden

layer exists, this function is used for all layers.

learningOrder
"learningOrder":"RANDOM"

This option sets the order in which the records

in the training dataset are processed. It is

recommended to shuffle the training data to

avoid the possibility of processing correlated

records in order which can help the neural

network algorithm to converge faster. Use

RANDOM to randomly shuffle the data. If

ORIGINAL, the original order of records will
be used.

learningOrderSeed
"learningOrderSeed":12345

This option specifies the seed for shuffling the

training records. Note that different random

157

shuffling may lead to different results, but as

long as the training data is shuffled, different

ordering typically does not result in drastic

changes in performance.

learningRate
"learningRate":0.4

This option sets the multiplying factor for the

error correction during backpropagation; it is

roughly equivalent to the learning rate for the
neural network. A low value produces slow

but steady learning, a high value produces

rapid but erratic learning. Values for the step

size typically range from 0.000001 to 1.0.

maxNumEpochsWithNoImprovem

ent

"maxNumEpochsWithNoImprovement":

30
The algorithm will stop after this number of

epochs has been completed and no

improvement has been realized.

maxTrainingTimeSeconds

"maxTrainingTimeSeconds":5.0

The algorithm will stop once this time (in

seconds) has been exceeded.

minRelativeErrorChangeComp

aredToNullModel

"minRelativeErrorChangeComparedT

oNullModel":0.0001

If the relative change in error compared to the

Null Model is less than this value, the

algorithm will stop. Null Model is the

baseline model used for comparing the

performance of the neural network model.

minRelativeErrorChange

"minRelativeErrorChange":

0.00001

If the relative change in error is less than this

value, the algorithm will stop.

numEpochs
"numEpochs":100

Use this option to set the number of epochs, or

one sweep through all records in the training

set.

numNeurons "numNeurons":[5,4]

Use this open to specify the number of

neurons in the Neural Network Architecture

i.e. the number of neurons in the hidden

layer(s). The first value will determine the

number of neurons in the 1st hidden layer, the
second value determines the number of

neurons in the 2nd layer, and so on.

outputLayerActivation
"outputLayerActivation":"TANH"

Parameter Options

• LOGISTIC_SIGMOID

• SOFTMAX

• TANH

The output layer is also computed using the

same transfer function as described for

setHiddenLayerActivation. Select

Sigmoid (the default setting) to use a logistic

function for the transfer function with a range

of 0 and 1. Select Hyperbolic Tangent to use
the tanh function for the transfer function, the

range being -1 to 1. In neural networks, the

Softmax function is often implemented at the

final layer of a classification neural network to

impose the constraints that the posterior

probabilities for the output variable must be

>= 0 and <= 1 and sum to 1.

weightDecay
"weightDecay":0.0

Use this option to prevent over-fitting of the

network on the training data. Set a weight

decay to penalize the weight in each iteration.

Each calculated weight will be multiplied by

(1-decay).

weightInitSeed
"weightInitSeed":12345

Use this option to initialize the Random Seed
for Weights Initialization. This value is used

to set the seed for the initial assignment of the

neuron values. Setting the random number

seed to a nonzero value (any number of your

choice is OK) ensures that the same sequence

of random numbers is used each time the

neuron values are calculated. The default

value is “12345”.

weightMomentum
"weightMomentum":0.0

This option controls the weight change

momentum in the neural network algorithm.

In each new round of error correction, some

memory of the prior correction is retained so
that an emerging outlier does not spoil the

accumulated learning.

Algorithm Parameters: Decision Trees for Classification or Regression

Parameters Option Settings or Example Explanation

categoricalFeaturesNames "categoricalFeaturesNames": [

"X1"]

Enter categorical variables by name using this

parameter.

Any non-numeric columns are automatically

considered as categorical (nominal) variables.

prunedTreeType "prunedTreeType": "MIN_ERROR"

Parameter Options

• FULL_GROWN

• BEST_PRUNED

• MIN_ERROR

• MANUAL

Use this option to select the tree used to score

the validation dataset: FULL_GROWN,

BEST_PRUNED, MIN_ERROR or

MANUAL.

• Use "FULL_GROWN" to use the complete
tree.

• Use "BEST_PRUNED" to use the Best

Pruned Tree.

• Use "MIN_ERROR" to use the Minimum

Error Tree.

 • Use "MANUAL" to create a tree with a

specified number of decision nodes. When

this option is used, set the number of decision

nodes in the Pruned Tree using

"prunedTreeNumDecisionNodes"

maxNumLevels "maxNumLevels":3 This option specifies the maximum number of

levels in the tree.

maxNumLevelsTreeDiagram "maxNumLevelsTreeDiagram": 7 This option specifies the maximum number of

levels in the tree to be included in the output.

159

maxNumNodes "maxNumNodes":5 This option specifies the maximum number of

nodes in the tree.

maxNumSplits "maxNumSplits":10 This option specifies the maximum number of

splits in the tree.

minNumRecordsInLeaves "minNumRecordsInLeaves":5 This option specifies the minimum number of

records allowed in terminal nodes, or leaves of

the tree.

prunedTreeNumDecisionNodes "prunedTreeNumDecisionNodes":5 Used in conjuction with "prunedTree

Type" : "MANUAL". Use this option to

specify the number of decision nodes in the

pruned tree.

weights "weights": [1.0,2.1,...] Provides a weight variable allowing the user

to allocate a weight to each record. A record

with a large weight will influence the model

more than a record with a smaller weight.

Algorithm Parameters: Random Trees for Classification or Regression

Parameters Option Settings or Example Explanation

bootstrapSeed "bootstrapSeed": 1 This value sets the bootstrapping random

number seed. Setting the random number

seed to a nonzero value (any number of your

choice is OK) ensures that the same sequence
of random numbers is used each time the

dataset is chosen for the classifier. The

default value is “12345".

categoricalFeaturesNames "categoricalFeaturesNames": [

"X1"]

Enter categorical variables by name using this

parameter.

Any non-numeric columns are automatically

considered as categorical (nominal) variables.

featureSelectionSeed "featureSelectionSeed":2 This value sets the feature selection random

number seed. Setting the random number

seed to a nonzero value (any number of your

choice is OK) ensures that the same sequence

of random numbers is used each time the
dataset is chosen for the classifier. The

default value is “12345”.

maxNumLevels "maxNumLevels":3 This option specifies the maximum number of

levels in the tree.

maxNumNodes "maxNumNodes":5 This option specifies the maximum number of

nodes in the tree.

maxNumSplits "maxNumSplits":10 This option specifies the maximum number of

splits in the tree.

minNumRecordsInLeaves "minNumRecordsInLeaves":5 This option specifies the minimum number of

records allowed in terminal nodes, or leaves of

the tree.

numSelectedFeatures "numSelectedFeatures": 5 The Random Trees ensemble method works

by training multiple “weak” classification

trees using a fixed number of randomly

selected features then taking the mode of each

class to create a “strong” classifier. This

option controls the fixed number of randomly

selected features in the algorithm. The default

setting is 3.

num num b numWeakLearners "numWeakLearners" : 4

This option controls the number of “weak”
classification/regression models that will be

created. The ensemble method will stop when

the number of models created reaches the

value set for this option. The algorithm will

then compute the weighted sum of votes for

each class and assign the “winning”

classification to each record.

Algorithm Parameters: k-Nearest Neighbors for Classification or Regression

Parameters Option Settings or Example Explanation

includeTies "includeTies": true If includeTies = True, all points with distance

equal to kth nearest neighbor are included in

the result.

If includeTies = False, exactly k nearest

neighbors are returned.

numNeighbors "numNeighbors":3 This is the parameter k in the k-nearest

neighbor algorithm.

stable "stable":true

If stable = true, the tied neighbors (up to kth

neighbor) remain in the original order.

If stable = false, the tied neighbors (up to kth

neighbor) are in pseudo-random order.

weightingScheme "weightingScheme":

"INVERSE_DISTANCE"

Parameter Options

• EQUAL

• INVERSE_DISTANCE

Use this option to select the weighting
scheme: equal or inverse distance.

weights "weights": [1.0,2.1,...] Provides a weight variable allowing the user

to allocate a weight to each record. A record

with a large weight will influence the model

more than a record with a smaller weight.

Algorithm Parameters: Hierarchical for Clustering

Parameters Option Settings or Example Explanation

dissimilarity "dissimilarity" : "EUCLIDEAN" EUCLIDEAN -- Hierarchical clustering uses

the Euclidean Distance as the similarity

measure for working on raw numeric data.

161

When the data is binary, the remaining two

options, Jaccard's coefficients and Matching

coefficient are available.

Suppose we have binary values for all the xij

’s. See the table below for individual i’s and
j’s.

The most useful similarity measures in this

situation are:

JACCARD -- Jaccard’s coefficient =

d/(b+c+d). This coefficient ignores zero
matches.

MATCHING -- The matching coefficient = (a

+ d)/p.

linkage "linkage" : "SINGLE_LINKAGE"

Parameter Options

• CENTROID

• COMPLETE_LINKAGE

• GROUP_AVERAGE

• MCQUITTY

• MEDIAN

• SINGLE_LINKAGE

• WARD

SINGLE_LINKAGE -- One of the simplest

agglomerative hierarchical clustering methods

is single linkage, also known as the nearest

neighbor technique. The defining feature of

this method is that distance between groups is

defined as the distance between the closest

pair of objects, where only pairs consisting of

one object from each group are considered.

In this method, D(r,s) is computed as

D(r,s) = Min { d(i,j) : Where object i is in

cluster r and object j is cluster s }

Here the distance between every possible

object pair (i,j) is computed, where object i is

in cluster r and object j is in cluster s. The

minimum value of these distances is said to be

the distance between clusters r and s. In other

words, the distance between two clusters is

given by the value of the shortest link between
the clusters.

At each stage of hierarchical clustering, the

clusters r and s, for which D(r,s) is minimum,

are merged.

This measure of inter-group distance is

illustrated in the figure below:

COMPLETE_LINKAGE – This method, also

called farthest neighbor clustering method, is

the opposite of single linkage. In this
clustering method, the distance between

groups is defined as the distance between the

most distant pair of objects, one from each

group.

In the complete linkage method, D(r,s) is

computed as

D(r,s) = Max { d(i,j) : Where object i is in

cluster r and object j is cluster s }

Here the distance between every possible

object pair (i,j) is computed, where object i is
in cluster r and object j is in cluster s and the

maximum value of these distances is said to

be the distance between clusters r and s. In

other words, the distance between two clusters

is given by the value of the longest link

between the clusters.

At each stage of hierarchical clustering, the

clusters r and s, for which D(r,s) is minimum,

are merged.

The measure is illustrated in the figure below:

GROUP_AVERAGE -- Here the distance

between two clusters is defined as the average

of distances between all pairs of objects,

where each pair is made up of one object from

each group.

163

In the average linkage method, D(r,s) is

computed as

D(r,s) = Trs / (Nr * Ns)

Where Trs is the sum of all pairwise distances

between cluster r and cluster s. Nr and Ns are
the sizes of the clusters r and s respectively.

At each stage of hierarchical clustering, the

clusters r and s, for which D(r,s) is the

minimum, are merged. The figure below

illustrates average linkage clustering:

CENTROID -- With this method, groups once

formed are represented by their mean values

for each variable, that is, their mean vector,

and inter-group distance is now defined in

terms of distance between two such mean

vectors.

In the group average linkage method, the two

clusters r and s are merged such that, after

merging, the average pairwise distance within

the newly formed cluster, is minimized.

Suppose we label the new cluster formed by

merging clusters r and s, as t. Then D(r,s) ,

the distance between clusters r and s is

computed as

D(r,s) = Average { d(i,j) : Where observations

i and j are in cluster t, the cluster formed by
merging clusters r and s }

At each stage of hierarchical clustering, the

clusters r and s, for which D(r,s) is

minimized, are merged. In this case, those two

clusters are merged such that the newly

formed cluster, on average, will have

minimum pairwise distances between the

points.

WARD -- Ward (1963) proposed a clustering

procedure seeking to form the partitions Pn, P

n-1,........, P1 in a manner that minimizes the loss
associated with each grouping, and to quantify

that loss in a form that is readily interpretable.

At each step in the analysis, the union of every

possible cluster pair is considered and the two

clusters whose fusion results in the minimum

increase in 'information loss' are combined.

Information loss is defined by Ward in terms
of an error sum-of-squares criterion, ESS.

The rationale behind Ward's proposal can be

illustrated most simply by considering

univariate data. Suppose for example, 10

objects have scores (2, 6, 5, 6, 2, 2, 2, 2, 0, 0,

0) on some particular variable. The loss of

information that would result from treating the

ten scores as one group with a mean of 2.5 is

represented by ESS given by,

ESS One group = (2 -2.5)2 + (6 -2.5)2 + + (0 -

2.5)2 = 50.5

On the other hand, if the 10 objects are

classified according to their scores into four

sets,

{0,0,0}, {2,2,2,2}, {5}, {6,6}

The ESS can be evaluated as the sum of

squares of four separate error sums of squares

ESS One group = ESS group1 + ESSgroup2 + ESSgroup3

+ ESSgroup4 = 0.0

Clustering the 10 scores into 4 clusters results
in no loss of information.

MCQUITTY -- When this procedure is

selected, at each step, when two clusters are to

be joined, the distance of the new cluster to an

existing cluster is computed as the average of

the distances from the proposed cluster to the

existing cluster.

MEDIAN -- The Median Method also uses

averaging when calculating the distance

between two records or observations.
However, this method uses the median instead

of the mean.

One of the reasons why Hierarchical

Clustering is so attractive to statisticians is

that all possible clusters can be examined

visually, or in any desired way, by examining

the full dendrogram. However, there are a

few limitations.

1. Hierarchical clustering can be

computationally expensive as this method

requires computing and storing an n x n
distance matrix. If using a large dataset,

this requirement can be very slow and

require large amounts of memory.

165

2. Clusters created through Hierarchical

clustering are not very stable. If records

are eliminated, the results can be very

different.

3. Outliers in the data can impact the results
negatively.

inputDataType "inputDataType" :

"DISTANCE_MATRIX"

Parameter Options

• DISTANCE_MATRIX

• RAW_DATA

The Hierarchical clustering method can be

used on raw data as well as the data in

Distance Matrix format. Pass the appropriate

option to fit your dataset. If Raw Data is

chosen, the similarity matrix will be computed

before clustering is performed.

Algorithm Parameters: k-Means for Clustering

Parameters Option Settings or Example Explanation

maxIterations "maxIterations" : 10 This parameter limits the number of iterations

for the k-Means Clustering algorithm. Even if

the convergence criteria has not yet been met,

the cluster adjustment will stop once the limit

on # Iterations has been reached. The default
value for this option is 10.

numClusters "numclusters" : 3 This parameter controls the number of final

cohesive groups of observations (k) to be

formed. The number of clusters should be at

least 1 and at most the number of

observations-1 in the data range. This value

should be based on your knowledge of the

data and the number of projected clusters.

One can use the results of Hierarchical

Clustering or several values of K to

understand the best data partitioning level.

The default value for this option is 2.

numStarts "numStarts" : 5 If numStarts = 0, the clustering method will

start building the model with a single fixed

starting point.

If numStarts is set to a positive integer, the

algorithm will start at any random point.

Enter the number of desired starting points for

the clustering algorithm. The final result of

the K-Means Clustering algorithm depends on

the initial choice on the cluster centroids. The

clustering algorithm allows a better choice by

trying several random assignments. The best
assignment (based on Sum of Squared

Distances) is chosen as an initialization for

further K-Means iterations.

randomSeed "randomSeed" : 123 This option initializes the random number

generator that is used to assign the initial

cluster centroids. Setting the random number

seed to a nonzero value (any number of your

choice is OK) ensures that the same sequence

of random numbers is used each time the

initial cluster centroids are calculated. When

the seed is not specified or is set to zero, the

random number generator is initialized from

the system clock, so the sequence of random
numbers will be different each time the

centroids are initialized.

Algorithm Parameters: Linear Regression

Parameters Option Settings or Example Explanation

categoricalFeaturesNames "categoricalFeaturesNames": [

'X1']

Enter categorical variables by name using this

parameter.

Any non-numeric columns are automatically

considered as categorical (nominal) variables.

fitIntercept "fitIntercept": false Set "fitIntercept":false to force the intercept

term to 0. Set this option to "true", the

default, to fit the Linear Regression intercept.

weights "weights": [1.0,2.1,...] Provides a weight variable allowing the user

to allocate a weight to each record. A record

with a large weight will influence the model
more than a record with a smaller weight.

Algorithm Parameters: Latent Semantic Analysis for Text Mining

Parameters Option Settings or Example Explanation

computeConceptImportance "computeConceptImportance" :

true

If true, the Concept Importance table is

computed. This table displays the total

number of concepts extracted, the Singular

Value for each, the Cumulative Singular

Value and the % of Singular Value explained..

computeTermImportance "computeTermImportance" : true If true, the Term Importance table is

computed. This table display each term along

with its Importance as calculated by singular

value decomposition. This option is not

selected by default.

maxNumConcepts "maxNumConcepts": 4 Use this parameter to specify the maximum

number of concepts in the Scree Plot.

minPercentExplained "minPercentExplained" : 50 Identifies the concepts with singular values

that, when taken together, sum to the

minimum percentage explained, 90% is the

default.

Algorithm Parameters: TFIDF for Text Mining

Parameters Option Settings or Example Explanation

167

endPhrase "endPhrase" : "End of Chat

Transcript"

Text appearing before the first occurrence of

the Start Phrase (if used) will be disregarded

and similarly, text appearing after End Phrase

(if used) will be disregarded. For example, if

text mining the transcripts from a Live Chat

service, you would not be particularly
interested in any text appearing before the

heading “Chat Transcript” or after the heading

“End of Chat Transcript”. Thus you would

pass “Chat Transcript” for "startPhrase" and

“End of Chat Transcript” for "endPhrase".

emailToken "emailToken" : "emailToken" If NORMALIZE_EMAIL is passed for

"processing", then this term may be used to

replace email addresses appearing in the

document collection with the term entered

here. If "emailToken" is not specified, email

addresses will be replaced with the phrase:

"emailToken".

exclusiveInclusionTerms "exclusiveInclusionTerms" :

["exclusiveInclusionTerm1",

"exclusiveInclusionTerm2"]

If used, terms entered for

"exclusiveInclusionTerms" will be removed

from the document collection during pre-

processing.

exclusionTerms "exclusionTerms":["Term1",

"Term2"]

If used, terms entered for "exclusionTerms"

will be removed from the document collection

during pre-processing.

phraseReplacement
" phraseReplacement": [

["phrase1","phraseReplacement"],

["phrase2","phraseReplacement"]

]

Use this parameter to combine words into

phrases that indicate a singular meaning such

as “station wagon” which refers to a specific

type of car rather than two distinct tokens –

station and wagon.

preprocessing
"preprocessing": [

 "REMOVE_STOPWORDS",

 "NORMALIZE_CASE",

 "STEM",

 "NORMALIZE_URL",

 "NORMALIZE_EMAIL",

 "NORMALIZE_NUMBER",

 "NORMALIZE_MONEY",

 "REMOVE_HTML_TAGS"

],

Use this property to replace or remove
nonsensical terms such as HTML tags, URLs,

Email addresses, etc. from the document

collection. It’s possible to remove normalized

terms completely by including the normalized

term (for example, “emailtoken”) in the

Exclusion list.

NORMALIZE_CASE – All text will be

converted to a consistent (lower) case, so that

Term, term, TERM, etc. are all normalized to

a single token “term”.

NORMALIZE_EMAIL -- Email addresses

appearing in the document collection will be

replaced with the term, “emailtoken”.

NORMALIZE_MONEY -- Monetary

amounts will be substituted with the term,

“moneytoken”.

NORMALIZE_NUMBER -- Numbers

appearing in the document collection will be

replaced with the term, “numbertoken”.

NORMALIZE_URL -- URLs appearing in the

document collection will be replaced with the

term, “urltoken”.

REMOVE_HTML_TAGS -- HTML tags will

be removed from the document collection.

REMOVE_STOPWORDS – Over 300

commonly used words/terms (such as a, to,

the, and, etc.) will be removed from the

document collection during preprocessing.

Additional stopwords may be added or via a

text document (*.txt). Terms in the text

document can be separated by a space, a

comma, or both.

STEM -- If stemming reduced a term’s length

to 2 or less characters, Text Miner will
disregard the term.

maxDocumentFrequency
"maxDocumentFrequency": 95

Text Miner will remove terms that appear in

more than the percentage of documents

specified. The default percentage is 98%.

maxVocabulary
"maxVocabulary": 5

This parameter reduces the number of terms in

the final vocabulary to the most frequently

occurring in the collection. The default is

“1000”.

maxTermLength
"maxTermLength": 10

Text Miner will remove terms that contain a

set number of characters. This option can be

extremely useful for removing some parts of

text which are not actual English words, for

example, URLs or computer-generated tokens,
or to exclude very rare terms such as Latin

species or disease names, i.e.

Pneumonoultramicroscopicsilicovolcanoconio

sis.

moneyToken
"moneyToken" : "moneyToken"

If NORMALIZE_MONEY is passed for

"preprocessing", numbers appearing in the

document collection will be replaced with the

term, “numbertoken”.

minDocumentFrequency
"minDocumentFrequency": 5

Text Miner will remove terms that appear in

less than the percentage of documents

specified. The default percentage is 2%.

minStemmedTermLength
"minStemmedTermLength": 2

If stemming reduced a term’s length to 2 or

less characters, Text Miner will disregard the
term.

numberToken
"numberToken":"numberToken" If NORMALIZE_NUMBER is passed for

"processing", then this term may be used to

replace numbers appearing in the document

collection with the term entered here. If

"numberToken" is not specified, numbers will

be replaced with the phrase: "numberToken".

169

startPhrase "startPhrase" : "Beginning of

Chat Transcript"

Text appearing before the first occurrence of

the Start Phrase (if used) will be disregarded

and similarly, text appearing after End Phrase

(if used) will be disregarded. For example, if

text mining the transcripts from a Live Chat

service, you would not be particularly
interested in any text appearing before the

heading “Chat Transcript” or after the heading

“End of Chat Transcript”. Thus you would

pass “Chat Transcript” for "startPhrase" and

“End of Chat Transcript” for "endPhrase".

stopWordsExtraTerms
"stopWordsExtraTerms" :

["stopwords"]
Over 300 commonly used words/terms (such

as a, to, the, and, etc.) will be removed from

the document collection during preprocessing.

Additional stop words may be added to the list

using this parameter.

synonyms
"synonyms": [

 ["rootTerm1", "synonym1",

 "synonym2"],

 ["rootTerm2", "synonym1",

 "synonym2"]

],

Use this parameter to replace synonyms such

as “car”, “automobile”, “convertible”,
“vehicle”, “sedan”, “coupe”, “subcompact”,

and “jeep” with “auto”. During pre-

processing, Text Miner will replace the terms

“car”, “automobile”, “convertible”, “vehicle”,

“sedan”, “coupe”, “subcompact” and “jeep”

with the term “auto”. It is possible to add

synonyms from a text file.

urlToken
"urlToken":"urlToken" If NORMALIZE_URL is passed for

"preprocessing", URLS appearing in the

document collection will be replaced with the

term, “urlToken”.

Algorithm Parameters: ARIMA for Time Series

Parameters Option Settings or Example Explanation

autoRegressiveOrder "autoRegressiveOrder" : 1 Sets the non-seasonal Autoregressive
parameter (p).

Difference "difference" : 1 Sets the non-seasonal Difference parameter

(d).

Period "period": 12
Enter the number of periods that make up one

season.

maxIterations "maxIterations" : 5 Sets the maximum number of iterations.

movingAverageOrder "movingAverageOrder" : 2 Sets the non-seasonal Moving Average

parameter (d).

seasonalAutoRegressiveOrder "seasonalAutoRegresiveOrder": 1 Sets the seasonal Autoregressive parameter

(P).

seasonalDifference "seasonalDifference" : 1 Sets the seasonal Difference parameter (D).

seasonalMovingAverageOrder "seasonalMovingAverageOrder": 1 Sets the seasonal Moving Average parameter

(Q).

Algorithm Parameters: Lag Analysis for Time Series

Parameters Option Settings or Example Explanation

maxLag "maxLag" : 10 Sets the maximum number of lags.

minLag "minLag" : 4 Sets the minimum number of lags.

nonSeasonalLag "nonSeasonalLag": 1
Sets the nonseasonal lag.

period "period" : 12 Sets the number of periods that make up one

season.

seasonalLag "seasonalLag" : 1 Sets the seasonal lag.

Algorithm Parameters: Smoothing Methods for Time Series

Parameters Option Settings or Example Explanation

interval "interval" : 2

Included in Following Methods

Moving Average

Use this parameter to enter the window width

for the moving average smoothing method.

This parameter accepts a value of 1 up to N -1

(where N is the number of observations in the

dataset). If a value of 5 is entered for the
Interval, then the average of the last five

observations for the last smoothed point or Ft =

(Yt + Yt-1 + Yt-2 + Yt – 3 + Yt-4) / 5 will be

used. The default value is 2.

levelParam "levelParam" : 0.2

Included in Following Methods

Double Exponential

Exponential

Holt Winters Additive

Holt Winters Multiplicative

Holt Winters No Trend

Use this parameter to enter the smoothing

parameter for exponential, double exponential,

and holt winters smoothing methods. This

parameter is used in the weighted average

calculation and can be from 0 to 1. A value of

1 or close to 1 will result in the most recent

observations being assigned the largest

weights and the earliest observations being
assigned the smallest weights in the weighted

average calculation. A value of 0 or close to 0

will result in the most recent observations

being assigned the smallest weights and the

earliest observations being assigned the

largest weights in the weighted average

calculation. The default is 0.2.

Optimize "optimize": true

Included in Following Methods

Double Exponential

Exponential

Holt Winters Additive

Holt Winters Multiplicative

Holt Winters No Trend

Select this option to select the Alpha

parameter for the Exponential smoothing

method, the Alpha and Beta parameters for the

Double Exponential Smoothing method, and

the Alpha, Beta, and Gamma parameters for
the Holt Winter Smoothing method to

minimize the residual mean squared errors in

the training and validation sets. Take care

when using this feature as this option can

result in an over fit model. This option is not

turned on by default.

Period "period" : 12

Included in Following Methods

Enter the number of periods that make up one

season when using the Holt Winter Smoothing

method.

171

Holt Winters Additive

Holt Winters Multiplicative

Holt Winters No Trend

seasonalityParam "seasonalityParam" : 0.05

Included in Following Methods

Holt Winters Additive

Holt Winters Multiplicative

Holt Winters No Trend

The Holt Winters Smoothing technique

utilizes an additional seasonal parameter,
Gamma, to manage the presence of

seasonality in the data. This parameter is also

used in the weighted average calculation and

can be from 0 to 1. A value of 1 or close to 1

will result in the most recent observations

being assigned the largest weights and the

earliest observations being assigned the

smallest weights in the weighted average

calculation. A value of 0 or close to 0 will

result in the most recent observations being

assigned the smallest weights and the earliest

observations being assigned the largest
weights in the weighted average calculation.

The default is 0.05.

trendParam "trendParam" : 0.15

Included in Following Methods

Double Exponential

Holt Winters Additive

Holt Winters Multiplicative

The Double Exponential and Holt Winters

smoothing techniques include the parameter,

Beta, to contend with trends in the data. This

parameter is also used in the weighted average

calculation and can be from 0 to 1. A value of

1 or close to 1 will result in the most recent

observations being assigned the largest

weights and the earliest observations being

assigned the smallest weights in the weighted
average calculation. A value of 0 or close to 0

will result in the most recent observations

being assigned the smallest weights and the

earliest observations being assigned the

largest weights in the weighted average

calculation. The default is 0.15.

Algorithm Parameters: Binning for Transformation

Parameters Option Settings or Example Explanation

binValueOption
"binValueOption": [

 ["x4", "RANK"],

 ["x2", "MID_VALUE"]

]

Parameter Options

• MEAN

• MEDIAN

• MID_VALUE

• RANK

When method = EQUAL_COUNT, use

MEAN to replace the value of the selected

variable with the mean of the interval for the

assigned bin.

When method = EQUAL_COUNT, use
MEDIAN to replace the value of the selected

variable value with the median of the interval

for the assigned bin.

When method = EQUAL_INTERVAL, use

MID_VALUE to replace the value of the

selected variable with the mid value of the

interval for the assigned bin.

When method = EQUAL_INTERVAL or

EQUAL_COUNT, use RANK to specify the

Start value of the first bin and the Interval of

each bin. Subsequent bin values will be

calculated as the previous bin + interval value.

interval
"interval": [

 ["x2", "RIGHT_CLOSED"],

 ["x4", "CLOSED"]

]

Use this parameter to indicate whether the

interval for each variable is CLOSED [],

RIGHT_CLOSED (], or LEFT_CLOSED [).

Default is: LEFT_CLOSED [).

method
"method": [

 ["x2", "EQUAL_INTERVAL"],

 ["x4", "EQUAL_COUNT"]

]

EQUAL_COUNT -- Data is binned in such a
way that each bin contains the same number

of records. The options for the value of the

binned variable for this parameter are Rank,

Mean, and Median.
Note: There is a possibility that the number of records in

a bin may not be equal due to factors such as border

values, the number of records being divisible by the

number of bins, etc.

EQUAL_INTERVAL -- Binning procedure

will assign records to bins if the record’s value

falls in the interval of the bin. Bin intervals

are calculated by roughly subtracting the

Minimum variable value from the Maximum

variable value and dividing by the number of

bins ((Max Value – Min Value) / # bins). The
options for value of the binned variable for

this process are Rank and Mid value.

numBins
"numBins": [

 ["x2", 11],

 ["x4", 4]

]

Enter the number of desired bins for each

selected variable using this option.

rank "rank": [

 ["x4", 1.0, 5.0]

]

This parameter is available when

binValueOption is set to "RANK".

Use the "rank" parameter to specify the Start

value of the first bin and the Interval of each

bin. Subsequent bin values will be calculated

as the previous bin + interval value.

Algorithm Parameters: Canonical Variate Analysis for Transformation

 No Parameters are associated with this Transformation Method

Algorithm Parameters: Factorization for Transformation

Parameters Option Settings or Example Explanation

baseIndex
"baseIndex": [

 ["X1", 1],

 ["X3", 5]

]

Factorization converts a variable into a new

numeric, categorical variable. Use this

parameter to specify the number with which to

begin the categorization. In the example to

the left, the categorization will begin at "1" for
"X1" (1, 2, 3, 4, 5,) and "5" for "X3" (5, 6, 7,

8, 9).

173

Algorithm Parameters: Imputation for Transformation

Parameters Option Settings or Example Explanation

imputationStrategy
"imputation": [

 ["A", "MODE"],

 ["B", "MEAN"]

]

Parameter Options

• DELETE_RECORD

• MEAN

• MEDIAN

• MODE

• VALUE

Determines the strategy of the selected

variables.

Delete record - Deletes the entire record if a

missing or invalid value is found for that

variable.

Mean - All missing values in the column for

the variable specified will be replaced by the

mean - the average of the values in the

remainder of the column.

Median - All missing values in the column for

the variable specified will be replaced by the

median - the number that would appear in the

middle of the remaining column values if all

values were written in ascending order.

Mode - All missing values in the column for

the variable specified will be replaced by the
mode - the value occurring most frequently in

the remainder of the column.

Value – Use VALUE to enter a user defined

value. If used, the imputation model parameter

must be used to specify the user defined value.

placeholder
"placeholder" : [

 ["B", 1000.0],

 ["F", "unknown"],

 ["G", -1]

]

Sets the custom placeholder for missing

values in a column.

Note that integer columns may not contain

`NaN`, `null` or any other invalid value by

default, but can still specify a manual

placeholder for missing integer values. See
Imputation Model Parameters below for an

example or open the Imputation Example

from the Editor tab at RASON Examples –

Data Mining – Transformation – Imputation.

Algorithm Parameters: Linear/Logistic Wrapping for Transformation

Parameters Option Settings or Example Explanation

fIn "fIn" : 3.84 Used when method =

FORWARD_SELECTION or

STEPWISE_SELECTION

A statistic is calculated when variables are

added or eliminated. For a variable to come

into the regression, the statistic’s value must
be greater than the value for fIn (default =

3.84).

fitIntercept "fitIntercept" : true Fits the Linear/Logistic Regression intercept.

If this option is set to False, the intercept term

is forced to 0.

fOut "fOut" : 2.71 For use when method =

BACKWARD_ELIMINATION OR

STEPWISE_SELECTION.

A statistic is calculated when variables are

eliminated. For a variable to leave the
regression, the statistic’s value must be less

than the value of FOUT (default = 2.71).

maxNumSubsetsExhaustive "maxNumSubsetsExhaustive" : 3 For use when method =

EXHAUSTIVE_SEARCH.

Enter an integer value for the maximum

number of subsets.

maxSubsetSize "maxSubsetSize" : 4 Enter an integer from 1 up to N where N is the

number of variables (features) in the model.

method "method" :

"BACKWARD_ELIMINATION"

Parameter Options

• BACKWARD_ELIMINATION

• EXHAUSTIVE_SEARCH

• FORWARD_SELECTION

• SEQUENTIAL_REPLACEMENT

• STEPWISE_SELECTION

Five different selection procedures are

available for selecting the best subset of

variables.

Backward Elimination in which variables are
eliminated one at a time, starting with the least

significant. If this procedure is selected, use

the "fOut" parameter to set the statistic to

determine when a variable is to be eliminated.

Forward Selection in which variables are

added one at a time, starting with the most

significant. If this procedure is selected, use

the "fIn" parameter to set the statistic to

determine when a variable is to come into the

regression.

Sequential Replacement in which variables are
sequentially replaced and replacements that

improve performance are weights retained.

Stepwise selection is similar to Forward

selection except that at each stage, variables

that are not statistically significant may be

dropped. When this procedure is selected, the

Stepwise selection options "fIn" and "fOut"

are enabled.

Exhaustive Search where searches of all

combinations of variables are performed to
observe which combination has the best fit.

(This option can become quite time

consuming depending on the number of input

variables.) If this procedure is selected, use

"maxNumSubsetsExhaustive" to set the

maximum number of best subsets.

numTopFeatures "numTopFeatures" : 2 Model option only.

Enter a value ranging from 1 to the number of

features in the model.

175

Algorithm Parameters: One Hot Encoding for Transformation

Parameters Option Settings or Example Explanation

categoricalFeaturesNames "categoricalFeaturesNames": [

"X1"]

Enter categorical variables by name using this

parameter.

Any non-numeric columns are automatically

considered as categorical (nominal) variables.

Algorithm Parameters: PCA for Transformation

Parameters Option Settings or Example Explanation

matrixMethod "matrixMethod": "CORRELATION"

Parameter Options

• CORRELATION

• COVARIANCE

When computing Principal Components, the
data is matrix multiplied by a transformation

matrix. Use this option to specify the method

used to calculate this transformation matrix.

CORRELATION

An alternative method is to derive the

transformation matrix on the eigenvectors of

the correlation matrix instead of the

covariance matrix. The correlation matrix is

equivalent to a covariance matrix for the data

where each variable has been standardized to

zero mean and unit variance. This method
tends to equalize the influence of each

variable, inflating the influence of variables

with relatively small variance and reducing

the influence of variables with high variance.

This option is selected by default.

COVARIANCE

The covariance matrix is a square, symmetric

matrix of size n x n (number of variables by

number of variables). The diagonal elements

are variances and the off-diagonals are
covariances. The eigenvalues and

eigenvectors of the covariance matrix are

computed and the transformation matrix is

defined as the transpose of this eigenvector

matrix. If the covariance method is selected,

the dataset should first be normalized. One

way to organize the data is to divide each

variable by its standard deviation.

Normalizing gives all variables equal

importance in terms of variability.6

numPrincipalComponents "numPrincipalComponents": 2

This option is mutually exclusive with

varianceCutoff. Use either

numPrincipalComponents to select the

number of principal components displayed in

the output or varianceCutoff, but not both.

6 Shmueli, Galit, Nitin R. Patel, and Peter C. Bruce. Data Mining for Business Intelligence. 2nd ed. New Jersey: Wiley,

2010

This option specifies a fixed number of

components. Enter an integer value from 1 to

n where n is the number of Input variables in

the model.

varianceCutoff "varianceCutoff" : 0.98 This option is mutually exclusive with

numPrincipalComponents. Use either
numPrincipalComponents to select the

number of principal components displayed in

the output or varianceCutoff, but not both.

Use this option to calculate the minimum

number of principal components required to

account for the percentage of variance entered

for this option.

Algorithm Parameters: Rescaler for Transformation

Parameters Option Settings or Example Explanation

correction "correction": 0.01

Sets the "correction" option when technique =

"NORMALIZATION" or

"ADJUSTED_NORMALIZATION". See

"technique" explanation below.

excludedCols "excludedCols": ["CHAS", "MEDV"] Excludes specified columns from the data
mining method. (Array property)

normType "normType":"L1" If technique = "UNIT_NORMALIZATION",

use "normType" to set the normalization type.

"L1" normalizes the data using the Manhattan

Distance (L1-norm) while "L2" uses the
Euclidean Length (L2-norm).

technique "technique": "STANDARDIZATION" The following methods for feature scaling are:

• STANDARDIZATION makes the feature

values have zero mean and unit variance.
(x−mean)/std.dev.

• NORMALIZATION scales the data values to

the [0,1] range. (x−min)/(max−min)

The Correction option specifies a small positive

number ε that is applied as a correction to the

formula. The corrected formula is widely used in
Neural Networks when Logistic Sigmoid

function is used to activate the neurons in hidden
layers – it ensures that the data values never

reach the asymptotic limits of the activation
function. The corrected formula is

[x−(min−ε)]/[(max+ε)−(min−ε)]. To set the
Correction option use: "correction".

• ADJUSTED_NORMALIZATION scales the

data values to the [-1,1] range.

[2(x−min)/(max−min)]−1

The Correction option specifies a small positive

number ε that is applied as a correction to the
formula. The corrected formula is widely used in

177

Neural Networks when Hyperbolic Tangent
function is used to activate the neurons in hidden

layers – it ensures that the data values never
reach the asymptotic limits of the activation

function. The corrected formula is
{2[(x−(min−ε))/((max+ε)−(min−ε))]}−1. To set

the Correction option use: "correction".

•UNIT_NORMALIZATION is another

frequently used method to scale the data such
that the feature vector has a unit length. This

usually means dividing each value by the
Euclidean length (L2-norm) of the vector. In

some applications, it can be more practical to use
the Manhattan Distance (L1-norm).

Algorithm Parameters: Univariate for Transformation

Parameters Option Settings or Example Explanation

binningTypeFeatures "binningTypeFeatures":

"EQUAL_INTERVAL"

Parameter Options

• EQUAL_COUNT

• EQUAL_INTERVAL

• NONE

This parameter transforms continuous input

variables into categorical variables.

Records are assigned to the bins based on the

variable’s value. Use EQUAL_INTERVAL,

if the value falls within the interval of the bin,

or EQUAL_COUNT, if there is an equal

number of records in each bin. These settings

will be applied to each continuous variable in
the model. If NONE is selected, the variable

will not be discretized.

binningTypeTarget "binningTypeTarget":

"EQUAL_COUNT"

Parameter Options

• EQUAL_COUNT

• EQUAL_INTERVAL

• NONE

This parameter transform a continuous output

variable into a categorical variable.

Records are assigned to the bins based on the

variable’s value. Use EQUAL_INTERVAL,

if the value falls within the interval of the bin,

or EQUAL_COUNT, if there is an equal

number of records in each bin. If NONE is

selected, the variable will not be discretized.

categoricalFeaturesNames categoricalFeaturesNames: ['X1'

]

Enter categorical variables by name using this

parameter.

Any non-numeric columns are automatically

considered as categorical (nominal) variables.

categoricalTarget "categoricalTarget" : true

True – Setting this option to "true" denotes

that the Output Variable is a categorical

variable.

False – Setting this option to "false" denotes

that the Output Variable is a continuous

variable.

metric "metric" : "CHI2"

Parameter Options

• CHI2

Use this parameter to compute the desired

metric for Feature Selection.

CHI2 -- Used to assess the statistical
independence of two events. When applied to

• CRAMERSV

• FISHER

• FTEST

• GAINRATIO

• GINI

• KENDALL

• MUTUALINFO

• PEARSON

• SPEARMAN

• WELCH

Feature Selection, it is used as a test of

independence to assess whether the assigned

class is independent of a particular variable.

The minimum value for this statistic is 0. The

higher the Chi-Squared statistic, the more

independent the variable.

CRAMERSV -- Variation of the Chi-Squared

statistic that also measures the association

between two discrete nominal variables. This

statistic ranges from 0 to 1 with 0 indicating

no association between the two variables and

1 indicating complete association (the two

variables are equal).

FISHER -- Variation of the F-Statistic. It chooses (or

assigns higher values) to variables that assign similar

values to samples from the same class and different

values to samples from different classes. The larger the
Fisher Score value, the more relevant or important the

variable (or feature).

FTEST -- Tests the hypothesis of at least one sample

mean being different from other sample means

assuming equal variances among all samples. If the

variance between the two samples is large with respect

to the variance within the sample, the F statistic will be

large. Specifically for Feature Selection purposes, it is

used to test if a particular feature is able to separate the

records from different target classes by examining

between-class and within-class variances.

GAINRATIO -- Ranging from 0 and 1, is

defined as the mutual information (or

information gain) normalized by the feature

entropy. This normalization helps address the

problem of overemphasizing features with

many values but the normalization results in

an overestimate of the relevance of features

with low entropy. It is a good practice to

consider both mutual information and gain

ratio for deciding on feature rankings. The

larger the gain ratio, the larger the evidence
for the feature to be relevant in a classification

model.

GINI -- Measures a variable’s ability to distinguish

between classes. The maximum value of the index for

binary classification is 0.5. The smaller the Gini index,

the more relevant the variable.

KENDALL -- Also known as Kendall’s tau coefficient,

is also used to measure the level of association

between two variables. A tau value of +1 signifies

perfect agreement and a -1 indicates complete
disagreement. If a variable and the outcome variable

are independent, then one could expect the Kendall tau

to be approximately zero.

179

MUTUALINFO -- The degree of a variables’

mutual dependence or the amount of

uncertainty in variable 1 that can be reduced

by incorporating knowledge about variable

2. Mutual Information is non-negative and is

equal to zero if the two variables are
statistically independent. Mutual Info is

always less than the entropy (amount of

information contained) in each individual

variable.

PEARSON -- A widely used statistic that

measures the closeness of the linear

relationship between two variables, with a

value between +1 and −1 inclusive, where 1

indicates complete positive correlation, 0

indicates no correlation, and −1 indicates

complete negative correlation.

SPEARMAN -- A nonparametric measure

that assesses the relationship between two

variables. This measure calculates the

correlation coefficient between the ranked

values of the two variables. If data values are

repeated, the Spearman rank correlation

coefficient will be +1 or -1, if each of the

variables is a perfect monotone (or non-

varying) function of the other.

WELCH -- A two-sample test (i.e. applicable
for binary classification problems) that is

used to check the hypothesis that two

populations with possibly unequal variances

have equal means. When used with the

Feature Selection tool, a large T-statistic

value (in conjunction with a small p-value)

would provide sufficient evidence that the

Distribution of values for each of the two

classes are distinct and the variable may have

enough discriminative power to be included

in the classification model.

numBinsFeatures "numBinsFeatures": 5 Sets the maximum number of bins for the
input variables.

numBinsTarget "numBinsTarget": 3 Sets the maximum number of bins for the

target (output) variable.

Transform ("transformer")
The "transformer" object is used to differentiate the algorithms that do not have a model, i.e. they do not

implement the "fit" interface or extract any type of model. Rather, these algorithms implement the "transform"

interface (only) by operating directly on the data to produce transformed data which can serve as input to other

data mining methods. Since no data is stored (i.e. data in, data out), transformation algorithms are represented

by a single object, for example: dataFrame df = Sampler::transform(data).

Data mining algorithms that do not "fit" a model are: Partitioning, Sampling, Big Data (Sampling and

Summarizing), Association Rules and Feature Selection.

transformer: {

 mySampler: {

 type: 'transformation',

 algorithm: 'sampling',

 parameters: {

 sampleSize: 4,

 replaceOption: false,

 sortIndexes: false,

 seed: 123

 }

 }

 },

The following properties are available for use in this section.

Property Example Definition

algorithm "algorithm": "associationRules"

Available option settings will vary depending

on the type setting. Use this property to specify

the algorithm to be used to perform the

transformation. See the chart below for all

options.

parameters "parameters" : {

 method: 'M1_BREIMAN',

 numWeakLearners: 2,

 resamplingSeed: 10

}

Available parameter settings will vary

depending on the algorithm setting. Use this

property to set parameter values or turn

parameters on or off using "true" or "false". For

a full list of parameters, see below.

type "type":"transformation"

Parameter Options

• affinityAnalysis

• bigData

• featureSelection

• transformation

Use this property to specify the type of

transformative algorithm to be applied: affinity

analysis, big data, feature selection, or

transformation.

The chart below contains the available options for "algorithm" based on the "type" argument.

If "type" = Algorithm option settings Definition

affinityAnalysis "algorithm" : "associationRules" Runs Association Rules method.

bigData "algorithm" : "sampling"

Parameter Options

"sampling" – Use to sample from Big Data.

"summarization" – Use to summarize from

Big Data.

181

• sampling

• summarization

featureSelection "algorithm": "univariate "

Parameter Options

• linearWrapping

• logisticWrapping

• univariate

"univariate" – Performs Feature Analysis

by ranking variables according to one or

more univariate measures.

"linearWrapping" – Performs Feature
Selection (on a continuous output variable)

using Linear Wrapping.

"logisticWrapping" - Performs Feature

Selection (on a categorical output variable)

using Logistic Wrapping.

transformation "algorithm" : "sampling"

Parameter Options

• categoryReduction

• oversamplePartitioning

• partitioning

• sampling

• stratifiedSampling

"categoryReduction" – Converts a string

variable into a new numeric, categorical

variable.

"oversamplePartitioning"- Partitioning

allowing oversampling.

"partitioning" – Partitioning where every

observation in the main dataset has equal

probability of being selected for the

partition dataset.

"sampling" – Draws a representative

sample from a dataset.

"stratifiedSampling" - The population is

first divided into groups of similar items,

called strata. Each stratum, in turn, is

sampled using simple random sampling.

These samples are then combined to form a
stratified random sample.

The chart below contains the available options for "parameters" based on the "algorithm" argument.

Algorithm Parameters: Association Rules for Affinity Analysis

Property Example Definition

method
"method": "T_TREE"

Parameter Options

• APRIORI

• T_TREE

APRIORI – Use this option to use the

APRIORI algorithm to find all frequent item

sets in a database.

T_TREE – Use this option to use the T-Tree

algorithm to find all frequent item sets in a

database.

minSupport
"minSupport": 0.1

Specify the minimum number of transactions

in which a particular item-set must appear for
this set to qualify for inclusion in an

association rule here. The default value is

10% of the total number of rows.

Algorithm Parameters: Common Sampling Options for Big Data

Property Example Definition

async "async": true Submits Big Data job asynchronously. Get

Job ID for later retrieval.

awsS3 "awsS3": true If data source is Amazon S3 (AWS S3), set

this option to true.

awsS3AccessKey
"awsS3AccessKey": "<AWS S3

access key>"
Passes the Amazon S3 access key.

awsS3SecretKey
"awsS3SecretKey": "<AWS S3

secret key>"
Passes the Amazon S3 secret key.

dataFormat
"dataFormat":"PARQUET"

If data is in Apache Parquet format, use

"PARQUET" for this option. If your data is in

Delimited Text format, USE "CSV".

If "dataformat: "CSV", use

"headerExists":true (the default) to specify

that the first row in your dataset contains

headers. Use "delimiter" property to specify

the delimiter used in the CSV file.

delimiter
"delimiter": ";"

Parameter Options

• Comma - ","

• Other - "<other>"

• Semicolon - ";"

• Space - ""

• Tab – "\t"

Use this option to specify the delimiter used in

the CSV file.

fileLocation
"fileLocation": "<file location
URL - hdfs://..., s3n://...>"

Enter the location of the Big Data file here.

headerExists

header

"headerExists": true

"header": true
Set to True by default. This option indicates

that the first row in the CSV file includes file

headings.

jobID
"jobID": '<job ID of previously

submitted async job>'
Enter the ID of the previously submitted async

job.

selectedVariables
"selectedVariables": ['Var1',

'Var2', 'Var3']
Variables passed to this parameter will be

included in the sample.

sparkServer
"sparkServer": "<endpoint for

Spark cluster>"
Use this option to enter the endpoint for the

Apache Spark cluster. Note: port for the
Spark REST server must be 8090'.

Algorithm Parameters: Sampling for Big Data

Property Example Definition

randomSeed "randomSeed": 123 Sets the desired sorting seed here. Setting the

random number seed to a nonzero value

ensures that the same sequence of random

numbers is used each time the dataset is

chosen for sampling. The default seed is

12345.

183

sampleFraction "sampleFraction":0.01

This is the expected size of the sample as a

fraction of the dataset's size.

If "withReplacement": true, the value for

"sampleFraction" must be greater than 0.

If "withReplacement": false, the setting for

"sampleFraction" becomes the probability that

each element is chosen. As a result,

"sampleFraction" must be between 0 and 1.

sampleSize
"sampleSize": 100

Sets the desired sample size here. (Note that

the actual sample size in the output may vary

a little, depending on additional options

selected.)

samplingType
"samplingType": APPROXIMATE

Parameter Options

• "APPROXIMATE"

• "EXACT"

"APPROXIMATE" -- When this option is

selected, the size of the resultant sample will

be determined by the value entered for

"sampleFraction".

"EXACT" -- When this option is selected, a

fixed – size sampled subset of data,

determined by "sampleSize", is returned.

trackRowID
"trackRowID":true If this option is set to "true", data records in

the resulting sample will carry the ordinal IDs

corresponding to the original data records.

Note: Selecting this option may significantly

increase running time.

withReplacement
"withReplacement": true

If this option is set to "true" the data will be

sampled with replacement. The default is

sampling without replacement
("withReplacement": false).

Algorithm Parameters: Summarization

Property Example Definition

aggregationType "aggregationType": "SUM"

Parameter Options

• "AVG"

• "MAX"

• "MIN"

• "STDDEV"

• "SUM"

This option provides 5 statistics that can be

inferred from the dataset: sum, average,

standard deviation, minimum and maximum.

computeGroupCounts "computeGroupCounts" : true Use this option when 1 or more Grouping

Variables exist. When this option is set to

"true", the number of records belonging to

each group is computed and reported.

groupingVariables "groupingVariables": ['Var1'] Use this option to specify a grouping

variable(s).

Algorithm Parameters: Linear/Logistic Wrapping for Transformation

Parameters Option Settings or Example Explanation

categoricalFeaturesNames categoricalFeaturesNames: ['X1'

]

Enter categorical variables by name using this

parameter.

Any non-numeric columns are automatically

considered as categorical (nominal) variables.

fIn "fIn" : 3.84 Used when method =

FORWARD_SELECTION or

STEPWISE_SELECTION

A statistic is calculated when variables are

added or eliminated. For a variable to come

into the regression, the statistic’s value must
be greater than the value for FIN (default =

3.84).

fitIntercept "fitIntercept" : true Fits the Linear/Logistic Regression intercept.

If this option is set to False, the intercept term

is forced to 0.

fOut "fOut" : 2.71 For use when method =

BACKWARD_ELIMINATION OR

STEPWISE_SELECTION.

A statistic is calculated when variables are

eliminated. For a variable to leave the

regression, the statistic’s value must be less

than the value of FOUT (default = 2.71).

maxNumSubsetsExhaustive "maxNumSubsetsExhaustive" : 3 For use when method =

EXHAUSTIVE_SEARCH.

Enter an integer value for the maximum

number of subsets.

maxSubsetSize "maxSubsetSize" : 4 Enter an integer from 1 up to N where N is the

number of variables (features) in the model.

method "method" :

"BACKWARD_ELIMINATION"

Parameter Options

• BACKWARD_ELIMINATION

• EXHAUSTIVE_SEARCH

• FORWARD_SELECTION

• SEQUENTIAL_REPLACEMENT

• STEPWISE_SELECTION

Five different selection procedures are

available for selecting the best subset of

variables.

Backward Elimination in which variables are

eliminated one at a time, starting with the least

significant. If this procedure is selected, use
the FOUT parameter to set this statistic.

Forward Selection in which variables are

added one at a time, starting with the most

significant. If this procedure is selected, use

the fIn parameter to set this statistic.

185

Sequential Replacement in which variables are

sequentially replaced and replacements that

improve performance are weights retained.

Stepwise selection is similar to Forward

selection except that at each stage, variables
that are not statistically significant may be

dropped. Use the fIn and fOut parameters to

set these statistics.

Exhaustive Search where searches of all

combinations of variables are performed to

observe which combination has the best fit.

(This option can become quite time

consuming depending on the number of input

variables.) If this procedure is selected, use

maxSubsetSize to set the maximum subset

size.

maxIterations "maxIterations":5 For Logistic Wrapping Only

Sets the maximum number of iterations.

weights "weights": [1.0,2.1,...] Provides a weight variable allowing the user

to allocate a weight to each record. A record

with a large weight will influence the model

more than a record with a smaller weight.

Algorithm Parameters: Sampling/Stratified Sampling for Transformation

Property Example Definition

replaceOption "replaceOption":false Set this option to "true" to sample with

replacement. The default is sampling without

replacement.

sampleSize "sampleSize":100 Enter the desired sample size here. (Note that

the actual sample size in the output may vary
from the number entered here, depending on

additional options selected.)

Seed "seed":123 Enter the desired sorting seed here. The

default seed is 12345.

sortIndexes "sortIndexes":true When this option is set to "true", the data is

sorted using the simple random sampling

technique, taking into account the additional

parameter settings.

stratificationMethod "stratificationMethod":"PROPORTI

ONAL"

Parameter Options

• "EQUAL_SIZE"

• "PROPORTIONAL"

PROPORTIONAL -- Detects the proportion

of each stratum in the dataset and maintains

the same in sampling. At time, the sample size

must be increased in order to maintain the

proportionate stratum size.

EQUAL_SIZE -- Generates a sample using

the same number of records from each

stratum. The number passed for

"stratumSampleSize" automatically decides

the desired sample size.

stratumSampleSize "stratumSampleSize":10 Sets desired stratum sample size.

Algorithm Parameters: Partitioning for Transformation

Property Example Definition

partitionMethod "partitionMethod":"RANDOM"

Parameter Options

• MANUAL

• RANDOM

• SEQUENTIAL

MANUAL – Use this option when

partitioning the dataset using a partition

variable. (See partitionVariables below.)

RANDOM – Use

"partitionMethod":"RANDOM" to perform

standard random sampling, where random

observations are selected to be included in the

training, validation, and test sets.

SEQUENTIAL – use "partitionMethod":

"SEQUENTIAL" to perform sequential

partitioning.

partitionVariable partitionVariable: ["t", "t",

"t", "v", "v", "v", "s", "s"]

When "partitionMethod" = "Manual", the

partition variable specified is used to partition

the dataset which serves as a flag for writing

each observation to the appropriate
partition(s). This is useful when you have

already predetermined the observations to be

used in the training, validation, and/or test

sets. This partition variable takes the value: "t"

for training, "v" for validation and "s" for test.

Rows with any other values in the Partition

Variable column are ignored.

ratios
"ratios": [

 ["Training", 0.5],

 ["Validation", 0.3],

 ["Testing", 0.2]

]

Specify the percentages for the training set,

validation set and test sets.

seed "seed":123 Random partitioning uses the system clock as

a default to initialize the random number seed.

By default, this option is selected to specify a

seed for random number generation for the

partitioning. Setting this option will result in
the same records being assigned to the same

set on successive runs. The default seed entry

is 12345.

Algorithm Parameters: Oversample Partitioning for Transformation

Property Example Definition

seed "seed":123 Random partitioning uses the system clock as

a default to initialize the random number seed.

This option is not selected by default. Setting

this option will result in the same records

187

being assigned to the same set on successive

runs. The default seed entry is 12345.

successClass "successClass":"1" Select the success value for the output

variable here (i.e. 0 or 1 or “yes” or “no”).

successRatioInTraining "successRatioInTraining":0.5 Sets the percentage of successes to be

assigned to the training set. The default is

50%. With the default setting, 50% of the
successes will be assigned to the training set

and 50% will be assigned to the validation set.

testRatioFromValidation "testRatioFromValidation":0.1 If a test set is desired, specify the percentage

of the validation set that should be allocated to

the test set using this option.

Algorithm Parameters: SyntheticDataGenerator for Transformation

Property Example Definition

Metalog Distribution Fitting Options

computeMetalogCurves “computeMetalogCurves”: true Set computeMetalogCurves to true to compute

Metalog PDF curves the selected Metalog

distribution for all columns.

metalogAuto “metalogAuto”: true

“metalogAuto”: false

If False, RASON Decision Services attempts

to fit the Metalog distribution with the

specified number of terms.

If True, Rason Decision Services will attempt

to fit all possible Metalog distributions, with

the number of terms limited by the specified

value, and select the best Metalog distribution

according to the chosen Goodness-of-Fit test.

MetalogGoodnessOfFitType
"metalogGoodnessOfFitType": [

 ["CRIM", "CHI_SQUARE"],

 ["ZN","KOLMOGOROV_SMIRNOFF"],

 ["INDUS", "ANDERSON_DARLING"],

 ["NOX", "AIC"],

 ["RM", "AICc"],

 ["DIS", "BIC"],

 ["AGE", "BICc"],

 ["TAX", "MAX_LIKELIHOOD"],

],

Type = CHI_SQUARE,

KOLMOGOROV_SMIRNOV,

ANDERSON_DARLING, AIC, BIC, AICc,

BICc, MAX_LIKELIHOOD

The Goodness of Fit test is used to select the

best Metalog form for each column among the

candidate distributions defined by a different

number of terms, from 2 to the value passed

for NumMetalogTerms. The default

Goodness-of-Fit test is Anderson-Darling.

XLMiner SDK offers the following Goodness

of Fit Tests:

• Chi Square – Uses the chi-square statistic

to rank the distributions. Sample data is

first divided into intervals using either

equal probability, then the number of

points that fall into each interval are

compared with the expected number of

points in each interval. The null

hypothesis is rejected using a 90%

significance level, if the chi-squared test

statistic is greater than the critical value

statistic.

• Kolmogorov-Smirnoff –This test
computes the difference (D) between the

continuous distribution function (CDF)

and the empirical cumulative distribution

function (ECDF). The null hypothesis is

rejected if, at the 90% significance level,

D is larger than the critical value statistic.

• [Default] Anderson -Darling –Ranks the

fitted distributions using the Anderson

Darling statistic, A2 . The null hypothesis

is rejected using a 90% significance level,
if A2 is larger than the critical value

statistic. This test awards more weight to

the distribution tails then the

Kolmogorov-Smirnoff test.

• AIC – The AIC test is a Chi Squared test

corrected for the number of distribution

parameters and sample size. AIC = Chi-

Square Statistic + 2 * k + 2 * k * (k + 1) /

(n – k – 1) where k is the number of

distribution parameters and n is the

sample size.

• AICc –When the sample size is small,

there is a significant chance that the AIC

test will select a model with many

parameters. In other words, AIC will

overfit the data. AICc was developed to

reduce the possibility of overfitting by

applying a penalty to the number of

parameters. Assuming that the model is

univariate, is linear in the parameters and

has normally distributed residuals, the

formula for AICc is: AICc = AIC + 2𝑘

2+2𝑘 𝑛−𝑘−1 where n = sample size, k = #

of parameters. As the sample size

approaches infinity, the penalty on the

number of parameters converges to 0

resulting in AICc converging to AIC.

• BIC – The Bayesian information criterion

(BIC) is defined as: BIC = k ln(n) = 2 ln

(𝐿̂) where 𝐿̂ = the maximized value of the

likelikhood function of the model M. 𝐿̂ =

𝑝(𝑥|𝜃, 𝑀) where 𝜃 are the parameter

values that maximize the likelihood

function and x is the observed data. n =

Sample size k = Number of parameters

189

BICc – The BICc is the alternative

version of BIC, corrected for the sample

size BICc = BIC + 2 * p * (p + 1) / (n – p

- 1)

• Maximum Likelihood (ML) – The
(negated) raw value of the estimated

maximum log likelihood utilized in tests

described above.

metalogLowerBound[colname,

lowerBound]

"metalogLowerBound": [

 ["CRIM", 0.00632],

 ["ZN", 0],

 ["INDUS", 0.46],

 ["NOX", 0.385],

 ["RM", 3.561],

 ["DIS", 1.1296],

 ["AGE", 2.9],

 ["TAX", 187],

 ["PTRATIO", 12.6],

 ["B", 0.32],

 ["LSTAT", 1.73],

 ["MEDV", 5]

],

Manually sets the lower bound for the

Metalog distribution

metalogUpperBound[colname,

lowerBound]

"metalogUpperBound": [

 ["ZN", 100],

 ["INDUS", 27.74],

 ["NOX", 0.871],

 ["RM", 8.78],

 ["DIS", 12.1265],

 ["AGE", 100],

 ["TAX", 711],

 ["PTRATIO", 22],

 ["B", 396.9],

 ["LSTAT", 37.97],

 ["MEDV", 50]

],

Manually sets the upper bound for the

Metalog distribution

numMetalogTerms "numMetalogTerms": [

 ["CRIM", 5],

 ["ZN", 5],

 ["INDUS", 5],

 ["NOX", 5],

 ["RM", 5],

 ["DIS", 5],

 ["AGE", 5],

 ["TAX", 5],

 ["PTRATIO", 5],

 ["B", 5],

 ["LSTAT", 5],

 ["MEDV", 5]

If “metalogAuto”: false, sets the number of

terms for the Metalog Distributions

If metalogAuto”: true, sets the max number of

terms for the Metalog distribution for a given

column.

],

UseMinMaxAsBounds
UseMinMaxAsBounds = True

UseMinMaxAsBounds = False

True sets the lower/upper bounds as

minimum/maximum of each variable.
However, if a lower or upper bound is

manually set, RASON Decision Services will

give priority to the manually set bounds while

keeping the minimum/maximum for those

variables where the bounds were not set

manually. In other words, if a bound has been

set manually, UseMinMaxAsBounds will not

overwrite the existing bound.

Correlation Fitting Options

CorrelationType “CorrelationType”: “None”

“CorrelationType”: “RANK”

“CorrelationType”: “COPULA”

Example: The priority of the copulas given in the

example code below is 1. Clayton, 2. Frank, 3.

Gumbel, 4. Gauss and 5. Student (order as listed).

“claytonCopula”: true

“frankCopula”: true

“gumbelCopula”: true

“gaussCopula”: true

“studentCopula”: true

Use CorrelationType to fit a correlation

between the variables. If this option is set to

“None”, then no correlation fitting will be

performed.

Otherwise, there are two options for

correlation fitting: rank and copula.

If Rank is selected, Spearman rank order
correlation will be used to fit a correlation

matrix for all columns. To select Rank use:
“CorrelationType”: “RANK”.

If Copula is selected, correlation will be fit

using specified copulas. To select a Copula

use: “CorrelationType”:

“COPULA”.

o If “CorrelationType”:

“COPULA”, then copulas may be

specified by setting the individual

copula to true. If multiple copulas are
selected, the first successfully fit copula

will be used in the sample generation.

RASON Decision Services

offers 5 types of copulas:

• STUDENT

• CLAYTON

• FRANK

• GUMBEL

• GAUSS

191

Generating Data Options

randomGeneratorType “randomGeneratorType”: <Type>

Type = HDR, LECUYER_CMRG,

MERSENNE_TWISTER, PARK_MILLER,

WELL

"randomGeneratorType": "HDR"

"randomGeneratorType":

"PARK_MILLER"

"randomGeneratorType":

"LECUYER_CMRG"

"randomGeneratorType": "WELL"

"randomGeneratorType":

"MERSENNE_TWISTER"

Use this option to select a random number

generation algorithm. RASON Decision

Services includes an advanced set of random

number generation capabilities.

Computer-generated numbers are never truly
“random,” since they are always computed by

an algorithm – they are called pseudorandom

numbers. A random number generator is

designed to quickly generate sequences of

numbers that are as close to being statistically

independent as possible. Eventually, an

algorithm will generate the same numbers

seen sometime earlier in the sequence, and at

this point the sequence will begin to repeat.

The period of the random number generator is

the number of values it can generate before
repeating.

A long period is desirable, but there is a

tradeoff between the length of the period and

the degree of statistical independence

achieved within the period. Hence, RASON

Decision Services offers a choice of five

random number generators:

o Park-Miller (PARK_MILLER)“Minimal”

Generator with Bayes-Durham shuffle

and safeguards. This generator has a

period of 231-2. Its properties are good,

but the following choices are usually

better.

o Combined Multiple Recursive Generator

of L’Ecuyer (LECUYER_CMRG). This

generator has a period of 2191, and

excellent statistical independence of

samples within the period.

o Well Equidistributed Long-period Linear

(WELL) generator of Panneton, L’Ecuyer

and Matsumoto. This generator combines

a long period of 21024 with very good

statistical independence.

o Mersenne Twister (default setting -

MERSENNE_TWISTER) generator of

Matsumoto and Nishimura. This

generator has the longest period of 219937-

1, but the samples are not as “equidistrib-

uted” as for the WELL and L-Ecuyer-

CMRG generators.

o The HDR Random Number Generator

(HDR), designed by Doug Hubbard.

Permits data generation running on

various computer platforms to generate

identical or independent streams of

random numbers.

randomSeed “randomSeed”: N, where N is any positive

integer

“randomSeed”: = 12345,

Setting the random number seed to a nonzero

value (any number of your choice is OK)

ensures that the same sequence of random

numbers is used for each simulation. When

the seed is zero or RandomSeed is not

specified, the random number generator is
initialized from the system clock, so the

sequence of random numbers will be different

in each simulation. Set the seed to ensure that

the results from one simulation to another are

strictly comparable.

randomStream “RandomStreamType”: <type>

Type = INDEPENDENT or SINGLE

"randomStreamType": "SINGLE"

"randomStreamType": "INDEPENDENT"

Use this option to select a Single Stream or an

Independent Stream (the default) for each

variable.

If Single Stream is selected, a single sequence

of random numbers is generated. Values are

taken consecutively from this sequence to
obtain samples for each selected variable.

This introduces a subtle dependence between

the samples for all distributions in one trial.

In many applications, the effect is too small to

make a difference – but in some cases, better

results are obtained if independent random

number sequences (streams) are used for each

distribution in the model. RASON Decision

Services offers this capability for Monte Carlo

sampling and Latin Hypercube sampling; it

does not apply to Sobol numbers.

samplingMethod “SamplingMethodType”: <type>,

Type = MONTE_CARLO,

LATIN_HYPERCUBE, SOBOL_RQMC

"samplingMethodType":

"MONTE_CARLO"

"samplingMethodType":

"LATIN_HYPERCUBE"

"samplingMethodType": "SOBOL_RQMC

Use this option to select Monte Carlo, Latin
Hypercube, or Sobol RQMC sampling.

o Monte Carlo: In standard Monte Carlo

sampling, numbers generated by the

chosen random number generator are used

directly to obtain sample values. With

this method, the variance or estimation

error in computed samples is inversely

proportional to the square root of the

number of trials (controlled by the Sample

Size); hence to cut the error in half, four

times as many trials are required.

193

 RASON provides two other sampling methods

than can significantly improve the ‘coverage’

of the sample space, and thus reduce the

variance in computed samples. This means

that you can achieve a given level of accuracy

(low variance or error) with fewer trials.

o Latin Hypercube (default): Latin

Hypercube sampling begins with a

stratified sample in each dimension (one

for each selected variable), which

constrains the random numbers drawn to

lie in a set of subintervals from 0 to 1.

Then these one-dimensional samples are

combined and randomly permuted so that

they ‘cover’ a unit hypercube in a

stratified manner.

o Sobol RQMC (Randomized QMC). Sobol

numbers are an example of so-called

“Quasi Monte Carlo” or “low-discrepancy

numbers,” which are generated with a

goal of coverage of the sample space

rather than “randomness” and statistical

independence. A “random shift” is added

to Sobol numbers, which improves their

statistical independence.

sampleSize “sampleSize”: N, where N is any positive

integer

“sampleSize”: = 10

Use this option to set the size of the generated

sample. The default is 100.

Algorithm Parameters: Category Reduction for Transformation

Property Example Definition

numCategories
"numCategories":[

 ['X1', 3],

 ['X3', 2]

]

This utility helps you create a new categorical

variable that reduces the number of categories.

You can reduce the number of categories “by

frequency” or “manually”.

Actions ("actions")
Within the object "actions", user-defined attributes define action objects with the following properties: "data",
"estimator", "model", "action", "parameters", "evaluations". An example of the action "nnpModel" (appearing

in the Regression – NeuralNetwork.json RASON example on RASON.com) is shown below.

actions: {

"nnpModel": {

 "trainData": 'myTrainData',

 "estimator": 'nnpEstimator',

 "action": "fit",

 "evaluations": [

 "trainingLog",

 "neuronWeights",

 "numEpochsUsed",

 "trainingTime",

 "stoppingReason",

 "partitionCausedStopping"

]

 },

}

In the code snippet above, the action, nnpModel, fits a model using the nnpEstimator to the "myTrainData"

dataset. The results requested are: the training log (trainingLog), the neuron weights (neuronWeights), the

number of epochs (numEpochsUsed), the solving time (trainingTime), the reason for stopping (stoppingReason)

and the partition causing the stopping (partitionCausedStopping).

Evaluation results may either be 1. Part of the RASON response or 2. Bound to a writable datasource. In the

example below, "regressionSummary" and "influenceDiagnostics" are part of the RASON response while

"anova" and "detailedCoefficients" are bound to writable datasources, expANOVA and expDetCoeff,

respectively.

"evaluations": [

 {"name": "anova",

 "binding": "expANOVA"

 },

 "regressionSummary",

 "influenceDiagnostics",

 {

"name":"detailedCoefficients",

 "binding": "expDetCoeff"

 }

]

The properties for the "actions" object are:

 Property Example Definition
data/trainData/validData "trainData": "myTrainData" This property may be used interchangeably

with the property, "data". In some

algorithms, it is possible to provide both

"trainData" and "validData" i.e. for

classification and regression algorithms.

estimator "estimator": "nnpEstimator" Used to reference the estimator defined in

the "estimator" stage. For more information

on this stage, see the Estimator section

above.

action "action":"fit"

Parameter Options

• forecast

• fit

• predict

• transform

Defines an "action" to be performed such as

fit, predict, transform, or forecast. The first

action, fit, fits the model given an estimator

and training data. The remaining actions,

predict, transform , and forecast, apply the

195

fitted model to further operations on

partitions or new data.

fittedModel "fittedModel":"lrModel" Used when scoring a model, this property is

used to reference the model generated inside

of the "model" object. For more information

on scoring, see the example below.

parameters parameters: {

 numForecasts: 7

 }

The selection for this property depends on

the "model" or "estimator" selected.

Different values for scoring may be used

when scoring multiple datasets using the

same model.

evaluations "evaluations": [

 {"name": "anova",

 "binding": "expANOVA"

 },

 "regressionSummary",

 "influenceDiagnostics",

 {

"name":"detailedCoefficients",

 "binding": "expDetCoeff"

 }

]

The selection for this property depends on

the "model" or "estimator" selected.

In the example to the left,

"regressionSummary" and

"influenceDiagnostics" are part of the

RASON response while "anova" and

"detailedCoefficients" are bound to writable

datasources, expANOVA and expDetCoeff,

respectively.

The Model parameters described in the tables below are available for each corresponding algorithm.

Model Parameters: Association Rules

 Parameter Example Definition

minConfidence
"minConfidence": 0.4

A value entered for this option specifies
the minimum confidence threshold for

rule generation. If A is the set of

Antecedents and C the set of

Consequents, then only those A =>C

("Antecedent implies Consequent") rules

will qualify, for which the ratio (support

of A U C) / (support of A) is greater than

or equal to. The default setting is 50.

Model Parameters: Bagging – Classification and Regression

 Parameter Example Definition

successClass "successClass":"1" For classification models only.

Select the class to be considered a “success”
or the significant class. This option is only

supported when the number of classes in the

output variable is equal to 2.

successProbability "successProbability":0.6 For classification models only.

Enter a value between 0 and 1 for this option

to denote the cutoff probability for success. If

the calculated probability for success for an

observation is greater than or equal to this

value, than a “success” (or a 1) will be

predicted for that observation. If the

calculated probability for success for an

observation is less than this value, then a
“non-success” (or a 0) will be predicted for

that observation. The default value is 0.5.

This option is only supported when the

number of classes is equal to 2.

Model Parameters: Big Data – Sampler

There are no model parameters associated with this feature.

Model Parameters: Big Data – Summarizer

There are no model parameters associated with this feature.

Model Parameters: Binning

Parameters Option Settings or Example Explanation

binValueOption binValueOption: [

 ['x4', 'RANK'],

 ['x2', 'MID_VALUE']

]

Parameter Options

• MEAN

• MEDIAN

• MID_VALUE

• RANK

When method = EQUAL_INTERVAL,

use MID_VALUE to replace the value of

the selected variable with the mid value

of the interval for the assigned bin.

When method = EQUAL_INTERVAL

OR EQUAL_COUNT, use RANK to
specify the Start value of the first bin and

the Interval of each bin. Subsequent bin

values will be calculated as the previous

bin + interval value.

When method = EQUAL_COUNT, use

MEAN to replace the value of the

selected variable with the mean of the

interval for the assigned bin.

When method = EQUAL_COUNT, use

MEDIAN to replace the value of the
selected variable value with the median of

the interval for the assigned bin.

rank rank: [

 ['x4', 1.0, 5.0]

]

This parameter is available when

binValueOption is set to "RANK".

Use the "rank" parameter to specify the

Start value of the first bin and the Interval

of each bin. Subsequent bin values will

be calculated as the previous bin +

interval value.

Model Parameters: Boosting – Classification and Regression

 Parameter Example Definition

197

successClass "successClass":"1" For classification models only.

Select the class to be considered a “success”

or the significant class. This option is only

supported when the number of classes in the

output variable is equal to 2.

successProbability "successProbability":0.6 For classification models only.

Enter a value between 0 and 1 for this option

to denote the cutoff probability for success. If

the calculated probability for success for an

observation is greater than or equal to this

value, than a “success” (or a 1) will be

predicted for that observation. If the

calculated probability for success for an

observation is less than this value, then a

“non-success” (or a 0) will be predicted for

that observation. The default value is 0.5.

This option is only supported when the
number of classes is equal to 2.

Model Parameters: Canonical Variate

There are no model parameters associated with this feature.

Model Parameters: Category Reduction for Transformation

Property Example Definition

mapping
"mapping": [

 ["Y","0",5],

 ["Y","1",10]

]

Assigns a specific category number to single
or multiple categories.

Model Parameters: Decision Tree – Classification and Regression

 Parameter Example Definition

successClass "successClass":"1" For classification models only.

Select the class to be considered a “success”

or the significant class. This option is only

supported when the number of classes in the

output variable is equal to 2.

successProbability "successProbability":0.6 For classification models only.

Enter a value between 0 and 1 for this option

to denote the cutoff probability for success. If

the calculated probability for success for an

observation is greater than or equal to this
value, than a “success” (or a 1) will be

predicted for that observation. If the

calculated probability for success for an

observation is less than this value, then a

“non-success” (or a 0) will be predicted for

that observation. The default value is 0.5.

This option is only supported when the

number of classes is equal to 2.

Model Parameters: Factorization

There are no model parameters associated with this feature.

Model Parameters: Find Best Model – Classification and Regression

 Parameter Example Definition

bestLearnerMetric "bestLearnerMetric": "ACCURACY"

Available classification

metrics: "ACCURACY",

"SPECIFICITY", "SENSITIVITY",

"PRECISION" and "F1".

Available regression metrics:

"SSE", "MSE", "RMSE", "MAD" and

"R2.

"trainScore": {

 "data": "myTrainData",

 "fittedModel": "fbmModel",

 "parameters": {

 "bestLearnerMetric":

 "ACCURACY"

 },

 "action": "predict",

 "evaluations":[

 "modelPerformance",

 "bestLearner",

 "prediction"

]

}

Use this parameter to allow the Find Best

Model method to select the learner, from all

available learners, that fits the best model to
the dataset according to the selected metric.

Two evaluators are available for this metric:

"modelPerformance" and "bestLearner".

You'll need to add the evaluators,

"modelPerformance" and "bestLearner" as

"evaluations" to add them to the output.

The model performance table

("modelPerformance") contains fitting

information pertaining to how well the

available learners were able to fit a model to

the dataset according to the selected metric.

The best learner ("bestLearner) gives the

name of the best learner for a given "predict"

action. Note that the best learner may not be

the learner used to actually score the data in

the given action, see learnerForScoring in the

output for more information on what learner

was selected to perform scoring.

useForScoring "useForScoring"=true Enter this metric for one "predict" action.

This parameter instructs the Find Best Model

method to use the best learner found in the

given action to score the data in all "predict"

actions.

1. If no "predict' action contains

"useForScoring"=true, then the best

learner from the first "predict" action

containing the "bestLearnerMetric" is
selected to score all "predict" actions.

2. If multiple "predict" actions contain

"useForScoring" = true, then the best

learner from the first listed action is used

to score all "predict" actions.

Model Parameters: Univariate Feature Selection

Parameters Option Settings or Example Explanation

199

numTopFeatures "numTopFeatures" : 2 Model option only.

Enter a value ranging from 1 to the number of

features in the model. This value, along with

the "usePvalueForSelection" option setting,

will be used to determine the variables
included in the Top Features Table and

Feature Importance Plot. This option has a

default setting of “2”.

usePvalueForSelection "usePvalueForSelection":"true" Model option only.

If "True", then the variables will be ranked

from smallest to largest using the P-value of

the measure or statistic selected.

Model Parameters: Logistic/Linear Wrapping Feature Selection

Parameters Option Settings or Example Explanation

numTopFeatures "numTopFeatures" : 2 Enter a value ranging from 1 to the number of

features in the model.

Model Parameters: Hierarchical Clustering

numClusters "numClusters" : 10

The agglomerative method of hierarchical
clustering continues to form clusters until only

one cluster is left. This option lets you stop the

process at a given number of clusters.

numDendrogramLeaves
"numDendrogramLeaves" : 10 Use this option to define the maximum

number of leaves in the dendrogram tree.

Model Parameters: Imputation

imputation
"imputation": [

 ["F", "medium"]

]

Use the imputation model parameter to set the

user defined value.

Model Parameters: k-Means Clustering

There are no model parameters associated with this feature.

Model Parameters: Discriminant Analysis – Classification

 Parameter Example Definition

successClass "successClass":"1" For classification models only.

Select the class to be considered a “success”

or the significant class. This option is only

supported when the number of classes in the

output variable is equal to 2.

successProbability "successProbability":0.6 For classification models only.

Enter a value between 0 and 1 for this option

to denote the cutoff probability for success. If

the calculated probability for success for an

observation is greater than or equal to this

value, than a “success” (or a 1) will be

predicted for that observation. If the
calculated probability for success for an

observation is less than this value, then a

“non-success” (or a 0) will be predicted for

that observation. The default value is 0.5.

This option is only supported when the

number of classes is equal to 2.

Model Parameters: Linear/Logistic – Classification and Regression

 Parameter Example Definition

successClass "successClass":"1" For classification models only.

Select the class to be considered a “success”

or the significant class. This option is only

supported when the number of classes in the

output variable is equal to 2.

successProbability "successProbability":0.6 For classification models only.

Enter a value between 0 and 1 for this option

to denote the cutoff probability for success. If

the calculated probability for success for an

observation is greater than or equal to this

value, than a “success” (or a 1) will be

predicted for that observation. If the

calculated probability for success for an

observation is less than this value, then a

“non-success” (or a 0) will be predicted for

that observation. The default value is 0.5.
This option is only supported when the

number of classes is equal to 2.

Model Parameters: Latent Semantic Analysis

There are no model parameters associated with this feature.

Model Parameters: Naïve Bayes – Classification

 Parameter Example Definition

successClass "successClass":"1" For classification models only.

Select the class to be considered a “success”

or the significant class. This option is only

supported when the number of classes in the

output variable is equal to 2.

successProbability "successProbability":0.6 For classification models only.

Enter a value between 0 and 1 for this option

to denote the cutoff probability for success. If

201

the calculated probability for success for an

observation is greater than or equal to this

value, than a “success” (or a 1) will be

predicted for that observation. If the

calculated probability for success for an

observation is less than this value, then a
“non-success” (or a 0) will be predicted for

that observation. The default value is 0.5.

This option is only supported when the

number of classes is equal to 2.

Model Parameters: k-Nearest Neighbors – Classification and Regression

 Parameter Example Definition

includeTies "includeTies": true If includeTies = True, all points with distance

equal to kth nearest neighbor are included in

the result.

If includeTies = False, exactly k nearest

neighbors are returned.

numNeighbors "numNeighbors":3 This is the parameter k in the k-nearest

neighbor algorithm.

stable "stable":true

If stable = true, the tied neighbors (up to kth
neighbor) remain in the original order.

If stable = false, the tied neighbors (up to kth

neighbor) are in pseudo-random order.

successClass "successClass":"1" For classification models only.

Select the class to be considered a “success”

or the significant class. This option is only

supported when the number of classes in the

output variable is equal to 2.

successProbability "successProbability":0.6 For classification models only.

Enter a value between 0 and 1 for this option

to denote the cutoff probability for success. If
the calculated probability for success for an

observation is greater than or equal to this

value, than a “success” (or a 1) will be

predicted for that observation. If the

calculated probability for success for an

observation is less than this value, then a

“non-success” (or a 0) will be predicted for

that observation. The default value is 0.5.

This option is only supported when the

number of classes is equal to 2.

weightingScheme "weightingScheme":

"INVERSE_DISTANCE"

Parameter Options

• EQUAL

• INVERSE_DISTANCE

Use this option to select the weighting

scheme: equal or inverse distance.

Model Parameters: Neural Network – Classification and Regression

 Parameter Example Definition

successClass "successClass":"1" For classification models only.

Select the class to be considered a “success”

or the significant class. This option is only

supported when the number of classes in the

output variable is equal to 2.

successProbability "successProbability":0.6 For classification models only.

Enter a value between 0 and 1 for this option

to denote the cutoff probability for success. If

the calculated probability for success for an

observation is greater than or equal to this

value, than a “success” (or a 1) will be

predicted for that observation. If the

calculated probability for success for an
observation is less than this value, then a

“non-success” (or a 0) will be predicted for

that observation. The default value is 0.5.

This option is only supported when the

number of classes is equal to 2.

Model Parameters: One Hot Encoder

There are no model parameters associated with this feature.

Model Parameters: Partitioning

Property Example Definition

partition "partition": "Training" Specifies the partition to transform.

Model Parameters: PCA

Parameters Option Settings or Example Explanation

numPrincipalComponents "numPrincipalComponents": 2

This option is mutually exclusive with

varianceCutoff. Use either

numPrincipalComponents to select the

number of principal components displayed in

the output or varianceCutoff, but not both.

This option specifies a fixed number of

components. Enter an integer value from 1 to
n where n is the number of Input variables in

the model.

203

varianceCutoff "varianceCutoff" : 0.98 This option is mutually exclusive with

numPrincipalComponents. Use either

numPrincipalComponents to select the

number of principal components displayed in

the output or varianceCutoff, but not both.

Use this option to calculate the minimum

number of principal components required to

account for the percentage of variance entered

for this option.

Model Parameters: Random Trees -- Classification and Regression

 Parameter Example Definition

successClass "successClass":"1" For classification models only.

Select the class to be considered a “success”

or the significant class. This option is only

supported when the number of classes in the

output variable is equal to 2.

successProbability "successProbability":0.6 For classification models only.

Enter a value between 0 and 1 for this option
to denote the cutoff probability for success. If

the calculated probability for success for an

observation is greater than or equal to this

value, than a “success” (or a 1) will be

predicted for that observation. If the

calculated probability for success for an

observation is less than this value, then a

“non-success” (or a 0) will be predicted for

that observation. The default value is 0.5.

This option is only supported when the

number of classes is equal to 2.

Model Parameters: Sampling/Stratified Sampling

There are no model parameters associated with this feature.

Model Parameters: Rescaler

There are no model parameters associated with this feature.

Model Parameters: Smoothing Methods: Double Exponential,
Exponential, Holt Winters Additive, Holt Winters Multiplicative, Holt
Winters No Trend, Moving Average

 Parameter Example Definition

confidenceLevel "confidenceLevel":0.9
Sets the desired confidence level here. (The

default level is 95%.) The Lower and Upper

values of the computed confidence levels will

be included in the output. The forecasted

value will be guaranteed to fall within this

range for the specified confidence level.

numForecasts "numForecasts": 4 Sets the number of forecasts.

Model Parameters: TFIDF

Parameters Option Settings or Example Explanation

weightingSchemeDocument "weightingSchemeDocument":

"INVERSE"

See explanation below

weightingSchemeNormalizati

on

"weightingSchemeNormalization":

"NONE"

See explanation below.

weightingSchemeTerm "weightingSchemeTerm":

"LOGARITHMIC",

See explanation below.

Explanation: Using these three options, users can select their own choices for local weighting, global weighting, and

normalization. Please see the table below for definitions regarding options for Term Frequency, Document Frequency

and Normalization.

Local Weighting Global Weighting Normalization

Binary 𝑙𝑤𝑡𝑑 = {
1, if 𝑡𝑓𝑡𝑑 > 0
0, if 𝑡𝑓𝑡𝑑 = 0

 None 𝑔𝑤𝑡 = 1 None 𝑛𝑑 = 1

Raw

Frequency
𝑙𝑤𝑡𝑑 = 𝑡𝑓𝑡𝑑 Inverse 𝑔𝑤𝑡 = log2

𝑁

1 + 𝑑𝑓𝑡

 Cosine

𝑛𝑑

=
1

‖𝑔𝑑̅̅ ̅‖2

Logarithmic 𝑙𝑤𝑡𝑑 = log(1 + 𝑡𝑓𝑡𝑑) Normal 𝑔𝑤𝑡 =
1

√∑ 𝑡𝑓𝑡𝑑
2

𝑑

Augnorm

𝑙𝑤𝑡𝑑

=

(
 𝑡𝑓𝑡𝑑

max
𝑡

 𝑡𝑓𝑡𝑑
) + 1

2

GF-IDF 𝑔𝑤𝑡 =
𝑐𝑓𝑡

𝑑𝑓𝑡

Entropy

𝑔𝑤𝑡

= 1 + ∑
𝑝𝑡𝑑 log 𝑝𝑡𝑑

log 𝑁𝑑

 IDF
probability

𝑔𝑤𝑡 = log2

𝑁

1 + 𝑑𝑓𝑡

Notations:

• 𝒕𝒇𝒕𝒅 – frequency of term 𝒕 in a document 𝒅;

• 𝒅𝒇𝒕 – document frequency of term 𝒕;

• 𝒍𝒘𝒕𝒅 – local weighting of term 𝒕 in a document 𝒅;

• 𝒈𝒘𝒕𝒅 – global weighting of term 𝒕 in a document 𝒅;

• 𝒏𝒅 – normalization of vector of terms representing the document 𝒅;

• 𝑵 – total number of documents in the collection;

205

• 𝒄𝒇𝒕 – collection frequency of term 𝒕;

• 𝒑𝒕𝒅 – estimated probability of term 𝒕 to appear in a document 𝒅

(𝒑𝒕𝒅 =
𝒕𝒇𝒕𝒅

𝒄𝒇𝒕
⁄);

• 𝒈𝒅̅̅ ̅̅ – vector of terms representing the document 𝒅.

Finally, the element 𝑇𝑡𝑑 of Term-Document Matrix is computed as 𝑇𝑡𝑑 = 𝑙𝑤𝑡𝑑 ∗
𝑔𝑤𝑡 ∗ 𝑛𝑑 , ∀𝑡, 𝑑

Model Parameters: Time Series

 Parameter Example Definition

confidenceLevel "confidenceLevel":0.9
Sets the desired confidence level here. (The

default level is 95%.) The Lower and Upper

values of the computed confidence levels will

be included in the output. The forecasted

value will be guaranteed to fall within this
range for the specified confidence level.

numForecasts "numForecasts": 4 Sets the number of forecasts.

The "evaluations", or quantities to be computed and reported back, described in the tables below are available

for each corresponding algorithm.

Evaluations Common to All Rason DM Methods and Algorithms

 Evaluation Action Definition

fittedModeljson Fit Returns the data mining model in JSON

format.

Evaluations: Big Data Common Evaluations

 Evaluation Action Definition

clusterInfo Transform Returns the Apache Spark REST Server URL.

durationInfo Transform Returns the elapsed time since job submission

if the job is still RUNNING and the cluster

total compute time if the job is FINISHED.

jobID Transform Returns the ID from a previous submission.

Use this evaluation when submitting a

sampling job, not for obtaining results.

schema Transform Returns the full and sampled data schema.

solverDatasets Transform
Lists the preloaded datasets on Frontline

Systems cluster.

transformation Transform Returns the final transformation (transformed

dataset).

Evaluations: Binning

 Evaluation Action Definition

breakPoints Fit Returns the breakpoint (largest value) for each

bin.

frequencyTable Transform Returns the frequency table information

including the the lower and upper values for

each bin and the records assigned to each bin.

numBins Fit Returns the number of bins.

transformation Transform Returns the final transformation (transformed
dataset).

Evaluations: Canonical Variates

 Evaluation Action Definition

canonicalVariates Fit/Transform Returns the canonical variates for the data

based on an orthogonal representation of the

original variates.

transformation Transform Returns the final transformation (transformed

dataset).

Evaluations: Classification – Common Parameters

 Evaluation Action Definition

accuracy Predict Returns the accuracy metric (# correct)

auc Predict Returns the AUC for the ROC Curve

confusionMatrix Predict Returns the confusion matrix for a

classification method.

decileChart Predict Returns the decile chart for a classification

method.

f1 Predict Returns the F1 Score.

liftChart Predict Returns the lift chart information for a

classification method.

metrics Predict Returns the following metrics for a

classification model: accuracy, specificity,

sensitivity, precision, the F1 score, and AUC.

posteriorProbability Predict Returns the posterior probability

precision Predict Returns the precision matrix. Precision is the

probability of correctly identifying a randomly

selected record as one belonging to the

Success class. TP/(TP + FP)

prediction Predict Returns the prediction label for each record in

the dataset.

recall Predict Returns the Recall (Sensitivity) metric. Recall

(or Sensitivity) measures the percentage of

207

actual positives which are correctly identified

as positive. TP/(TP+FN)

rocCurve Predict Returns the ROC Curve information

sensitivity Predict Returns the sensitivity metric.

specificity Predict Returns the Specificity metric. Specificity

(SPC) or True Negative Rate =TN / (FP + TN)

Evaluations: Classification – Decision Trees

 Evaluation Action Definition

categoricalFeaturesInf

o

Fit Returns information on the categorical features

included in the model.

featureImportance Fit Returns the variables that are included in the model

along with their Importance value.

pruningLog Fit Returns the prune log.

trainingLog
Fit Returns the training log.

treeDiagram Fit Returns the tree diagram.

treeRules Fit Returns the tree rules.

Evaluations: Classification – Ensemble Methods Common Options

 Evaluation Action Definition

categoricalFeaturesInf

o

Fit Returns information on the categorical features

included in the model.

numWeakLearners Fit Returns the number of weak learners

weakLearnerModels Fit Returns the weak learner models.

Evaluations: Classification -- Discriminant Analysis

 Evaluation Action Definition

linearDiscriminantFunctions Fit Returns the Linear Discriminant Functions

table. In this table, there will be a function for

each class. Each variable will be assigned to

the class that contains the higher function

value.

quadraticDiscriminantFunctions Returns the Quadratic Discriminant Functions

tables. One table per class will be returned in

the results, i.e. if there are two classes in the

model, two quadratic functions tables will be

returned. Each variable will be assigned to
the class that contains the higher function

value.

Evaluations: Classification – Logistic Regression

 Evaluation Action Definition

categoricalFeaturesInfo
Fit Returns information on the categorical features

included in the model.

coefficients Fit Returns the coefficient estimates.

detailedCoefficients Fit Returns the coefficient estimate, the standard

error of the coefficient, the p-value, the odds

ratio for each variable (which is simply ex

where x is the value of the coefficient) and
confidence interval for the odds. (Note for the

Intercept term, the Odds Ratio is calculated as

exp^0.)

entranceTolerance
Fit Returns the tolerance threshold. All predictors

eligible to enter the model must pass this

threshold.

multicollinearityDiagnostics Fit Returns Collinearity Diagnostics which help

assess whether two or more variables so closely

track one another as to provide essentially the

same information.

The columns represent the variance

components (related to principal components in

multivariate analysis), while the rows represent
the variance proportion decomposition

explained by each variable in the model. The

eigenvalues are those associated with the

singular value decomposition of the variance-

covariance matrix of the coefficients, while the

condition numbers are the ratios of the square

root of the largest eigenvalue to all the rest. In

general, multicollinearity is likely to be a

problem with a high condition number (more

than 20 or 30), and high variance

decomposition proportions (say more than 0.5)
for two or more variables.

multipleR2 Fit

numIterations Fit

predictorScreeningInfo Fit A preprocessing feature selection step is

included to take advantage of automatic

variable screening and elimination using Rank-

Revealing QR Decomposition. This allows the

identification of variables causing

multicollinearity, rank deficiencies and

otherproblems that would otherwise cause the

algorithm to fail. Information about “bad”

variables is used in Variable Selection and

Multicollinearity Diagnostics and in computing
other reported statistics.

Included and excluded predictors are returned

for this command. All predictors must meet

the tolerance threshold to be eligible to enter

the model. This denotes a tolerance beyond

209

which a variance – covariance matrix is not

exactly singular to within machine precision.

The test is based on the diagonal elements of

the triangular factor R resulting from Rank-

Revealing QR Decomposition. Predictors that

do not pass the test are excluded.

Note: If a predictor is excluded, the

corresponding coefficient estimates will be 0 in

the regression model and the variable –

covariance matrix will contain all zeros in the

rows and columns that correspond to the

excluded predictor. Multicollinearity

diagnostics, variable selection and other

remaining output will be calculated for the

reduced model.

The design matrix may be rank-deficient for

several reasons. The most common cause of an
ill-conditioned regression problem is the

presence of feature(s) that can be exactly or

approximately represented by a linear

combination of other feature(s). For example,

assume that among predictors you have 3 input

variables X, Y, and Z where Z = a * X + b * Y

where a and b are constants. This will cause

the design matrix to not have a full rank.

Therefore, one of these 3 variables will not

pass the threshold for entrance and will be

excluded from the final regression model.

regressionSummary Fit Returns the the residual degrees of freedom
(#observations - #predictors), a standard

deviation type measure for the model (which

typically has a chi-square distribution), the

number of iterations required to fit the model,

and the Multiple R-squared value.

The multiple R-squared is the r-squared value

for a logistic regression model , defined as - R2

= (D0-D)/D0 , where D is the Deviance based

on the fitted model and D0 is the deviance

based on the null model. The null model is

defined as the model containing no predictor
variables apart from the constant.

residuals Fit

residualDeviance Fit

residualDF Fit

varianceCovariance Fit Returns the Variance – Covariance matrix.

Evaluations: Classification – Naïve Bayes

 Evaluation Action Definition

classFrequency Fit Returns the total predicted number of cases

assigned to each class.

dataFrequency Fit Returns the Prior Conditional Probabilities by

feature (column) for the Training dataset.

logDensity
Predict Returns the Log Densities for each partition.

Log PDF, or Logarithm of Unconditional

Probability Density, is the distribution of the

predictors marginalized over the classes and is

computed using:

log[𝑃{𝑋1, … , 𝑋𝑛}] = log [∑ 𝑃{𝑋1, … , 𝑋𝑛, 𝑌

𝐶

𝑐=1

= 𝑐}]

= log [∑ 𝜋{ 𝑦

𝐶

𝑐=1

= 𝑐} 𝑃{𝑋1, … , 𝑋𝑛|𝑌 = 𝑐}]

where𝜋{𝑌 = 𝑐} is a prior class probability

priorConditionalProbability Fit Returns the Prior Conditional Probabilities for

each case by variable.

Evaluations: Classification – Neural Networks

 Evaluation Action Definition

categoricalFeaturesInfo
Fit Returns information on the categorical

features included in the model.

neuronWeights Fit Returns the interlayer connections' weights

table.

numEpochsUsed Fit Returns the number of epochs performed.

partitionCausedStopping
Fit Returns the partition used for error

computation.

stoppingReason Fit Returns the reason for stopping.

trainingLog Fit Returns the neural network training log.

trainingTime Fit Returns the time taken to train the network.

Evaluations: Classification – Random Trees

 Evaluation Action Definition

categoricalFeaturesInf

o

Fit Returns information on the categorical features

included in the model.

featureImportance Fit Returns the variables that are included in the model

along with their Importance value.

numWeakLearners Fit Returns the number of weak learners

weakLearnerModels Fit Returns the weak learner models.

211

Evaluations: Clustering – Hierarchical

 Evaluation Action Definition

dendrogram Predict Returns the dendrogram information

dendrogramChart Predict Returns the dendrogram information in chart

format.

mergingHistory Fit Returns the history of the cluster formation.

Initially, each individual case is considered its own

cluster (single member in each cluster) beginning

with # clusters = # cases.

prediction Predict Returns the predicted values

subclusterLegend Predict Returns the subclusters.

Evaluations: Clustering – kMeans

 Evaluation Action Definition

clusterCenters Fit Displays detailed information about the clusters

formed by the k-Means Clustering algorithm:

the final centroids. If the input data was

normalized, information is displayed in original

and normalized coordinates.

clustersSummary Predict Displays the number of records (observations)

included in each cluster and the within-cluster

average distance. This information can be used

to better understand the data partitioning: how

large and how sparse the resulting clusters are.

interclusterDistances Fit Returns the inter-cluster distances.

prediction Predict Returns the predicted values.

randomCentersSummary Fit Returns the information about the initial search

for the best centroid assignment. The assignment

marked by “Best Start” is used as the initial

assignment of the centroids.

recordToClusterDistance Predict Returns the distance between each record and

it's assigned cluster.

Evaluations: Factoring

 Evaluation Action Definition

frequencyTable Transform Returns the frequency table information for

the factored variable(s).

transformation Transform Returns the final transformation (transformed

dataset).

Evaluations: Feature Selection - Linear/Logistic Wrapping

 Evaluation Definition

bestSubsets Fit Returns the best subsets as determined by

various error values and the probability. Use

"bestSubsetsDetails" to view these error

values and probability.

bestSubsetsDetails Fit Returns the number of predictors, the residual

sum of squares (RSS), Mallows CP, and the
Probability for each subset. RSS is the

residual sum of squares, or the sum of squared

deviations between the predicted probability

of success and the actual value (1 or 0).

"Mallows Cp" is a measure of the error in the

best subset model, relative to the error

incorporating all variables. Adequate models

are those for which Cp is roughly equal to the

number of parameters in the model (including

the constant), and/or Cp is at a minimum.

"Probability" is a quasi hypothesis test of the
proposition that a given subset is acceptable;

if Probability < .05 we can rule out that

subset.

transformation Transform Returns the final transformation (transformed

dataset).

Evaluations: Feature Selection - Univariate

 Evaluation Action Definition

fsPlot Transform Plots the top most important or relevant

features as determined by the value entered

for "numTopFeatures" parameter setting.

statistics Fit Returns the value for the requested statistic (as

set using the "metric" estimator parameter).

topFeaturesInfo Transform Produces a table containing the top number of

features as determined by "numTopFeatures"

parameter setting.

transformation Transform Returns the final transformation (transformed

dataset).

Evaluations: Find Best Model – Classification and Regression

 Evaluation Action Definition

bestLearner
Predict

"trainScore": {

 "data": "myTrainData",

 "fittedModel": "fbmModel",

 "parameters": {

 "bestLearnerMetric":

 "ACCURACY"

 },

 "action": "predict",

This evaluation is available when the

"bestLearnerMetric" parameter is present in

the "predict" action.

This evaluation returns the best learner, for the

given "predict" action, according to the

"bestLearnerMetric".

213

 "evaluations": [

 "modelPerformance",

 "bestLearner",

 "learnerForScoring",

 "prediction"

]

},

learnerForScoring
Predict

"trainScore": {

 "data": "myTrainData",

 "fittedModel": "fbmModel",

 "parameters": {

 "bestLearnerMetric":

 "ACCURACY",

 },

 "action": "predict",

 "evaluations": [

 "modelPerformance",

 "bestLearner",

 "learnerForScoring",

 "prediction"

]

},

This evaluation returns the learner used to

score all "action": "predict" methods in the

RASON model. All "predict" methods will

contain this output.

Messages
Fit

The Find Best Model "fit" action has only one

possible evaluation, "messages". This

evaluation reports the fitting log which is

where any warnings/failures that occur during

the fitting process will be reported.

modelPerformance
Predict

"trainScore": {

 "data": "myTrainData",

 "fittedModel": "fbmModel",

 "parameters": {

 "bestLearnerMetric":

 "ACCURACY"

 },

 "action": "predict",

 "evaluations": [

 "modelPerformance",

 "bestLearner",

 "learnerForScoring",

 "prediction"

]

},

This evaluation is available when the

"bestLearnerMetric" parameter is present in

the "predict" action.

This evaluation returns a table containing the

model performance metrics for the given
"predict" action, for each available learner in

the Find Best Model method.

For classification models, the returned metrics

are: Accuracy, Specificity, Sensitivity,

Precision and F1 score.

For regression models, the returned metrics

are: SSE, MSE, RMSE, MAD and R2.

Evaluations: Forecasts – Common Parameters

 Evaluation Action Definition

Cfe Forecast, Transform Returns the cumulative forecast error

coefficientsInfo Fit Returns the coefficient for each term in the

ARIMA model.

forecast Forecast Returns the forecasted values.

mad Forecast, Transform Returns MAD (Mean Absolute Deviation).

mfe Forecast, Transform Returns the MFE (Mean Forecast Error).

mape Forecast, Transform Returns the Mean Absolute Percentage Error

(MAPE).

metrics Forecast Returns the following metrics: SSE, MSE,

MAPE, MAD, CFE, MFE and TSE.

mse Transform Returns MSE (Mean Squared Error).

residuals Transform Returns the residuals calculated by subtracting
the predicted value by the actual value.

sse Forecast, Transform Returns the Sum of Squared Error (SSE).

transformation Transform Returns the final transformation (transformed

dataset).

tse Forecast, Transform Returns the Tacking Signal Error.

tsPlot Forecast, Transform Returns the time series plot: Actual vs

Forecast.

Evaluations: Regression – Common Parameters

 Evaluation Action Definition

aoc Predict Returns the area Over the Curve (AOC) in an

RROC Curve.

decileChart Predict Retuns the decilewise lift curve which is

drawn as the decile number versus the

cumulative actual output variable value

divided by the decile's mean output variable
value. The bars in this chart indicate the

factor by which the predicted model

outperforms a random assignment, one decile

at a time.

liftChart Predict Returns information for both Original and

Alternative Lift Charts.

prediction Predict Returns predicted values.

mad Predict Returns MAD (Mean Absolute Deviation).

metrics Predict Returns various metrics such as MSE, R2,

RMSE, etc.

mse Predict Returns MSE (Mean Squared Error).

r2 Predict Returns Coefficient of Determination (R2)

residuals Predict Returns the residuals calculated by subtracting

the predicted value by the actual value.

rmse Predict Returns Root Mean Squared Error (RMSE).

rrocCurve Predict Returns RROC Curve information.

ss Predict Returns the Sum of Squares (SS).

215

sse Predict Returns the Sum of Squared Error (SSE).

sst Predict Returns the Sum of Squares Total (SST).

Evaluations: Regression – Linear Regression

 Evaluation Action Definition

anova Fit Returns the Analysis of Variance

(ANOVA)

coefficients Fit Returns the variable coefficients

detailedCoefficients Fit Returns the coefficient estimate, the

standard error of the coefficient, the T-
statistic, the p-value, and confidence

interval.

detailedResiduals Fit Returns the raw, standardized, studentized

and deleted residuals.

entranceTolerance
Fit Returns the tolerance threshold. All

predictors eligible to enter the model must

pass this threshold.

influenceDiagnostics Fit Returns Cook's Distance, DFFits,

Covariance ratio, Leverage, and Delete-1

Variance metrics

multicollinearityDiagnostics Fit Returns Collinearity Diagnostics which

help assess whether two or more variables

so closely track one another as to provide

essentially the same information.

The columns represent the variance

components (related to principal

components in multivariate analysis),

while the rows represent the variance

proportion decomposition explained by

each variable in the model. The

eigenvalues are those associated with the

singular value decomposition of the

variance-covariance matrix of the

coefficients, while the condition numbers

are the ratios of the square root of the
largest eigenvalue to all the rest. In

general, multicollinearity is likely to be a

problem with a high condition number

(more than 20 or 30), and high variance

decomposition proportions (say more than

0.5) for two or more variables.

predictorScreeningInfo Fit A preprocessing feature selection step is

included to take advantage of automatic

variable screening and elimination using

Rank-Revealing QR Decomposition.

This allows the identification of variables

causing multicollinearity, rank
deficiencies and otherproblems that

would otherwise cause the algorithm to

fail. Information about “bad” variables is

used in Variable Selection and

Multicollinearity Diagnostics and in

computing other reported statistics.

Included and excluded predictors are

returned for this command. All predictors
must meet the tolerance threshold to be

eligible to enter the model. This denotes

a tolerance beyond which a variance –

covariance matrix is not exactly singular

to within machine precision. The test is

based on the diagonal elements of the

triangular factor R resulting from Rank-

Revealing QR Decomposition. Predictors

that do not pass the test are excluded.

Note: If a predictor is excluded, the

corresponding coefficient estimates will
be 0 in the regression model and the

variable – covariance matrix will contain

all zeros in the rows and columns that

correspond to the excluded predictor.

Multicollinearity diagnostics, variable

selection and other remaining output will

be calculated for the reduced model.

The design matrix may be rank-deficient

for several reasons. The most common

cause of an ill-conditioned regression

problem is the presence of feature(s) that
can be exactly or approximately

represented by a linear combination of

other feature(s). For example, assume

that among predictors you have 3 input

variables X, Y, and Z where Z = a * X + b

* Y where a and b are constants. This

will cause the design matrix to not have a

full rank. Therefore, one of these 3

variables will not pass the threshold for

entrance and will be excluded from the

final regression model.

newIntervals Predict Returns the lower and upper confidence
and prediction intervals for the predicted

values.

regressionSummary Fit Returns the the residual degrees of

freedom (#observations - #predictors), a

standard deviation type measure for the

model (which typically has a chi-square

distribution), the number of iterations

required to fit the model, and the Multiple

R-squared value.

The multiple R-squared is the r-squared

value for a logistic regression model ,
defined as - R2 = (D0-D)/D0 , where D is

the Deviance based on the fitted model

217

and D0 is the deviance based on the null

model. The null model is defined as the

model containing no predictor variables

apart from the constant.

trainingIntervals Fit Returns the lower and upper confidence

and prediction intervals for the training

partition.

varianceCovariance Fit Returns the variance-covariance matrix.

Evaluations: SyntheticDataGenerator
Evaluation Action Definition

Synthetic Data Generation

bestMetalog "bestMetalog" Use BestMetalog to obtain the number of terms for the

best fitted Metalog distribution for each column.

metalogCoefficients "metalogCoefficients" Obtains the coefficients for fitted Metalog Distributions

for all or specific columns.

metalogFitted "metalogFitted" Checks whether there was at least one feasible Metalog

distribution fitted for all or specific columns.

metalogGOF "MetalogGOF" Gets the detailed report of Goodness of Fit tests for fitted

Metalog Distributions for all or specific columns.

Correlation Evaluations

correlationFitted "correlationFitted" Obtains information on the correlation fitting.

"selectedCopula" – Determines what copula was

selected if copua fitting was requested.

"correlationSigma" – Obtains the correlation

matrix , when applicable – i.e. if rank correlation or

Gauss/Student Copula was used.

"copulaTheta" – Use this result to obtain the fitted

correlation theta value when selected copula is Clayton,
Frank or Grumbel.

"copulaDF" – Use this result to obtain the degrees of

freedom when copula is Student.

Example code above first checks if the correlations have

been fitted, and then, depending on the correlation type,

(rank or copula), reports applicable results.

Evaluations: Summarizer

Summary “summary”

All statistics generated using the Summarizer

ealuations are briefly described below.

Mean, the average of all the values.

Standard Deviation, the square root of variance.

Variance, the spread of the distribution of values.

Skewness, which describes the asymmetry of the

distribution of values.

Kurtosis, which describes the peakedness of the

distribution of values.

Mode, the most frequently occurring single value.
Minimum, the minimum value attained.

Maximum, the maximum value attained.

Range, the difference between the maximum and

minimum values.

advancedSummary “advancedSummary”

Advanced Summary

Mean Abs. Deviation, returns the average of the

absolute deviations.

SemiVariance, measure of the dispersion of values.

SemiDeviation, one-sided measure of dispersion of

values.

219

Value at Risk 95%, the maximum loss that can occur

at a given confidence level.

Cond. Value at Risk, is defined as the expected value

of a loss given that a loss at the specified percentile

occurs.

Mean Confidence, returns the confidence “half-
interval” for the estimated mean value (returned by

the PsiMean() function.

Std. Dev. Confidence 95%, returns the confidence

‘half-interval’ for the estimated standard deviation of

the simulation trials (returned by the PsiStdDev()

function).

Coefficient of Variation, is defined as the ratio of the

standard deviation to the mean.

Standard Error, defined as the standard deviation of

the sample mean.

Expected Loss, returns the average of all negative data

multiplied by the percentrank of 0 among all data.
Expected Loss Ratio, returns the expected loss ratio.

Expected Gain returns the average of all positive data

multiplied by 1 - percentrank of 0 among all data.

Expected Gain Ratio, returns the expected gain ratio.

Expected Value Margin, returns the expected value

margin

percentiles “percentiles”

Generates numeric percentile values (from 1% to

99%) computed using all values for the variable. For

example, the 75th Percentile value is a number such

that three-quarters of the values occurring in the last

simulation are less than or equal to this value.

sixSigma “sixSigma”

Generates various computed Six Sigma measures,
described below. These functions compute values

related to the Six Sigma indices used in

manufacturing and process control.

SigmaCP: SixSigmaCP

(cell,lower_limit,upper_limit)

A Six Sigma index, SixSigmaCP predicts what the

process is capable of producing if the process mean is

centered between the lower and upper limits. This

index assumes the process output is normally

distributed.

𝐶𝑝 =
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

6𝜎̂

where 𝜎̂ is the estimated standard deviation of the

process.

SigmaCPK: SixSigmaCPK

(cell,lower_limit,upper_limit)

A Six Sigma index, SixSigmaCPK predicts what the

process is capable of producing if the process mean is

not centered between the lower and upper limits. This

index assumes the process output is normally

distributed and will be negative if the process mean

falls outside of the lower and upper specification

limits.

𝐶𝑝𝑘 =
𝑀𝐼𝑁(𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂,𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡)

3𝜎̂

where 𝜇̂ is the process mean and 𝜎̂ is the standard

deviation of the process.

SigmaCPKLower:

SixSigmaCPKLower(cell,lower_limit)

A Six Sigma index, SixSigmaCPKLower calculates

the one-sided Process Capability Index based on the

lower specification limit. This index assumes the
process output is normally distributed.

𝐶𝑝, 𝑙𝑜𝑤𝑒𝑟 =
𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

3𝜎̂

where 𝜇̂ is the process mean and 𝜎̂ is the standard

deviation of the process.

SigmaCPKUpper:

SixSigmaCPKUpper(cell,upper_limit)

A Six Sigma index, SixSigmaCPKUpper calculates
the one-sided Process Capability Index based on the

upper specification limit. This index assumes the

process output is normally distributed.

𝐶𝑝, 𝑢𝑝𝑝𝑒𝑟 =
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

3𝜎̂

where 𝜇̂ is the process mean and 𝜎̂ is the standard

deviation of the process.

SigmaCPM:
SixSigmaCPM(cell,lower_limit,upper_limit,target)

A Six Sigma index, SixSigmaCPM calculates the

capability of the process around a target value. This

index is referred to as the Taguchi Capability Index.

This index assumes the process output is normally

distributed and is always positive.

𝐶𝑝𝑚 =
𝐶̂𝑝

√1+(
𝜇̂−𝑇

𝜎̂
)2

where 𝐶̂𝑝 is the process capability (SigmaCP), 𝜇̂ is

the process mean, 𝜎̂ is the standard deviation of the

process and T is the target process mean.

SigmaDefectPPM:

SixSigmaDefectPPM(cell,lower_limit,upper_limit)

A Six Sigma index, SixSigmaDefectPPM calculates

the Defective Parts per Million.

𝐷𝑃𝑀𝑂 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
) + 1 −

𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
)) ∗ 1000000

where𝜇̂ is the process mean, 𝜎̂ is the standard

deviation of the process and 𝛿−1 is the standard

normal inverse cumulative distribution function.

221

SigmaDefectShiftPPM:

SixSigmaDefectPPM(cell,lower_limit,upper_limit)

A Six Sigma index, SixSigmaDefectShiftPPM

calculates the Defective Parts per Million with an

added shift.

𝐷𝑃𝑀𝑂𝑆ℎ𝑖𝑓𝑡 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
−

𝑆ℎ𝑖𝑓𝑡) +

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)) ∗

1000000

where𝜇̂ is the process mean, 𝜎̂ is the standard

deviation of the process and 𝛿−1 is the standard

normal inverse cumulative distribution function.

SigmaDefectShiftPPMLower:

SixSigmaDefectShiftPPMLower(cell,lower_limit,shift

)

A Six Sigma index, SixSigmaDefectShiftPPMLower

calculates the Defective Parts per Million, with a shift,

below the lower specification limit.

𝐷𝑃𝑀𝑂𝑠ℎ𝑖𝑓𝑡, 𝑙𝑜𝑤𝑒𝑟 = (𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂
−

𝑆ℎ𝑖𝑓𝑡) ∗ 1000000

Where 𝜎̂ is the standard deviation of the process and

𝛿−1 is the standard normal inverse cumulative

distribution function.

SigmaDefectShiftPPMUpper:

SixSigmaCPKUpper(cell,upper_limit)

A Six Sigma index, SixSigmaDefectShiftPPMUpper

calculates the Defective Parts per Million, with a shift,

above the lower specification limit.

𝐷𝑃𝑀𝑂𝑠ℎ𝑖𝑓𝑡, 𝑢𝑝𝑝𝑒𝑟 = (𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂
−

𝑆ℎ𝑖𝑓𝑡) ∗ 1000000

where𝜎̂ is the standard deviation of the process and

𝛿−1 is the standard normal inverse cumulative

distribution function.

SigmaK: SixSigmaK(cell,lower_limit,upper_limit)

A Six Sigma index, SixSigmaK calculates the

Measure of Process Center and is defined as:

1 −
2∗𝑀𝐼𝑁(𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂,𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡)

𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

where𝜇̂ is the process mean.

SigmaLowerBound:

SixSigmaLowerBound(cell,number_stdev)

A Six Sigma index, SixSigmaLowerBound calculates

the Lower Bound as a specific number of standard

deviations below the mean and is defined as:

𝜇̂ − 𝜎̂ ∗ #𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠

where𝜇̂ is the process mean and 𝜎̂ is the standard

deviation of the process.

SigmaProbDefectShift:

SixSigmaProbDefectShift(cell,lower_limit,

upper_limit,shift)

A Six Sigma index, SixSigmaProbDefectShift

calculates the Probability of Defect, with a shift,
outside of the upper and lower limits. This statistic is

defined as:

𝛿−1 (
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) +

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)

where 𝜇̂ is the process mean ,𝜎̂ is the standard

deviation of the process and 𝛿−1 is the standard

normal inverse cumulative distribution function.

SigmaProbDefectShiftLower:

SixSigmaProbDefectShiftLower(cell,lower_limit,

shift)

A Six Sigma index, SixSigmaProbDefectShiftLower

calculates the Probability of Defect, with a shift,

outside of the lower limit. This statistic is defined as:

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)

where𝜇̂ is the process mean ,𝜎̂ is the standard

deviation of the process and 𝛿−1 is the standard

normal inverse cumulative distribution function.

SigmaProbDefectShiftUpper:

SixSigmaProbDefectShiftUpper(cell,upper_limit,

shift)

A Six Sigma index, SixSigmaProbDefectShiftUpper

calculates the Probability of Defect, with a shift,

outside of the upper limit. This statistic is defined as:

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)

where𝜇̂ is the process mean ,𝜎̂ is the standard

deviation of the process and 𝛿−1 is the standard
normal inverse cumulative distribution function.

SigmaSigmaLevel:

SixSigmaSigmaLevel(cell,lower_limit,upper_limit,

shift)

A Six Sigma index, SixSigmaSigmaLevel calculates

the Process Sigma Level with a shift. This statistic is

defined as:

−𝛿(𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡 −𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) +

1 − 𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡))

where 𝜇̂ is the process mean ,𝜎̂ is the standard

deviation of the process 𝛿is the standard normal

cumulative distribution function, and 𝛿−1 is the

standard normal inverse cumulative distribution

function.

223

SigmaUpperBound:

SixSigmaUpperBound(cell,number_stdev)

A Six Sigma index, SixSigmaUpperBound calculates

the Upper Bound as a specific number of standard

deviations above the mean and is defined as:

𝜇̂ − 𝜎̂ ∗ #𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑠

where𝜇̂ is the process mean and 𝜎̂ is the standard

deviation of the process.

SigmaYield:

SixSigmaYield(cell,lower_limit,upper_limit,shift)

A Six Sigma index, SixSigmaYield calculates the Six

Sigma Yield with a shift, or the fraction of the process

that is free of defects. This statistic is defined as:

𝛿−1(
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡) −

𝛿−1(
𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂
− 𝑆ℎ𝑖𝑓𝑡)

where 𝜇̂ is the process mean, 𝜎̂ is the standard

deviation of the process and 𝛿−1 is the standard

normal inverse cumulative distribution function.

SigmaZLower: SixSigmaZLower(cell,lower_limit)

A Six Sigma index, SixSigmaZLower calculates the
number of standard deviations of the process that the

lower limit is below the mean of the process. This

statistic is defined as:
𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡

𝜎̂

where𝜇̂ is the process mean and 𝜎̂ is the standard

deviation of the process.

SigmaZMin:

SixSigmaZMin(cell,lower_limit,upper_limit)

A Six Sigma index, SixSigmaZMin calculates the

minimum of SigmaZLower and SigmaZUpper. This

statistic is defined as:
𝑀𝐼𝑁(𝜇̂−𝐿𝑜𝑤𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡,𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂)

𝜎̂

where𝜇̂ is the process mean and 𝜎̂ is the standard

deviation of the process.

SigmaZUpper: SixSigmaZUpper(cell,upper_limit)

SixSigmaZUpper(cell,upper_limit,simulation)

A Six Sigma index, SigmaZUpper calculates the

number of standard deviations of the process that the

upper limit is above the mean of the process. This

statistic is defined as:
𝑈𝑝𝑝𝑒𝑟𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝐿𝑖𝑚𝑖𝑡−𝜇̂

𝜎̂

Where 𝜇̂ is the process mean and 𝜎̂ is the standard

deviation of the process.

Evaluations: Text Mining TFIDF Evaluations

 Evaluation Action Definition

detailedVocabulary Fit Returns the number of times the terms,

included in the Final List of Terms, appears in

the document collection and the number of

documents that include each term.

docInfo Fit Returns the # Characters and the # Terms per

document.

termCountInfo Fit Returns the number of total terms, the %
Reduction in Terms, the Final number of

terms after preprocessing or reduction, and the

setting for "maxVocabulary".

vocabulary Fit Returns the final list of terms. The number of

terms included in this list is determined by the

"maxVocabulary" parameter setting.

zipfPlot Fit Returns information to construct the Zipf Plot.

This plots the number of times a term appears

in the document collection.

Evaluations: Text Mining – Latent Semantic Analysis

 Evaluation Action Definition

conceptImportance Fit Returns the Concept Importance table which

lists each concept, its singular value, the

cumulative singular value and the % singular
value explained. (The number of concepts

extracted is the minimum of the number of

documents and the number of terms.) These

values are used to determine which concepts

should be used in the Concept – Document

Matrix, Concept – Term Matrix and the Scree

Plot according to the Users selection on the

Representation tab.

screePlot Fit Returns information for constructing a Scree

Plot

termconceptMatrix Transform
Lists the most important concepts along the

top of the matrix and most frequently

appearing terms down the side of the matrix.

termImportance Transform Returns the most frequently appearing terms
along with their Importance factor.

vocabulary Fit Returns terms contained in the input Term-

Concept Matrix

Evaluations: Time Series – ARIMA and Lag Analysis

 Evaluation Action Definition

acfPlot
Forecast Lag Analysis: Plots the ACF

(Autocorrelation).

225

acvfPlot Forecast Lag Analysis: Plots the ACVF

(Autocovariance).

autocorrelation Forecast Lag Analysis: Returns the autocorrelation

function

autoCovariance Forecast Lag Analysis: Returns the autocovariance

function

coefficientsInfo Fit ARIMA: Returns the coefficients of the
ARMA model.

difference Forecast Lag Analysis: Returns the differenced data.

ljungBoxInfo Fit ARIMA: Returns the Ljung-Box Test for

Residuals information.

loglikelihood Fit ARIMA: Returns the LogLiklihood

pacfPlot Forecast Lag Analysis: Plots the PACF.

partialAutocorrelation Forecast Lag Analysis: Returns the partial

autocorrelation function

numIterations Fit ARIMA: Returns the number of iterations

completed.

Residuals Transform ARIMA: Returns the difference between the

actual and predicted values.retur

transformation Transform ARIMA: Returns the predicted values using

the fitted model when applied to a dataset.

tsPlot Transform Returns the time series plot: Actual vs

Forecast.

varCovarMatrix Fit ARIMA: Returns the variance-covariance

matrix.

Evaluations: Transformation Common Evaluations

 Evaluation Action Definition

transformation Transform Returns the transformed dataset.

Evaluations: Transformation -- Summarization

 Evaluation Action Definition

histogram Transform Returns information of summarization as a

histogram.

summary Transform Returns summary information for Big Data.

Evaluations: Transformation -- Imputer

 Evaluation Action Definition

recordsWithMissingValues Transform Returns records with missing values

recordsToDelete Transform Returns records that were deleted.

Evaluations: Transformation – Principal Components

 Evaluation Action Definition

principalComponents Transform Returns the principal components

principalEigenvalues Transform Returns the eigenvalues.

principalVariance Transform Returns the Explained Variance percentage.

tSquaredStatistic Transform Returns Hotelling's t-squared statistic per

record.

qStatistic Transform Returns the QStatistic per record.

Evaluations: Transformation -- Rescaler

 Evaluation Action Definition

statistics Fit Returns the fitted statistics (shift and scale) for

each rescaled variable.

transformation Transform Returns the transformed dataset.

Fitted Model ("fittedModel")
Used (only) when scoring a model. This section is similar to "datasets" but rather than refining imported data,

this section defines a model that you can bind to when performing an "action" such as "forecast", "predict",

"fit" or "transform".

In the example below, a previously fit linear regression model saved in PMML format (regression-linear-

model.xml) is imported into RASON as "pmmlModelSrc", then bound to the model, "mlrModel", which is

used to score the Boston Housing dataset (which was imported into RASON as "dataSrc" and then bound to

"myData").
{

 comment: 'regression: linear model scoring from pmml',

 datasources: {

 dataSrc: {

 type: 'csv',

 connection: 'BostonHousingReg.txt'

 },

 pmmlModelSrc: {

 type: 'xml',

 content: 'pmml-model',

 connection: 'PMML\\regression-linear-model.xml'

 }

 },

 datasets: {

 myData: {

 binding: 'dataSrc'

 }

 },

 fittedModel: {

 mlrModel: {

 binding: 'pmmlModelSrc'

 }

 },

 actions: {

227

 myDataPrediction: {

 data: 'myData',

 fittedModel: 'mlrModel',

 action: 'predict',

 evaluations: [

 'prediction'

]

 }

 }

}

 This section includes only one property, "binding".

Model Property Example Explanation

binding "binding":"mySrc"

Binds to a previously fit model saved

in either PMML or JSON format.

(String property)

PreProcessor ("preProcessor")
This optional section may be used for preliminarily data preparation or to compute values of some properties,

which are passed later, at parse-time, to the RASON DM engine. This section is parsed once, before the model
is parsed.

In the example below, "numLeafRecords, is defined within the "preprocessor" section and is then referenced

within the estimator, "treeEstimator", to set the parameter, "minNumRecordsInLeaves".

 preProcessor: {

 numLeafRecords: {

 formula: 'INT(MAX(1, ROWS(myTrainData) / 10))'

 }

 },

 estimator: {

 treeEstimator: {

 type: 'classification',

 algorithm: 'decisionTree',

 parameters: {

 priorProbMethod: 'EMPIRICAL',

 minNumRecordsInLeaves: 'numLeafRecords',

 maxNumNodes: 5,

 maxNumLevels: 3,

 maxNumSplits: 10,

 categoricalFeaturesNames: ['X1'],

 prunedTreeType: 'MIN_ERROR'

 }

 }

 },

See the table below for the properties available in the formula section of your RASON model.

Data Property Type Explanation

name "name": "parts" Use this property to define the array name.

dimensions "dimensions": [3,1]

"dimensions": [3]

Defines a 1 – dimensional vertical array with 3

elements.

"dimensions": [1,3]

"dimensions": [3,2]

Defines a 1-dimensional vertical array with 3

elements.

Defines a 2 – dimensional horizontal array with 3

elements.

Defines a 2 – dimensional array with 3 rows and 2
columns.

All arrays are 1 – based. If missing, array shape will

be defined by the shape of the value property;

however, for easier readability of the code, the use of

the dimensions property is recommended.

value "value": [1, 1, 1] Sets the value of the array. While it is unlikely that

this property would be required within formulas,

as typically the value of an object will be computed

by formula, it is permissible. See the example

model, RGSpace2.json for an example.

If dimensions property is missing, the shape of the
variable array will be determined by the shape of the

value property. However, it is recommended that the

dimensions property be used for readability

purposes.

formula "formula": "5 + 2.5*temp2"

"formula": "MATOP(Supply,

'min', '+',

transpose(Demand))"

Enter a formula to calculate a result or array which

will be used in a constraint, uncertain function or in

the objective function.

comment "comment": "partsReq array

holds the number of parts

required to produce each

product"

Enter a comment here to describe the data.

JSON/XML Formats for DataFrames
As mentioned earlier, a DataFrame is a two-dimensional size-mutable, potentially heterogeneous tabular data structure with
labeled axes (rows and columns). RASON DM extends the definition of a DataFrame to mark one or more columns as
index.

XLMinerSDK: XLMiner::DataFrame; SolverSDK: SolverPlatform::Data::CMemoryDataFrame

We’ll use the following example of DataFrame:

MyDF (2 x 3)

 integer double wstring

 IntCol (i) DoubleCol StringCol

Row1 1 1.5 A

Row2 2 2.5 B

This is DataFrame “MyDF” containing 2 rows and 3 columns. Column types are integer, double and wide string. Column
names are “IntCol”, “DoubleCol”, “StringCol.” “IntCol” is an index column. Row names are “Row1”, “Row2.”

Note: Currently, Row Names are directly available only in XLMinerSDK and not in SolverSDK. It can be considered as an
explicit index column for most commonly used case of 2D tables, where 2 dimensions are uniquely defined by Row Names

229

and Col Names (or their ordinal indices). The purpose is to allow quick get-set operations such as
DF[<row_name>,<col_name>]

JSON

The most complete format for a JSON DataFrame with all optional and required fields explicitly provided may be found
below.

{

 "name": "MyDF",

 "colNames": ["IntCol","DoubleCol","StringCol"],

 "rowNames": ["Row1","Row2"],

 "colTypes": ["integer","double","wstring"],

 "indexCols": ["IntCol"],

 "order": "col",

 "data": [[1,2],[1.5,2.5],["A","B"]]

}

The most minimal format for JSON DataFrame with all optional fields omitted and defaulted may be found below:

[[1,2],[1.5,2.5],["A","B"]]

The same data can be equivalently stored in a row-wise order:

{

 …

 "order": "row",

 "data": [[1,1.5,"A"],[2,2.5,"B"]]

}

The table below lists the available fields for a JSON DataFrame.

Field Optional? Type Possible Values Default Description

name Yes String “DataFrame” Name

colNames Yes Array [“Col1”,…,”ColN”] Column
Names

rowNames Yes Array [“Row1”,…,”RowN”] Row
Names

colTypes Yes Array {“integer”,”double”,“wstring”}
for each column

“wstring” for each
column

Column
Types

indexCols Yes Array Valid column names [] or null Index
Columns

order Yes String {“row”,”col”} “col” Whether
“data” is
stored row-
or column-
wise

data No 2D
Array

 Data

Note: Currently, if the “colTypes” field is omitted, we assume string columns.

XML

The most complete format for an XML DataFrame with all optional and required fields explicitly provided:

Column-wise order:

<?xml version="1.0" encoding="utf-8"?>
<DataFrame name="MyDF" order="col">
 <Rows>
 <Row name="Row1"/>
 <Row name="Row2"/>
 </Rows>
 <Columns>
 <Column index="true" name="IntCol" type="integer">
 <Value>1</Value>
 <Value>2</Value>
 </Column>
 <Column index="false" name="DoubleCol" type="double">
 <Value>1.5</Value>
 <Value>2.5</Value>
 </Column>
 <Column index="false" name="StringCol" type="wstring">
 <Value>A</Value>
 <Value>B</Value>
 </Column>
 </Columns>
</DataFrame>

Row-wise order:

<?xml version="1.0" encoding="utf-8"?>
<DataFrame name="MyDF" order="row">
 <Rows>
 <Row name="Row1">
 <Value>1</Value>
 <Value>1.5</Value>
 <Value>A</Value>
 </Row>
 <Row name="Row2">
 <Value>2</Value>
 <Value>2.5</Value>
 <Value>B</Value>
 </Row>
 </Rows>
 <Columns>
 <Column index="true" name="IntCol" type="integer"/>
 <Column index="false" name="DoubleCol" type="double"/>
 <Column index="false" name="StringCol" type="wstring"/>
 </Columns>
</DataFrame>

The most minimal formal for JSON DataFrame with all optional fields omitted and defaulted:

Column-wise order:

<?xml version="1.0" encoding="utf-8"?>
<DataFrame>

231

 <Columns>
 <Column>
 <Value>1</Value>
 <Value>2</Value>
 </Column>
 <Column>
 <Value>1.5</Value>
 <Value>2.5</Value>
 </Column>
 <Column>
 <Value>A</Value>
 <Value>B</Value>
 </Column>
 </Columns>
</DataFrame>

Row-wise order:

<?xml version="1.0" encoding="utf-8"?>
<DataFrame order="row">
 <Rows>
 <Row>
 <Value>1</Value>
 <Value>1.5</Value>
 <Value>A</Value>
 </Row>
 <Row>
 <Value>2</Value>
 <Value>2.5</Value>
 <Value>B</Value>
 </Row>
 </Rows>
</DataFrame>

XSD Schema Definition:

Note: It’s possible to infer the “order” (“col”/”order”) property directly from the XML given the structure of
“Rows”/”Columns” elements

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:simpleType name="orderType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="col"/>
 <xs:enumeration value="row"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:simpleType name="colType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="integer"/>
 <xs:enumeration value="double"/>
 <xs:enumeration value="wstring"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="DataFrame">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="Rows">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="Row">

 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="Value" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="Columns">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="Column">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" minOccurs="0" name="Value" type="xs:string"/>
 </xs:sequence>
 <xs:attribute name="index" type="xs:boolean"/>
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="type" type="colType"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string"/>
 <xs:attribute name="order" type="orderType"/>
 </xs:complexType>
 </xs:element>
</xs:schema>

RASON

Import

We use our regular syntax for RASON “datasources” with the {"type":"json"} and {"type":"xml"}:

{

 "datasources": {

 "jsonSrc": {

 "type": "json", // "xml"

 "connection": "df.json", // "df.xml"

 "selection": "object1.object2",

 "content": "json-model", // "pmml-model"

 }

 },

 "datasets": {

 "myData": {

 "binding": "jsonSrc"

 }

 }

}

Fields:

• "selection" property is optional and serves to access nested JSON/XML objects – see the example below. By

default, we assume non-nested JSON/XML structure.

233

{

 "x": {

 "y": {…df…}

 }

}

• "content" property is optional and serves to distinguish different objects that JSON/XML files can hold. If

omitted, “table” is assumed.

The data source with the {"type":"json"} can contain the following serialized objects:

o "content": "table" [DEFAULT] – table/dataframe in JSON format

o "content": "json-model"– fitted DM model in JSON format

The data source with the {"type":"xml"} can contain the following serialized objects:

o "content": "table" [DEFAULT] – table/dataframe in XML format

o "content": "pmml-model"– fitted DM model in JSON format

RASON DM has additional types “content”, which are not supported in any domain of RASON other than DM:

o "content": "corpus" – text mining, corpus of documents

o "content": "time-series" – single-variable time series data

o "content": "itemset" – association rules, transactions in the itemset format

Rason Decision Flow
Components

Introduction
Users can easily create multi-stage decision flows, with business rules, optimization, simulation and machine

learning models. Decision flow stages can execute the full range of predictive and prescriptive analytics:

DMN-compatible decision tables, Excel calculations, SQL operations, Monte Carlo simulations, mathematical

optimizations, or machine learning training or prediction steps. Multi-dimensional data is automatically passed

between stages in a standard, general "indexed data frame" form that maintains a dimensional information

across statistic and machine learning transformations. Users can choose to run only the stages that need

updating, easily determine the outcome of each stage and obtain results in JSON or OData form, at each stage

or at the final stage. Each stage can be written inline or can invoke a reusable model via its interface.

Models can be written in RASON or Excel with Analytic Solver and may be used in multiple decision flows.

Using automatic scheduling, users can schedule a decision flow to run at fixed intervals or specify how
recently updated they want each stage to be. RASON will automatically determine when to run each stage.

Decision Flow Components
The following components may be used when formulating either an inline decision flow or a decision flow

invoking reusable models.

flow/flowName "flow":"optDMWorkflow"

"flowName":"optDMWorkflow"

Assigns a name to the decision

flow.
inputParameters

"inputParameters":{

 "Number_to_build": {

 "type": "array",

 "value": "optStage.

 Number_to_build.

 finalValue,

 "comment": "description"

 }

}

Section heading where the

input results from the stage are

passed to the decision flow

stage.
 type The "type" property is used to

inform RASON of the type of
data being passed for the given

input parameter. Supported

properties are: number, string

or text, Boolean, array or

dataset (for data mining flows

only).
 value Use this property to pass the

input value.
 comment Use this component to provide

a brief description of the input.
invokeModel "invokeModel":"rescaling-

reusable"

"invokeModel":

Use this property to invoke a

resuable model from within a

decision flow.

235

"Name=MyExcelConnection"

Use

"Name=MyExcelConnection"

when the model is saved on a

OneDrive account where

MyExcelConnection is a

named data connection on the
user's MyAccount page. For

more information on Data

Connections in RASON, see

the Data Connections section

in the Rason User Guide.
modelDescription "modelDescription":"This is

a description of the

decision flow."

Use this component to provide

a brief description of the

decision flow.
modelType "modelType":"optimization" Use this component to specify

the problem type of the

invoked model in a decision

flow stage. Model Type can

be "optimization",

"simulation", "datamining" or
"calculation". For more

information on this

component, see More on the

Model Type Property within

the RASON User Guide.
outputResults "outputResults": {

 "Number_to_build":{

 "evaluations": ["finalValue"],

 "type": "array",

 "comment": "This is a comment"

 }

}

Section heading where the

output results from the stage

are reported.
 evaluations Use this component within

"outputResults" to pass the

output results within the

decision flow stage.
 type The "type" property is used to

inform RASON of the type of
data being passed for the given

input parameter. Supported

properties are: number, string

or text, Boolean, array or

dataset (for data mining flows

only).
 comment Use this component to provide

a brief description of the

output.

Solver Result Messages

Introduction
This chapter documents the Solver Result Messages that can be returned when you
optimize a model or run a simulation, and discusses some of the characteristics and

limitations of the Solver Engines.

Result Messages and Codes
When the solution process completes, a Solver Result Message will be returned. If

you are using the RASON.com Web ID, the result will appear at the bottom of the

screen in the answer field next to "status".

If you are using the RASON desktop IDE, the answer will appear on the right, also

net to "status".

237

Values returned for "variables" and "objective" (and "constraints" if used) are the

decision variable values and the objective function value for the best solution found.

Each Solver Result Message has a corresponding integer result code, (denoted as

"code") as documented in this chapter. If you are using the REST API to call the

RASON server, the endpoint GET rason.net/api/model/id/result (or

QuickSolve endpoints POST rason.net/api/optimize or POST

rason.net/api/simulation) will return this code and any final values

specified by finalValue: [].

The RASON Server returns the integer result codes and displays the Solver Result

Messages described in this section. The meanings of these messages have been

generalized for the LP/Quadratic Solver, SOCP Barrier Solver, nonlinear GRG

Solver, and Evolutionary Solver, and the conditions they may return. Please see the

explanations of each message, especially for return code 0, “Solver found a

solution.”

Plug-in Solver engines return the same codes and display the same messages as the
built-in Solver engines whenever possible, but they can also return custom result

codes (starting with 1000) and display custom messages, as described in their

individual documentation.

Interval Global Solver

The Interval Global Solver is only available when an Excel file is loaded directly

into the Solver SDK Platform using prob.load when called through a

programming language or the desktop IDE. The Interval Global Solver is not

available when called through the WEB IDE or the REST API. This engine can

return three of these custom result codes and messages, described at the end of this

section.
{"Exception": "You have 10757 variables. Your license allows 200 variables."}

This result is returned if you have not upgraded to the Pro or Platform tiers or if your

license has expired. For further information about this exception, please call

Frontline Systems at (775) 831-0300, or send an email to us at info@solver.com.
{"The remote server returned an error: (401) Unauthorized."}

This result is returned if your validation token is invalid. If, for any reason, you
would like to be issued a new token, you can invalidate your existing authorization

token by clicking the My Account link in the top right corner and then "invalidate".

To obtain a new authorization token you must first log out. A new authorization

token will be issued the next time you log in.
0. Solver found a solution. All constraints and optimality conditions are satisfied.

This means that the Solver has found the optimal or “best” solution under the

circumstances. The exact meaning depends on whether you are solving a linear or

quadratic, smooth nonlinear, global optimization, or integer programming problem,

as outlined below. Solvers for non-smooth problems rarely if ever display this

message, because they have no way of testing the solution for true optimality.

mailto:info@solver.com

If you are solving a linear programming problem or a convex quadratic

programming problem, the Solver has found the globally optimal solution: There is

no other solution satisfying the constraints that has a better value for the objective. It

is possible that there are other solutions with the same objective value, but all such

solutions are linear combinations of the current decision variable values.

If you are solving a linear (LP), convex quadratic (QP) or quadratically constrained

(QCP), or second order cone programming (SOCP) problem, the Solver has found

the globally optimal solution: There is no other solution satisfying the constraints

that has a better value for the objective. It’s possible that there are other solutions

with the same objective value, but all such solutions are linear combinations of the

current decision variable values.

If you are solving a smooth nonlinear optimization problem with no integer

constraints, Solver has found a locally optimal solution: There is no other set of

values for the decision variables close to the current values and satisfying the

constraints that yields a better value for the objective. In general, there may be other

sets of values for the variables, far away from the current values, which yield better
values for the objective and still satisfy the constraints.

If you are using the Interval Global Solver for global optimization of a smooth

nonlinear problem with no integer constraints, this means that the Solver has found

the globally optimal solution: There is no other solution satisfying the constraints

that has a better value for the objective. But this is subject to limitations due to the

finite precision of computer arithmetic that can, in rare cases, cause the Solver to

“miss” a feasible solution with an even better objective value.

If you are solving a mixed-integer programming problem (any problem with integer

constraints, this message means that the Branch & Bound method has found a

solution satisfying the constraints (including the integer constraints) with the “best
possible” objective value (but see the next paragraph). If the problem is linear or

quadratic, the true integer optimal solution has been found. If the problem is smooth

nonlinear, the Branch & Bound process has found the best of the locally optimal

solutions found for subproblems by the nonlinear Solver.
1. Solver has converged to the current solution. All constraints are satisfied.

This means that Solver has found a series of “best” solutions that satisfy the

constraints, and that have very similar objective function values; however, no single

solution strictly satisfies the Solver’s test for optimality. The exact meaning depends

on whether you are solving a smooth nonlinear problem with the LSGRG Solver or

the Interval Global Solver, or a non-smooth problem with the Evolutionary Solver.

When the LSGRG Solver or the Interval Global Solver is being used, this message

means that the objective function value is changing very slowly as the Solver

progresses from point to point. More precisely, the Solver stops if the absolute value
of the relative (i.e. percentage) change in the objective function, in the last few

iterations, is less than the Convergence tolerance on the Task Pane Engine tab. A

poorly scaled model is more likely to trigger this stopping condition, even if scaling

= True in engineSettings. If you are sure that your model is well scaled, you

should consider why it is that the objective function is changing so slowly.

When the Evolutionary Solver is being used to solve a nonsmooth model, this

message means that the “fitness” of members of the current population of candidate

solutions is changing very slowly. More precisely, the Evolutionary Solver stops if

99% or more of the members of the population have “fitness” values whose relative

(i.e. percentage) difference is less than the Convergence tolerance on the Task Pane

Engine tab. The “fitness” values incorporate both the objective function and a

penalty for infeasibility, but since the Solver has found some feasible solutions, this

test is heavily weighted towards the objective function values. If you believe that the

239

Solver is stopping prematurely when this test is satisfied, you can make the

Convergence tolerance smaller, but you may also want to increase the Mutation Rate

and/or the Population Size, in order to increase the diversity of the population of trial

solutions.
2. Solver cannot improve the current solution. All constraints are satisfied.

This means that the Solver has found solutions that satisfy the constraints, but it has

been unable to further improve the objective, even though the tests for optimality
(“Solver found a solution”) and convergence (“Solver converged to the current

solution”) have not yet been satisfied. The exact meaning depends on whether you

are solving a smooth nonlinear problem with the Standard LSGRG Solver, a global

optimization problem with the Interval Global Solver, or a non-smooth problem with

the Evolutionary Solver.

When the LSGRG Solver is being used, this message occurs very rarely. It means

that the model is degenerate and the Solver is probably cycling. One possibility

worth checking is that some of your constraints are redundant, and should be

removed.

When the Interval Global Solver is being used, this message is more common. It

means that the Solver has not found an “improved global solution” (a feasible
solution with an objective value better than the currently best known solution), in the

amount of time specified for the maxTimeNoImprove: True within

engineSettings. The reported solution is the best one found so far, but the

search space has not been fully explored. If you receive this message, and you are

willing to spend more solution time to have a better chance of “proving” global

optimality, increase the value of maxTimeNoImprove.

When the Evolutionary Solver is being used, this message is much more common. It

means that the Solver has been unable to find a new, better member of the population

whose “fitness” represents a relative (percentage) improvement over the current best

member’s fitness of more than the intTolerance option setting in

engineSettings, in the amount of time specified by the maxTimeNoImp

option also within engineSettings. Since the Evolutionary Solver has no way

of testing for optimality, it will normally stop with either “Solver converged to the

current solution” or “Solver cannot improve the current solution” if you let it run for

long enough. If you believe that this message is appearing prematurely, you can

either decrease the setting for intTolerance (even setting it to zero), or increase

the value for maxTimeNoImp .
3. Stop chosen when the maximum iteration limit was reached.

This result is returned when the Solver has completed the maximum number of

iterations, or trial solutions, set for iterations in engineSettings . The

default setting for this option is unlimited.

If you are solving a mixed-integer programming problem (any problem with integer

constraints), this message is relatively unlikely to appear. The Evolutionary Solver

uses maxSubproblems and maxIntegerSols specified in

engineSettings, and the Branch & Bound method (employed by the other

Solver engines on problems with integer constraints) uses maxSubproblems and

maxIntegerSols options also within engineSettings, to control the overall

solution process. The count of iterations against which the Iteration limit is

compared is reset on each new subproblem, so this limit usually is not reached.

If you are using Stochastic Decomposition to solve for a stochastic linear model, this

status will be returned if the algorithm performs over 5,000 iterations.
4. The objective (Set Cell) values do not converge.

This result is returned when the Solver is able to increase (if you are trying to

Maximize) or decrease (for Minimize) without limit the value calculated by the

objective, while still satisfying the constraints. Remember that, if you’ve set

type: "Minimize" within objective, the objective may take on negative

values without limit unless this is prevented by the constraints or bounds on the

variables. Set the assumeNonneg: True within engineSettings to impose

>= 0 bounds on all variables.

If the objective is a linear function of the decision variables, it can always be

increased or decreased without limit (picture it as a straight line), so the Solver will

seek the extreme value that still satisfies the constraints. If the objective is a
nonlinear function of the variables, it may have a “natural” maximum or minimum

(for example, =A1*A1 has a minimum at zero), or no such limit (for example,

=LOG(A1) increases without limit).

If you receive this message, you may have forgotten a constraint, or failed to

anticipate values for the variables that allow the objective to increase or decrease

without limit. The final values for the variable cells, the constraint left hand sides

and the objective should provide a strong clue about what happened.

The Evolutionary Solver never displays this message, because it has no way of

systematically increasing (or decreasing) the objective function, which may be non-

smooth. If you have forgotten a constraint, the Evolutionary Solver may find

solutions with very large (or small) values for the objective – thereby making you
aware of the omission – but this is not guaranteed.

5. Solver could not find a feasible solution.

This result is returned when the Solver could not find any combination of values for

the decision variables that allows all of the constraints to be satisfied simultaneously.

If you are using the LP/Quadratic Solver or the SOCP Barrier Solver, and the model

is well scaled, the Solver has determined for certain that there is no feasible solution.

If you are using the standard LSGRG Solver, the GRG method (which always starts

from the initial values of the variables) was unable to find a feasible solution; but

there could be a feasible solution far away from these initial values, which the Solver

might find if you run it with different initial values for the variables. To set initial

values for the variables, use the value property. In the example below the initial

values of all three variables contained in the x array are being set to "1" via the

value property.

variables: {

 x: {

 dimensions: [3],

 value: 0,

 lower: 0,

 finalValue: []

 }

Alternatively, the initial values of each variable could also have been set using

value: [0, 0, 0].

If you are using the Interval Global Solver, this message means that the Solver could

find no feasible solutions after a systematic exploration of the search space. The

Interval Global Solver is designed to “prove feasibility” as well as global optimality,

and there is very likely no feasible solution; but this is subject to limitations due to

the finite precision of computer arithmetic that can, in rare cases, cause the Solver to
“miss” a solution.

241

If you are using the Evolutionary Solver, the evolutionary algorithm was unable to

find a feasible solution; it might succeed in finding one if you run it with different

initial values for the variables (see above for an example) and/or increase the setting

for precision within engineSettings (which reduces the infeasibility

penalty, thereby allowing the evolutionary algorithm to explore more “nearly

feasible” points).

If you are solving a problem with chance constraints using simulation optimization,

this message means that the Solver could find no solution that satisfies these

constraints to the chance measures (such as 95%) that you specified. If you ‘relax’

the chance measures (to say 90%) and solve again, it’s possible that a feasible
solution will be found. For robust optimization, see result codes 26 through 29.

In any case, you should first look for conflicting constraints, i.e. conditions that

cannot be satisfied simultaneously. Most often this is due to choosing the wrong

relation (e.g. <= instead of >=) on an otherwise appropriate constraint.
6. Solver stopped at user’s request.

This result is returned only when the REST API endpoint, POST

RASON.net/api/model/id/stop is called.
7. The linearity conditions required by this Solver engine are not satisfied.

This result is returned if you’ve selected the LP/Quadratic Solver and the Solver’s

tests determine that the constraints are not linear functions of the variables or the

objective is not a linear or convex quadratic function of the variables; or if you’ve

selected the SOCP Barrier Solver and the Solver’s tests determine that the

constraints or the objective are not linear or convex quadratic functions of the

variables.

If you receive this message, examine the formulas for the objective and constraints
for nonlinear or non-smooth functions or operators applied to the decision variables

or set transformNonsmooth: True within modelSettings to have Solver

attempt to transform your nonlinear or nonsmooth model into a linear model. For

more information on Nonsmooth Model Transformation see this option in the

modelSettings explanation above.
8. {"Exception": "You have _____ variables. Your license allows _____ variables."}

This result is returned when the Solver determines that your model is too large for

the selected Solver engine within your Account tier. You’ll have to select – or

possibly upgrade to – another Solver engine appropriate for your problem, or else

reduce the number of variables, constraints, or integer variables to proceed.
9. Solver encountered an error value in a target or constraint cell.

This message appears when the Solver SDK Platform (on the RASON server or on

your desktop) evaluates the formulas in your RASON model and discovers an error

value while calculating the objective function, uncertain function or one of your

constraints. Most often, a more specific message will appear instead of “Solver
encountered an error value in a (nonspecific) target or constraint cell.” At a

minimum, the message will say “Error value returned at line number,” where line

number tells you exactly where the error was encountered. Other messages may tell

you more about the error. The general form of the message is:

Error condition at line number. Edit your formulas. Error condition is one of the

following:

Floating point overflow Invalid token

Runtime stack overflow Decision variable with formula

Runtime stack empty Decision variable defined more than once

String overflow Missing Diagnostic/Memory evaluation

Division by zero Unknown function

Unfeasible argument Unsupported Excel function

Type mismatch Excel error value returned

Invalid operation Non-smooth special function

See also result code 21, “Solver encountered an error computing derivatives,” and

result code 12, with messages that can appear when the Interpreter first analyzes the

formulas in your model.

“Floating point overflow” indicates that the computed value is too large to represent

with computer arithmetic; “String overflow” indicates that a string is too long to be
stored in a cell. “Division by zero” would yield #DIV/0! on the worksheet, and

“Unfeasible argument” means that an argument is outside the domain of a function,

such as =SQRT(A1) where A1 is negative.

“Unknown function” appears for functions whose names are not recognized by the

Interpreter, such as user-written functions. “Unsupported Excel function” appears

for the few functions that the Interpreter recognizes but does not support.

The Evolutionary Solver rarely, if ever, display this message – since they maintain a

population of candidate solutions and can generate more candidates without relying

on derivatives, they can simply discard trial solutions that result in error values in the

objective or the constraints. If you have a model that frequently yields error values

for trial solutions generated by the Solver, and you are unable to correct or avoid
these error values by altering your formulas or by imposing additional constraints,

you can still use the Evolutionary Solver to find (or make progress towards) a

“good” solution.
10. Stop chosen when the maximum time limit was reached.

This result is returned when Solver has run for the maximum time (number of

seconds) specified for maxTime within engineSettings. The default setting

for this option is unlimited.
11. There is not enough memory available to solve the problem.

This message appears when the Solver could not allocate the memory it needs to
solve the problem. If you are calling the Solver SDK through the RASON modeling

language to solve your model, you are likely to notice that solution times have

greatly slowed down, and the hard disk activity light in your PC has started to flicker

before you see this result.

You can save some memory by closing any Windows applications other than the

programming language you are using or the Desktop IDE and closing programs that

run in the System Tray
No model inputs defined.

This message means that the internal “model” (information about the variable cells,

objective, constraints, Solver options, etc.) is not in a valid form. An “empty” or

incomplete Solver model, perhaps one with no objective and no constraints other

than bounds on the variables, can cause this message to appear.
14. Solver found an integer solution within tolerance. All constraints are satisfied.

If you are solving a mixed-integer programming problem (any problem with integer

constraints) with a non-zero value for the intTolerance within

engineSettings, the Branch & Bound method has found a solution satisfying

the constraints (including the integer constraints) where the relative difference of this

solution’s objective value from the true optimal objective value does not exceed the

integer Tolerance setting. (For more information, see the explanation for Integer

Tolerance in the Engine Options section within the chapter, "Rason Model

Components"). This may actually be the true integer optimal solution; however, the

Branch & Bound method did not take the extra time to search all possible remaining

subproblems to “prove optimality” for this solution. If all subproblems were

243

explored (which can happen even with a non-zero intTolerance setting in some

cases), the result “Solver found a solution. All constraints are satisfied” (result code

0, shown earlier in this section) will be returned.
15. Stop chosen when the maximum number of feasible [integer] solutions was reached.

If you are using the Evolutionary Solver, this result is returned when the Solver has

found the maximum number of feasible solutions (values for the variables that

satisfy all constraints) allowed by the maxFeasibleSols option setting within

engineSettings. You may increase the value for maxFeasibleSols or leave

this setting at the default, unlimited.

If you are using one of the other Solver engines on a problem with integer con-

straints, this result is returned when the Solver has found the maximum number of

integer solutions (values for the variables that satisfy all constraints, including the

integer constraints) allowed by the maxIntegerSols option setting within

engineSettings. You may increase the value for maxIntegerSols or leave

the option setting at the default, unlimited. But you should also consider whether the

problem is formulated correctly, and whether you can add constraints to “tighten” the

formulation.
16. Stop chosen when the max number of feasible [integer] subproblems was reached.

If you are using the Evolutionary Solver, this result is returned when the Solver has

explored the maximum number of subproblems specified for maxSubproblems

within engineSettings. You may increase the value for the

maxSubproblems, leave the option setting at its default, unlimited.

If you are using one of the other Solver engines on a problem with integer con-

straints, this result is returned when the Solver has explored the maximum number of

integer subproblems (each one is a “regular” Solver problem with additional bounds

on the variables) specified for maxSubproblems within engineSettings.

You may increase the value for maxSubproblems or leave the options setting at

its default, unlimited. But you should also consider whether the problem is

formulated correctly, and whether you can add constraints to “tighten” the formula-

tion.
17. Solver converged in probability to a global solution.

If you are using the multistart methods for global optimization, with the standard

LSGRG solver, or a field-installable nonlinear Solver engine, this result is returned
when the multistart method’s Bayesian test has determined that all of the locally

optimal solutions have probably been found; the solution displayed on the worksheet

is the best of these locally optimal solutions, and is probably the globally optimal

solution to the problem.

The Bayesian test initially assumes that the number of locally optimal solutions to be

found is equally likely to be 1, 2, 3, … etc. up to infinity, and that the relative sizes

of the regions containing each locally optimal solution follow a uniform distribution.

After each run of the standard LSGRG Solver or field-installable Solver engine, an

updated estimate of the most probable total number of locally optimal solutions is

computed, based on the number of subproblems solved and the number of locally

optimal solutions found so far. When the number of locally optimal solutions
actually found so far is within one unit of the most probable total number of locally

optimal solutions, the multistart method stops and displays this message.
18. All variables must have both upper and lower bounds.

If you are using the Interval Global Solver, this message is returned if you have not

defined lower and upper bounds on all of the decision variables in the problem. You

must define bounds on all variables in order to use this engine. You should add the

missing bounds using the lower and upper properties within your variable array

definition, and try again.

If you are using the Evolutionary Solver or the multistart methods for global

optimization, and you have not set requireBounds: False within

engineSettings (it is set to True by default), this message will also appear.

You should add the missing bounds using the lower and upper properties within

your variable array definition, and try again.

In the example code below, lower bounds of 1 and upper bounds of 10 are applied to

each of the three elements in the x array.

variables: {

 x: {

 dimensions: [3],

 value: 1,

 lower: 10,

 finalValue: []

 }

Alternatively, unique lower and upper bounds for each variable could be specified

using:

lower: [1, 2, 3],

upper: [10, 11, 12],

Lower bounds of zero can be applied to all unbounded variables by using the

assumeNonneg option within engineSettings. For the Evolutionary Solver

or the multistart methods, such bounds are not absolutely required (you can set

requireBounds: False), but they are a practical necessity if you want the

Solver to find good solutions in a reasonable amount of time.
19. Variable bounds conflict in binary or alldifferent constraint.

This result is returned if you have both a binary or alldifferent constraint on a

decision variable and a <= or >= constraint on the same variable (that is inconsistent

with the binary or alldifferent specification), or if two or more of the same decision

variables appear in more than one alldifferent constraint. Binary integer variables

always have a lower bound of 0 and an upper bound of 1; variables in an alldifferent

group always have a lower bound of 1 and an upper bound of N, where N is the
number of variables in the group. You should check that the binary or alldifferent

constraint is correct, and ensure that alldifferent constraints apply to non-overlapping

groups of variables. If a <= or >= constraint causes the conflict, remove it if possible

and try to solve again.
20. Lower and upper bounds on variables allow no feasible solution.

This result is returned if you’ve defined lower and upper bounds on a decision

variable, where the lower bound is greater than the upper bound. This (obviously)

means there can be no feasible solution, but most Solver engines will detect this

condition before even starting the solution process, and display this message instead

of “Solver could not find a feasible solution” to help you more quickly identify the

source of the problem.
21. Solver encountered an error computing derivatives.

This message appears when the Interpreter in Solver SDK Platform encounters an

error when computing derivatives via automatic differentiation. The most common

cause of this message is a non-smooth function in your objective, uncertain function

or constraints, for which the derivative is undefined. But in general, automatic
differentiation is somewhat more strict than finite differencing: As a simple

example, =SQRT(test) evaluated at test=0 will yield this error message when the

Solver is using automatic differentiation (since the derivative of the SQRT function

is algebraically undefined at zero).
22. Variable appears in more than one cone constraint.

245

This result is returned if the same decision variable appears in more than one cone

constraint. You can define as many cone constraints as you want, but each one must

contain a different group of decision variables.
23. Formula depends on uncertainties, must be summarized or transformed. Learn more using the Solver Model dialog
Diagnosis tab.

This result is returned if you've defined constraints or an objective computed by

formulas that depend on uncertain parameters. Each such formula represents an

array of sample values, one for each realization of the uncertainties. For your model

to be well-defined, the objective or constraint must either be summarized to a single

value (such as a mean or percentile value) or transformed into a set of single-valued
constraints (through an automatic transformation in the Solver Model dialog).

To correct the problem, you can (i) use the chanceType property to define the

constraint as a chance constraint or the objective as an expected value or risk

measure objective (for more information see the Constraints and Objective sections

within the Rason Model Components chapter), or (ii) edit the formula so that the
objective formula value is computed by a PSI Statistics function such as PsiMean()

or PsiPercentile().
25. Simulation optimization doesn't handle models with recourse decisions.

This result is returned if you’ve defined a recourse decision variable, but you’ve set

simulationOptimization: True within modelSettings. Simulation

optimization, as defined in the academic literature and as implemented by Frontline

Systems doesn’t support the concept of recourse decision variables. To solve a
problem with recourse decisions, you'll need to solve using stochastic programming

and robust optimization methods, both of which do support recourse decision

variables.
26. Solver could not find a feasible solution to the robust chance constrained problem.

This result is returned when you solve a model with uncertainty and chance

constraints using robust optimization. When you do this, the Solver transforms your

original model with uncertainty into a robust counterpart model that is a conven-

tional optimization problem without uncertainty.

This message means that the Solver could not find a feasible solution to the robust

counterpart problem. It does not necessarily mean that there is no feasible solution

to the original problem; the robust counterpart is an approximation to the problem

defined by your chance constraints that may yield conservative solutions which over-

satisfy the chance constraints.

When this result is returned, try setting chanceAutoAdjust: True within

modelSettings and resolving. The Solver will then re-solve the problem,

automatically adjusting the sizes of robust optimization uncertainty sets created for

the chance constraints, in an effort to find a feasible solution.

If the same result is returned, you should proceed as described for result code 5,

“Solver could not find a feasible solution:” Look for conflicting constraints, i.e.

conditions that cannot be satisfied simultaneously, perhaps due to choosing the

wrong relation (e.g. <= instead of >=) on an otherwise appropriate constraint.
27. Solver found a conservative solution to the robust chance constrained problem. All constraints are satisfied.

This result may be returned when you solve a model with uncertainty and chance

constraints using robust optimization. When you do this, the Solver transforms your

original model with uncertainty into a robust counterpart model that is a conven-

tional optimization model without uncertainty.

The message means that the Solver found an optimal solution to the robust counter-

part model, but when this solution was tested against your original model (using

Monte Carlo simulation to test satisfaction of the chance constraints), the solution

over-satisfied the chance constraints; this normally means that the solution is

‘conservative’ and the objective function value can be further improved.

When this result is returned, try setting chanceAutoAdjust: True within

modelSettings and resolving. The Solver will then re-solve the problem,

automatically adjusting the sizes of robust optimization uncertainty sets created for
the chance constraints, in an effort to find a feasible solution.

An alternative course of action is to manually adjust the Chance measures of selected

chance constraints, and re-solve the problem. The automatic improvement algorithm

uses general-purpose methods to find an improved solution; you may be able to do

better by adjusting Chance measures based on your knowledge of the problem.
28. Solver has converged to the current solution of the robust chance constrained problem. All constraints are satisfied.

This result may be returned when you solve a model with uncertainty and chance

constraints using robust optimization, and you’ve set chanceAutoAdjust:

True within modelSettings. It means that the Solver has found the best

‘improved solution’ it can; the normal constraints are satisfied, and the chance

constraints are satisfied to the Chance level that you specified in the Solver

Parameters dialog.

This is usually a very good solution, but it does not rule out the possibility that you

may be able to find an even better solution by manually adjusting Chance measures

based on your knowledge of the problem, and re-solving.
999. Unexpected error. Please contact Technical Support.

This status signifies that an unexpected exception has occurred within Solver. If this

status is returned, please contact our technical support team at support@solver.com.

Interval Global Solver Result Messages

The Interval Global Solver can return many of the standard result codes and Solver

Result Messages described above, but it can also return one of three custom result

codes and messages, as described below.
1000. Interval Solver requires strictly smooth functions.

The Interval Global Solver considers the ‘special’ functions ABS, IF, MAX, MIN or

SIGN nonsmooth. If this message is returned, either reformulate model so that these

functions are not used or select a different engine.

1001. Function cannot be evaluated for given real or interval arguments.

This message may appear (instead of “Solver encountered an error value…”) if the

Interval Global Solver encounters an arithmetic operation or function that it cannot

evaluate for the current values of the decision variables. Recall that the Interval

Global Solver evaluates formulas over intervals such as [1, 2] as well as real

numbers. In the course of seeking a solution, the Solver may have to evaluate a

formula that (for example) involves division by an interval containing zero, or the

square root of an interval containing negative values, which yield errors. If you

receive this message, try adding constraints, or adjusting the right hand sides of
existing constraints to eliminate the problem.

For example, if you have trouble with a constraint (within your Excel model) such as

A1 >= 0, try a constraint such as A1 >= 0.0001 instead.

1002. Solution found, but not proven globally optimal.

This message indicates that the Interval Global Solver has systematically explored

the solution space and has found a solution that is very probably the global optimum,

but it has not been able to “prove global optimality.” Most often, this means that

there is more than a tiny difference between this solution’s objective value and the

mailto:support@solver.com

247

best bound on the global optimum’s objective value that the Solver has been able to

find.

RASON DMN/FEEL at
Conformance Level 3

Introduction
The latest version of RASON Decision Services supports DMN at Conformance Level 3 (CL3).

Creating independent DMN/Feel models
In the latest version of RASON Decision Services, DMN/Feel functionality no longer requires Excel formulas

when representing a DMN decision model. The entire model may now be represented using only FEEL

formulas, which are referred to as literal expressions. Such models are entirely independent of Excel syntax.

These models are referred to as pure DMN models. Notice that pure DMN models can only be

decision/calculation models. Currently, Rason Decision Services does not support optimization, simulation or

data mining models as pure DMN models.

The main consequence of avoiding Excel formulas is to preserve the authentic DMN/Feel types in formula

assignments.

For example,

dt: { feelFormula: “date(‘05-05-2021’)” }

preserves the specific Feel type ‘feel date’ in the variable dt, so we may use in a later feelFormula: “dt.day”.

Download DMN examples from the Editor tab at www.RASON.com by clicking the "Download Example

Data" icon on the ribbon.

List data and related functions

A list of elements is a data structure that holds multiple elements.

For example:

D1: { value: [1, 5, 2] } is a list of 3 scalar elements, which is exactly the same as a 1D array in RASON

Decision Services.

D2: { value: [[1,5], [7,3], [9,4]] } is a list of 3 list elements. Every element of the list D2 is another list of length
2. Because all list elements of D2 are identical (the same length), the structure D2 is exactly the same as the 2D

array in RASON Decision Services.

DMN requires that all elements of a list must be of the same type. A "custom" type offers more flexibility. For

more information on Custom Types in RASON, see the chapter Custom Type Definitions in the RASON User

Guide. Lists may be simple 1D or 2D arrays or have custom types attached to them.

The goal of this example is to add a new record to the existing list using the append function.

http://www.rason.com/

249

{

 "comment": "Example of a list with typeDef collection",

 "typeDefs": {

 "tLoan": {

 "language": 'feel',

 "components": ['principal', 'rate', 'termMonths'],

 "types": ['number', 'number', 'number']

 },

 "tLoanList: {

 "language": 'feel',

 "isCollection": true,

 "typeRef": 'tLoan'

 }

 },

 "data: {

 "loan": {

 "type": 'tLoan',

 "value": [300000, 0.02, 360],

 "binding": 'get'

 },

 "loanList": {

 "type": 'tLoanList',

 "value": [[600000, 0.0275, 360], [300000, 0.03, 360]]

 }

 },

 "formulas": {

 "result": {

 "feelFormula": "append(loanList, loan)",

 "finalValue": [] }

 }

 }

 }

The collection of records tLoanList is a collection of records of the custom component type tLoan. The

variable loan is of type tLoan and is used to represent a single record in the list variable. Though the value of

the variable loan is initialized as [300000, 0.02, 360] and looks like a list it is not a list but a component

structure/record of type tLoan. By default, this vector will be used in computations unless a new vector of

values is passed as query parameters to the RASON model.

Since the list variable of type tLoanList is a collection of records of type tLoan, it represents a table with

records. It’s important to understand that each element of the list loanList is not another list, but an element of

the custom type tLoan.

The full list is returned for result: { finalValue: [] }.

Because the custom type is preserved in the variable result, future formulas may utilize result[1], result.rate, or

result[1].rate to extract specific information.

• result[1] will return the first record as tLoan.

• result.rate will return the entire rate column as a vertical 1D array without custom type.

• result[1].rate will return the rate of the first record as a scalar number.

See the listed example functions below implemented for DMN CL3 for both type and non-typed lists. These

functions and restricted to 1D and 2D array structures.

count(list) returns integer count([1,2,5]) = 3

max(list) returns list elem type max([1,2,5]) = 5

max(num1, num2,…) returns number max(1,2,5) = 5

min(list) returns list elem type min([1,2,5]) = 1

min(num1, num2,…) returns number min(1,2,5) = 1

sum(list) returns number sum([1,2,5]) = 8

sum(num1, num2,…) returns number sum(1,2,5) = 8

roundUp(n, scale) returns number Returns n with given scale, rounded up.

 roundup(5.5, 0) = 6; roundUp(-5.5, 0) = -6

 roundUp(1.121, 2) = 1.13; roundUp(-1.126, 2) = -1.13.

roundDown(n, scale) returns number Returns n with given scale, rounded down.

rounddown(5.5, 0) = 5; rounddown(-5.5, 0) = -5

 rounddown(1.121, 2) = 1.12; rounddown(-1.126, 2) = -1.12.

roundHalfUp(n, scale) returns number Returns n with given scale; rounded up.

 roundHalfUp(5.5, 0) = 6; round HalfUp(-5.5, 0) = -6

 roundHalfUp(1.121, 2) = 1.12; roundHalfUp(-1.126, 2) = -1.13

roundHalfDown(n, scale) returns number Returns n with given scale; rounded down.

 roundHalfDown(5.5, 0) = 5; round HalfUp(-5.5, 0) = -5

 roundHalfUp(1.121, 2) = 1.12; roundHalfUp(-1.126, 2) = -1.13

Signatures for other statistics functions, such as mean, median, mode, product, stdev, are the same as sum, i.e.

mean(num1, num2, …).

and(list), all(list) returns Boolean

and(bool1, bool2,…), all(bool1, bool2,…) returns Boolean

or(list), any(list) returns Boolean

or(bool1, bool2,…), any(bool1, bool2,…) returns Boolean

sublist(list, start pos, [length]) returns list sublist([1,2,5], 2) = [2,5]

append(list, elem1, elem2,…) returns list append([1,2,5], 0) = [1,2,5,0]

concatenate(list1, list2,…) returns list concatenate([1,2,5], [3,4]) = [1,2,5,3,4]

insertBefore(list, pos, elem) returns list insertBefore([1,2,5], 3, 0) = [1,2,0,5]

listContains(list, elem) returns Boolean listContains([1,2,5], 0) = false

remove(list, pos) returns list removes([1,2,5], 3) = [1,2]

reverse(list) returns list reverse([1,2,5]) = [5,2,1]

indexOf(list, match) returns list indexOf([1,2,1,2,3], 2) = [2,4]

union(list1, list2,…) returns list union([1,2,3], [1,2,5]) = [1,2,3,5]

distinctValues(list) returns list distinctValues([1,2,1,2,3]) = [1,2,3]

flatten(list) returns list flatten([1,2], [2,3]) = [1,2,2,3]

listReplace(list, position/match, newItem) returns listReplace ([2,4,7,8],3,6) = [2,4,6,8]

251

list, number or Boolean function(item, newItem), listReplace([2,4,7,8,function(item, newItem item <

newItem,5) = [5,5,7,8]

any element including null

Formatting results of box objects as custom types

Decision tables are key box objects in decision modeling. A decision table may have one or more outputs.

• If the result is a single successful rule evaluation, depending on the single or many outputs, we

currently return either a scalar value or a horizontal vector.

• If the result is multiple successful rule evaluations (with the Collect hit policy) and the output is single,

we return a vertical vector.

• In case of many outputs and many successful rule evaluations, we return a 2D array which resembles a

table with columns for each output and records for each success. In any case, the result is either scalar

or pure array and we can reference this information in later formulas by the standard rules: scalars as

scalars and arrays by whole names or by the index operator.

DMN CL3 introduces a way of formatting the results of decision tables and box functions through custom

types. This approach allows users to reference the result more efficiently. Here is an example in which a

decision table result is formatted.

{

 "typeDefs": {

 "tParkingFee": {

 "language": "FEEL",

 "components": ['parkingFee','durVal'],

 "types": ['number','duration']

 }

 },

 "decisionTables": {

 "tblParkingFee": {

 "inputs": ["dtDuration"],

 "outputs": ["durVal", "parkingFee"],

 "refTypes": ["duration", "duration", "number"],

 "rules": [

 ["<'PT20M'", "duration(dtDuration)", 0],

 ["['PT20M'..'PT1H')", "duration(dtDuration)",

 "2 *ceiling(duration(dtDuration)/duration('PT20M'))"],

 ["['PT1H'..'PT4H')", "duration(dtDuration)", "6

 *ceiling(duration(dtDuration)/duration('PT1H'))"],

 [">='PT4H'", "duration(dtDuration)",

 "30*ceiling(duration(dtDuration)/duration('P1D'))"]],

 "hitPolicy": "U",

 "resultType": "tParkingFee"

 }

 },

 "data": {

 "dur": { value: "PT25M", comment: "period" }

 },

 "formulas": {

 "fee": { feelFormula: "tblParkingFee(,,dur)", finalValue: [] },

 "res": { feelFormula: "fee.durVal.minutes", finalValue: [] }

 }

}

The decision table (tblParkingFee) has two outputs (durVal and parkingFee) and a hit policy of ‘U’. The

result is a single record with two columns. We define a custom component type tParkingFee with the same

component names as the outputs of the decision table. Then we set the table property resultType:

“tParkingFee” to that custom type. The results, durVal and parkingFee are formatted using refTypes,

"duration" and "number", respectively.

This example uses only feelFormulas in order to preserve the Feel types. The first formula assigns the decision

result to the variable “fee”, which is a 1D array of 2 elements – the outputs. However, this time “fee” has the

tParkingFee custom type attached to it. Without the custom type, the variable “fee” may be referenced only by

its name or through the index operator.

With the more flexible custom type and reference, only the desired component in the next formula fee.durVal

is required. Since feel formulas preserve Feel types, the component fee.durVal is of type duration. The

number of minutes that the car was parked can be extracted from the duration: feelFormula:

“fee.durVal.minutes”.

See the chapter Defining Decision Tables in RASON within the RASON User Guide for more information on

Decision Tables.

Appendix: List of Examples

DMN Feel Date Time. json

DMN List example. json

DMN List with typeDef collection. json

DMN DT with typeDef result. json

DMN Box Fun with typeDef result. json

DMN Context example. Json

253

Appendix

Microsoft LET Function
The newly introduced Micorsoft Excel LET is supported in RASON Decision Services models.

In Excel, the LET function assigns a name to a calculation result which allows for the storage of intermediary

calculations, values or defined names within a formula. See Microsoft's Office Support for a complete

documentation of this function.

LET Function

To use this function, pairs of names and associated values are defined, up to 126 pairs. The last argument is a

calculation that uses all defined names, for example: =LET(x, 2, x + 9) where LET evaluates to 11. In the

example below, this function is used in an intermediary formula within the "formulas" section of the RASON

model.

"formulas": {

 "form1": { formula: "LET(x, 1+1, LET(y, 2, A5+x+y))" }

}

This function can also be used to formulate an uncertain function in a simulation or stochastic optimization

model or an objective function or constraint in an optimization or stochastic/simulation optimization model.

 "uncertainFunctions": {

 "uncFunc1": { formula: "LET(x, 1+1, LET(y, 2, A5+x+y))" }

}

To see this function used in conjunction with the LAMBDA fuction, see the Box Functions section within the

first chapter of this guide. See Microsoft's Office Support for a complete documentation of this function. See

below for an example of how to use this function in conjunction with RASON.

Psi Distribution Functions
The PSI Distribution functions are used to define the ‘nature of the uncertainty’ assumed by uncertain variables.

They can be broadly classified into four groups:

• Continuous analytic distributions such as PsiUniform() and PsiNormal()

• Discrete analytic distributions such as PsiBinomial() and PsiGeometric()

• Custom distributions such as PsiCumul() and PsiGeneral()

• Special distributions such as PsiSip() and PsiSlurp()

On each trial of a simulation, Risk Solver Engine (RSE) draws a random sample value from each PSI

Distribution function you use. PsiSip() and PsiSlurp() operate differently: On each trial, RSE draws the next

sequential value listed in the SIP or SLURP for that uncertain variable. Then Risk Solver uses these sample

values to calculate your model and its uncertain functions

https://support.microsoft.com/en-us/office/let-function-34842dd8-b92b-4d3f-b325-b8b8f9908999
https://support.microsoft.com/en-us/office/let-function-34842dd8-b92b-4d3f-b325-b8b8f9908999

The sample values drawn for PSI Distribution functions other than PsiSip() and PsiSlurp() depend on the type of

distribution function, the parameters of the distribution (for example, mean and variance for the PsiNormal

distribution), and the property functions that you pass as additional arguments to the distribution function call,

which can shift, truncate, or lock the distribution, or correlate its sample values with samples drawn for other

uncertain variables.

To learn more about the analytic probability distributions supported by the RASON modeling language, see the

Appendix. , you can consult standard reference texts on probability, statistics, and Monte Carlo simulation,

such as Simulation Modeling and Analysis, 4th Ed. by Averill Law, Statistical Distributions, 3rd Ed. by Merran

Evans, Nicholas Hastings and Brian Peacock, Univariate Discrete Distributions, 3rd Ed. by Norman Johnson,

Adrienne Kemp and Samuel Kotz, or Continuous Univariate Distributions, Vol. 1 & 2 , 2nd Ed. by Norman

Johnson, Samuel Kotz and N. Balakrishnan.

Continuous Analytic Distributions
All continuous analytic distributions supported in RASON may be found below.

PsiBeta

PsiBeta (1,2,...)

PsiBeta (α1,α2) is a flexible distribution for modeling probabilities based on Bayesian statistics. The Beta

distribution can be used as an approximation in the absence of specific distribution information. Typical uses

include modeling time to complete a task in project networks and Bayesian Statistics.

The Beta distribution can take on a variety of shapes depending on the values of the two parameters α1 and α2.

The Beta distribution with α1 = α2 = 1 is the Uniform (0,1) distribution. The Beta distribution with α1 = 1, α2 = 2
is the Left Triangular distribution. The beta distribution with α1 = 2, α2 = 1 is the Right Triangular distribution.

A random variable X is defined by PsiBeta (α1,α2) if and only if 1 – X is defined by Beta (α2,α1).

Parameters

1 2, 0  

Range of Function Values

 0,1

Probability Density Function

()
()

()
()

()

() ()

21

1

2

11

1 2

1 2

11
1

1 2

0

1
if 0,1

,

0 otherwise

, is the Beta function

, 1

x x
x

f x B

B

B t t dt







 

 

 

−−

−

−

 −


= 



= −

255

Cumulative Distribution Function

()
()

()

()

()

1 2

1 2

1 2

1 2

,

,

, is the Incomplete Beta Function

, is the Beta Function

x

x

B
F x

B

B

B

 

 

 

 

=

Mean

1

1 2



 +

Variance

() ()
1 2

2

1 2 1 2 1

 

   + + +

Skewness

()2 1 1 2

1 2 1 2

2 1

2

   

   

− + +

+ +

Kurtosis

() () ()

()()

2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

3 1 2 6

2 3

       

     

 + + + + + −
 

+ + + +

Median

Not applicable

Mode

() ()

() ()

1
1 2

1 2

1 2

1 2 1 2

1 2 1 2

1 2

1
 if 1, 1

2

0 and 1 if 1, 1

0 if 1, 1 or if 1, 1

1 if 1, 1 or if 1, 1

does not uniquely exist if 1


 

 

 

   

   

 

−
 

+ −

 

  = 

   =

= =

PsiBetaGen

PsiBetaGen (1,2,a,b,...)

PsiBetaGen (α1,α2,a,b) is a rescaled and relocated Beta distribution, with lower and upper bounds given
respectively by a and b. The shape parameters α1,α2 play the same role as in the PsiBeta function. If X is a Beta

random variable with support in [0,1], then a + (b – a) X is a Beta random variable with support in [a,b].

Parameters

1 2, 0

a b

  



Range of Function Values

 ,a b

Probability Density Function

()
() ()

()()

()

1 2

1 2

1 1

1

1 2

1 2

,

, is the Beta Function

x a b x
f x

B b a

B

 

 
 

 

− −

+ −

− −
=

−

Cumulative Distribution Function

()
()

()

()

()

1 2

1 2

1 2

1 2

,
,

,

, is the Incomplete Beta Function

, is the Beta Function

z

x

B x a
F x z

B b a

B

B

 

 

 

 

−
= =

−

Mean

()1

1 2

a b a


 
+ −

+

Variance

() ()
()

21 2

2

1 2 1 2 1
b a

 

   
−

+ + +

Skewness

()2 1 1 2

1 2 1 2

2 1

2

   

   

− + +

+ +

Kurtosis

() () ()

()()

2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

3 1 2 6

2 3

       

     

 + + + + + −
 

+ + + +

Median

Not applicable

257

Mode

()

() ()

() ()

1
1 2

1 2

1 2

1 2 1 2

1 2 1 2

1 2

1
- if 1, 1

2

 and if 1, 1

 if 1, 1 or if 1, 1

 if 1, 1 or if 1, 1

does not uniquely exist if 1

a b a

a b

a

b


 

 

 

   

   

 

−
+  

+ −

 

  = 

   =

= =

PsiBetaSubj

PsiBetaSubj (a,c,μ,b,...)

PsiBetaSubj is a flexible distribution like PsiBetaGen, but with parameters you choose for the minimum (a),

most likely (c), mean (µ) and maximum (b) values. These parameters are used to compute the shape parameters

α1,α2 used in the PsiBeta function.

Parameters

()

()()

1 2

2 1

1

 if
2

 if
2

 if c=
2

The shape parameters , can be determined using

2
2

a b

a c b

a b
c

a b
c

a b

b

a

a b
a c

c b a



 

 

 

 


 








 

 

+
 

+
 

+
=

−
=

−

+ 
− − 

 =
− −

Range of Function Values

 ,a b

Probability Density Function

()
() ()

()()

()

1 2

1 2

1 1

1

1 2

1 2

,

, is the Beta Function

x a b x
f x

B b a

B

 

 
 

 

− −

+ −

− −
=

−

Cumulative Distribution Function

()
()

()

()

()

1 2

1 2

1 2

1 2

,
,

,

, is the Incomplete Beta Function

, is the Beta Function

z

x

B x a
F x z

B b a

B

B

 

 

 

 

−
= =

−

Mean



Variance

()()()
3

a b c

a b c

  



− − −

+ + −

Skewness

() ()()

()()

2 3

2
2

a b c a b c

a b a b
c

  

 


+ − − + + −

+ − −
+ −

Kurtosis

() () ()

()()

2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

3 1 2 6

2 3

       

     

 + + + + + −
 

+ + + +

Median

Not applicable

Mode

c

PsiCauchy

PsiCauchy (λ,...)

PsiCauchy (λ) is a distribution with a central peak, with very heavy tails and no finite moments; it has no
moments such as mean, variance, etc. defined, but its mode and median are both equal to zero. The ratio of two

independent standard Normal random variables is a Cauchy distribution with parameter λ = 1.

Parameters

0 

Range of Function Values

(),− 

259

Probability Density Function

()
()

2

1

1

f x
x



=
 

+
  

Cumulative Distribution Function

()
1 1

arctan
2

x
F x

 

 
= + 

 

Mean

Not defined

Variance

Not defined

Skewness

Not defined

Kurtosis

Not defined

Median

0

Mode

0

PsiChiSquare

PsiChiSquare (df,...)

PsiChiSquare (df) is a distribution with a finite lower bound of zero, and an infinite upper bound. It is usually

used in statistical significance tests.

The Chi Square distribution is a special case of the Gamma distribution. A Chi Square random variable with

parameter df = 2 is the same as an Exponential random variable with mean 0.5. As the parameter df approaches

infinity, the Chi Square distribution tends to a Normal distribution.

Parameters

0, integerdf 

Range of Function Values

)0,

Probability Density Function

()
()

()

()

()

1
2 2

2

1

0

1

2
2

 is the Gamma Function,

df
x

df

a t

f x x e
df

a

a t e dt

− −



− −

=





 = 

Cumulative Distribution Function

()
()

()
()

()

,
2 2

2

 is the Gamma Function,

, is the Incomplete Gamma Function

df x

F x
df

a

a b





=





Mean

df

Variance

2df

Skewness

8
df

Kurtosis

12
3

df
+

Median

2
3

df −

Mode

()2 if 2

0 if 1

df df

df

 − 


=

PsiErf

PsiErf (h,...)

PsiErf is a distribution based on the “error function” ERF(x). Its shape is closely related to the Normal

distribution.

Parameters

0h 

261

Range of Function Values

(),− 

Probability Density Function

() ()
2

hxh
f x e



−
=

Cumulative Distribution Function

() ()
()

()
2

0

2

 is the Error Function

2
v

t

F x hx

v

v e dt


−

= 



 = 

Mean

0

Variance

2

1

2h

Skewness

0

Kurtosis

3

Median

0

Mode

0

PsiErlang

PsiErlang (k,β,...)

PsiErlang (k,β) is a distribution with a finite lower bound, closely related to the Gamma and Exponential

distributions. It has applications in reliability and queuing models. When the parameter k = 1, the Erlang

distribution is the same as an Exponential distribution.

Parameters

, 0

 integer

k

k

 

Range of Function Values

)0,

Probability Density Function

()
()

()

1

1 !

x
k

k

x e
f x

k





−
−

=
−

Cumulative Distribution Function

()
()

()

,

1 !

, is the Incomplete Gamma Function

x
k

F x
k

x y






 
 
 =

−

Mean

k

Variance

2k

Skewness

2

k

Kurtosis

6
3

k
+

Median

Not defined

Mode

()1k −

PsiExponential

PsiExponential (β,...)

PsiExponential (β) is a distribution with a finite lower bound and rapidly decreasing values. It can be used to

represent time between random occurrences in queuing and reliability engineering applications.

The minimum of a set of independent exponential random variables is also an exponentially distributed random

variable.

Parameters

0 

Range of Function Values

)0,

263

Probability Density Function

()
1 x

f x e 



−

=

Cumulative Distribution Function

() 1 if 0

0 otherwise

x

e x
F x


− − 

= 


Mean



Variance

2

Skewness

2

Kurtosis

9

Median

()ln 2

Mode

0

PsiGamma

PsiGamma (,β,...)

PsiGamma (α,β) is a flexible distribution with a finite lower bound and decreasing values. PsiExponential,

PsiErlang, and PsiChiSquare are special cases of PsiGamma, as explained below. The Gamma distribution is

often used to model the time between events that occur with a constant average rate.

When α = 1, the Gamma distribution is the same as an Exponential distribution. If the parameter α is integer,

then the Gamma distribution is the same as the Erlang distribution. The Gamma distribution with α = a/2, β = 2

is the same as a Chi Square distribution with parameter a (a degrees of freedom).

If X1, X2, …Xm are independent random variables with Xi ~ PsiGamma (αi,β), then their sum also has a Gamma

distribution with parameters (α1 + α2 + …+ αm ,β). Additionally, the Gamma distribution approaches a normal

distribution with the same mean and standard deviation as the parameter α approaches infinity.

Parameters

, 0  

Range of Function Values

)0,

Probability Density Function

() ()

()

1

 if 0

0 otherwise

 is the Gamma Function

x

x e
x

f x

  





−
− −

 
=  






Cumulative Distribution Function

()
()

()

()

,

, is the Incomplete Gamma Function

x

F x

a b

 






=


Mean



Variance

2 

Skewness

2



Kurtosis

6
3


+

Median

Not defined

Mode

()1 if 1

0 otherwise

   − 



PsiInvNormal

PsiInvNormal (μ,λ,...)

PsiInvNormal (µ,λ) is a distribution with a finite lower bound, where it is zero. The Inverse Normal

distribution is used to model Brownian motion and other diffusion processes. As the parameter λ tends

to infinity, the Inverse Normal distribution approaches a Normal distribution.

Parameters

, 0  

Range of Function Values

()0,

265

Probability Density Function

()

()
2

22

32

x

x
f x e

x

 





 − −
 
 
 

 
 =
 
  

Cumulative Distribution Function

()

()

2

1 1

 is the Error Function

x x
F x e

x x

z



 

 

 
 
 

      
=  − +  − +         

      



Mean



Variance

3



Skewness

3




Kurtosis

15 3



+

Median

Not defined

Mode

1
2 2

2

9 3
1

4 2

 


 

   
+ −  

   

PsiLaplace

PsiLaplace (β,...)

PsiLaplace (β) is an unbounded, fat-tailed distribution that describes the difference between two
independent exponentials. If a random variable X has a Laplace distribution, then |X| has an

Exponential distribution.

Parameters

0 

Range of Function Values

(),− 

Probability Density Function

()
2

x

e
f x





 
− 

 

=

Cumulative Distribution Function

()

1
1 if 0

2

1
 otherwise

2

x

x

e x

F x

e





−
− 

= 



Mean

0

Variance

22

Skewness

0

Kurtosis

3

Median

0

Mode

0

PsiLogistic

PsiLogistic (μ,s,...)

PsiLogistic (µ,s) is an unbounded distribution, symmetric around its mean, with broader tails than the

Normal distribution. The Logistic distribution is often used to model growth processes.

Parameters

0s





Range of Function Values

(),− 

Probability Density Function

()

()

()
2

1

x
s

x
s

e
f x

s e





− −

− −
=

 
+ 

 

267

Cumulative Distribution Function

() ()

1

1
x

s

F x

e
− −

=

+

Mean



Variance

2 2

3

s

Skewness

0

Kurtosis

6/5

Median



Mode



PsiLogLogistic

PsiLogLogistic (γ,β,,...)

PsiLogLogistic (γ,β,α) is a distribution with a finite lower bound. The natural log of PsiLogLogistic is a

Logistic random variable. The Log-Logistic distribution can be used to model the time to perform a job or task.

Parameters

, 0 





Range of Function Values

), 

Probability Density Function

()

1

2

1

x

f x

x















−

 −
 
 =

  −
+  

   

Cumulative Distribution Function

()
1

1

F x

x






=
 

+  
− 

Mean

cos

 for 1

ec





 


 
 
 

+ 

Variance

2 22
2cos cos

 for 2

ec ec
  

 
  




    
−    

     

Skewness

2
3

2

3
2

2

3 6 2 2
3cosec cos cos cos

 for 3

2
2cos cos

ec ec ec

ec ec

     

     


   

   

        
− +        

         
      

−      
     

Kurtosis

Not defined

Median

Not defined

Mode

1

1
 for 1

1

0 otherwise


  



 − 
 +   + 



PsiLogNormal

PsiLogNormal (μ,σ,...)

PsiLogNormal (µ,σ) is a distribution with a finite lower bound and has mean µ and standard deviation σ. The

LogNormal distribution can be used to model quantities that are products of many small independent variables.

The natural log of PsiLogNormal is a Normal random variable.

Parameters

, 0  

Range of Function Values

)0,

269

Probability Density Function

()

2
ln '

'

1

2

'

2 2
' '

2 2 2

2

ln 1 , ln

x

e
f x

x







 
 

  

− 
−   

 

=

  
 = + =   +   

Cumulative Distribution Function

()

()

'

'

ln

 is the Error Function

x
F x

a





 −
=  

 



Mean



Variance

2

Skewness

3

3

3 

 
+

Kurtosis

6

4 3 2

1 2 1 3 1 3
  

  

     
+ + + + + −     

     

Median

2

2 2



 +

Mode

()

4

3
2 2 2



 +

PsiLogNorm2

PsiLogNorm2 (μ,σ,...)

PsiLogNorm2 (µ,σ) is a distribution with a finite lower bound. It can be used to model quantities that are

products of many small independent variables. The natural log of PsiLogNorm2 is a Normal random variable.

In contrast to PsiLogNormal(), the parameters µ and σ of PsiLogNorm2() are the mean and standard deviation

of the corresponding Normal distribution.

Parameters

0



 

Range of Function Values

)0,

Probability Density Function

()

2
ln1

2

2

x

e
f x

x







− 
−   

 

=

Cumulative Distribution Function

()

()

ln

 is the Error Function

x
F x

a





− 
=  

 



Mean

2

2e
+

Variance

()
2 221e e  +−

Skewness

()
2 2

2 1e e + −

Kurtosis

6

2 2 24 3 22 3 3e e e  + + −

Median

e

Mode

2

e −

PsiMaxExtreme

PsiMaxExtreme (m,s,...)

PsiMaxExtreme (m,s) is the positively skewed form of the Extreme Value distribution, which is the limiting

distribution of a very large collection of random observations.

271

Parameters

0

m

s 

Range of Function Values

(),− 

Probability Density Function

()
()

,

x m

z s
z

f x e z e
s

− −

−= =

Cumulative Distribution Function

Not defined

Mean

Not defined

Variance

Not defined

Skewness

Not defined

Kurtosis

Not defined

Median

Not defined

Mode

Not defined

PsiMinExtreme

PsiMinExtreme (m,s,...)

PsiMinExtreme is the negatively skewed form of the Extreme Value distribution, which is the limiting

distribution of a very large collection of random observations.

Parameters

0

m

s 

Range of Function Values

(),− 

Probability Density Function

()
()

,

x m

z s
z

f x e z e
s

−

−= =

Cumulative Distribution Function

Not defined

Mean

Not defined

Variance

Not defined

Skewness

Not defined

Kurtosis

Not defined

Median

Not defined

Mode

Not defined

PsiMyerson

PsiMyerson (a,b,c,t,...)

PsiMyerson (a,b,c,t) is a generalized LogNormal/Normal distribution, specified using the bottom percentile (a),

50th percentile (b), top percentile (c) and optional tail percentage parameter (t). This distribution is bounded on

the side of the narrower percentile range; when both the bottom and top percentile ranges are equal, then this

distribution is unbounded.

If the t parameter (tail percentage) is present then the a and c parameters (bottom and top percentiles) are used

to construct a distribution PDF in such a way that the left and right tails (remaining equal) sum up to the desired

t parameter value. The top percentile is always symmetric to the bottom percentile. For example, if the bottom

percentile equals the 20th percentile, the top percentile will be equal to the 80th percentile.

The default option for parameter t is 0.50 which means that the left tail and the right tail each equal 0.25. As a

result, parameter a (bottom percentile) is the 25th percentile and parameter c (top percentile) is the 75th

percentile.

This distribution, developed by Dr. Roger Myerson, is used to model random variables when the only

information available is the percentile values, and optionally, a tail percentage parameter indicating the

probability of values being within the specified percentiles. If the specified percentiles are equidistant

(measured by the parameter b’ below), then the Myerson distribution is equivalent to a Normal distribution.

When the 50th percentile is equal to the geometric mean of the top and bottom percentiles, then the Myerson

distribution is equivalent to the LogNormal distribution.

Parameters

()0,1

If is omitted, it is given a default value of 0.5

a c b

t

t

 



273

Range of Function Values

)

()

()

,

where,

, if 1

, if 1
1

, if 1
1

and,

LB UB

LB UB b

b c
LB c UB b

b

b c
LB UB c b

b

b c
b

c a

= − =  =

−
= − =  

 −

−
= − = − 

 −

−
 =

−

Probability Density Function

()
()

()

() ()()() () () ()

() ()

()

()()
()

()

()

()

()

()

2

2

1
2

0,1

0,1

t1-
2

2

1
2

If 1,

1

1 ln

where

 is the PDF of the Standard Normal distribution,

1
ln 1

q = Z
ln

If 1,

1

2

where

a

t

N

N

x

t

b

z b

f x f q
b c x c b b

f q

x c b

b c

b

b

f x e

c

b c

Z





 





−

 −
 −
 
 

−

 

 −

=
 − + − −

  − −
+   −  

 
 

 
 

 =

=

=

−
=

x

nd

Z CDFInverse of the Standard Normal distribution at x=

Cumulative Distribution Function

() () ()

() ()

()

()

()()
()

()

()

2

0,1

0,1

0

t1-
2

If 1,

1
1

2 2

where

 is the CDF of the Standard Normal distribution

2
 is the Error function

1
ln 1

q = Z
ln

If 1,

1
1

2

N

N

x

t

b

q
F x F q

F q

x e dt

x c b

b c

b

b

x
F x erf



−

 

  
= =  +  

  

 =

  − −
+   −  

 
 

 
 

 =

−
= +



()

()

()1
2

x

2

where

 is the Error Function, and

and

Z CDFInverse of the Standard Normal distribution at x

t

erf y

c

b c

Z









−

  
  

  

=

−
=

=

Mean

No closed form

Variance

No closed form

Skewness

No closed form

Kurtosis

No closed form

Median

No closed form

Mode

No closed form

275

PsiNormal

PsiNormal (μ,σ,...)

PsiNormal (µ,σ) is an unbounded, symmetric distribution with the familiar bell curve, also called a Gaussian

distribution. The Normal distribution is widely used in many different kinds of applications. A normal

distribution with mean zero and standard deviation one is called a Standard normal distribution.

The sum of independent random variables of any shape tends to the Normal distribution.

Parameters

0



 

Range of Function Values

(),− 

Probability Density Function

()

()
2

221

2

x

f x e





 

 −
 −
 
 =

Cumulative Distribution Function

()

()

1
1

2 2

 is the Error Function

x
F x erf

erf y





 − 
= +  

  

Mean



Variance

2

Skewness

0

Kurtosis

0

Median



Mode



PsiNormalSkew

PsiNormalSkew(a,b,c,...)

PsiNormalSkew (a,b,c) is a generalized Normal distribution with lower bound a, upper bound b, and skew

value c. Lower and upper bound values describe +/- 3rd standard deviation. The skew value c can take on

values between (but not including) -1 and 1. While the Normal distribution is symmetric, the Normal Skew

distribution is skewed either to the left with a positive skew parameter or to the right with a negative skew

parameter.

Both the Myerson distribution (described above) and the PsiNormalSkew distribution have recently emerged in

practice. Both distributions are generalizations of the Normal distribution but rather than using the mean and
standard deviation as arguments, these distributions are calculated using an upper and lower bound along with

either likely and tail arguments (such as with the Myerson distribution) or a skew argument (such as with the

NormalSkew distribution). When the skew argument is equidistant from the upper and lower bounds, the

NormalSkew distribution equals the Myerson distribution.

In the PsiNormalSkew distribution, the lower and upper bounds are exactly the same as in the Myerson

distribution. The tail argument is missing in the Normal Skew distribution as it remains at the constant value of

0.002699796146511.

Parameters

a < b

-1< c <1

If c is omitted, it is given a default value of 0. In this case, the PsiNormalSkew distribution will equal

the PsiMyerson distribution.

Range of Function Values

[,]

,

, ' 1

()
, ' 1

' 1

()
, ' 1

' 1

'

(1)
(1)*

2

(" " " " .)

LB UB

where

LB UB if b

b d
LB d UB if b

b

b d
LB UB d if b

b

where

b d
b

d a

and

b
d a c

The d parameter hereequals the c parameter in the PsiMyerson distribution

= − =  =

−
= − =  

−

−
= − = − 

−

−
=

−

−
= + +

Probability Density Function

277

2

(1)
2

(0,1)

N(0,1)

(1)
2

2

' 1,

(' 1)

() ()
(() (x d)(b' 1)) ln(b')

where

f (q) is the PDFof theStandard Normaldistribution .

()(' 1)
ln 1

()
q

ln(')

' 1,

1
()

2

t

N

t

If b

z b

f x f q
b d

x d b

b d
Z

b

If b

f x e




−

−

 (−)
 



−

=
− + − −

  − −
+  

−  =  
 
  

=

=


(1)
2

()

(1)
(1)*

2

(" " " " .)

.

t

where

d

b d

Z

b
d a c

The d parameter hereequals the c parameter in the PsiMyerson distribution

and

Z CDFInverseof the Normal distribution at





−



 =

−
 =

−
= + +

= 

Cumulative Distribution Function

() () ()

() ()

()

()

()()
()

()

()

2

0,1

0,1

0

t1-
2

If 1,

1
1

2 2

where

 is the CDF of the Standard Normal distribution

2
 is the Error function

1
ln 1

q = Z
ln

If 1,

1
1

2

N

N

x

t

b

q
F x F q

F q

x e dt

x d b

b d

b

b

x
F x erf



−

 

  
= =  +  

  

 =

  − −
+   −  

 
 

 
 

 =

−
= +



()

()

()1
2

x

2

where

 is the Error Function, and

(1)
(1)*

2

(" " " " .)

and

Z CDFInverse of the Standard Normal distributi

t

erf y

d

b d

Z

b
d a c

The d parameter hereequals the c parameter in the PsiMyerson distribution









−

  
  

  

=

−
=

−
= + +

= on at x

Mean

No closed form

Variance

No closed form

Skewness

No closed form

Kurtosis

No closed form

Median

No closed form

279

Mode

No closed form

PsiPareto

PsiPareto (θ,a,...)

PsiPareto (θ,a) is a distribution with a finite lower bound a, and shape parameter θ. The Pareto distribution can

be used to describe or model wealth distribution, sizes of particles, etc. It is the exponential of an Exponential

random variable.

Parameters

, 0a 

Range of Function Values

),a 

Probability Density Function

() 1

a
f x

x






+

=

Cumulative Distribution Function

() 1
a

F x
x


 

= −  
 

Mean

 for 1
1

a





−

Variance

() ()

2

2
 for 2

1 2

a


 


− −

Skewness

()

()

()2 1 2
 for 3

3

 


 

+ −


−

Kurtosis

()()
()()

23 2 3 2
 for 4

3 4

  


  

− + +


− −

Median

1

2a 

Mode

a

PsiPareto2

PsiPareto2 (b,q,...)

PsiPareto2 is an alternate form of the Pareto distribution with a finite lower bound of 0, and a shape parameter

q. Like PsiPareto (θ,a), it can be used to describe or model wealth distribution, sizes of particles, etc. It is the

exponential of an Exponential random variable.

Parameters

, 0b q 

Range of Function Values

)0,

Probability Density Function

()
()

1

q

q

qb
f x

x b
+

=
+

Cumulative Distribution Function

() 1

q
b

F x
x b

 
= −  

+ 

Mean

 for q 1
1

b

q


−

Variance

() ()

2

2
 for q 2

1 2

qb

q q


− −

Skewness

()

()

()2 1 2
 for q 3

3

q q

q q

+ −


−

Kurtosis

Not defined

Median

1

2 qb

q

Mode

0

281

PsiPearson5

PsiPearson5 (,β,...)

PsiPearson5 (α,β) is a distribution with a lower bound of 0, and density similar to that of the LogNormal

distribution. The Pearson5 distribution is sometimes called the Inverse Gamma distribution. It can be used to

model time delays when these can possibly take on unbounded (or very large) values.

Parameters

, 0  

Range of Function Values

)0,

Probability Density Function

()
()

()

1 xx e
f x




 

−− +

−
=



Cumulative Distribution Function

()

() ()

1
1

1 is the Distribution function of a Gamma ,

random variable

G

G

F x F
x

F y 


 
= −  

 

Mean

 for 1
1







−

Variance

() ()

2

2
 for 2

1 2




 


− −

Skewness

4 2
 for 3

3






−


−

Kurtosis

()()

()()

3 5 2
 for 4

3 4

 


 

+ −


− −

Median

Not defined

Mode

1



 +

PsiPearson6

PsiPearson6 (1,2,β,...)

PsiPearson6 (α1, α2, β) is a distribution with a lower bound of 0, and a mode just beyond the lower bound. The

Pearson6 distribution is sometimes called the Beta distribution of the second kind.

If X1 ~ Gamma (α1,β) and X2 ~ Gamma (α2,1) are independent random variables, then X1/X2 has a Pearson6

distribution. If X is a random variable with a Pearson6 (α1,α2,1) distribution, then X/(1+X) has a Beta (α1, α2)

distribution.

Parameters

1 2, , 0   

Range of Function Values

)0,

Probability Density Function

()
()

() ()
()

1

1 2

1

1 2

1 2

, 1

, is the Beta function

x

f x

xB

B



 



  


 

−

+
=

 +
  

Cumulative Distribution Function

()

() ()1̀ 2 is the Distribution function of a Beta ,

random variable

B

B

x
F x F

x

F y



 

 
=  

+ 

Mean

1
2

2

 for 1
1







−

Variance

()

() ()

2

1 1 2 1

22

2 2

 for 2
1 2

   


 

−+


− −

283

Skewness

()
2 1 2

2

1 1 2 2

2 4 2 2
 for 3

1 3

  


   

 − + −
 

+ − − 

Kurtosis

()

()()

() ()()

()

2

2 2 1 1 2 2

2

2 2 1 1 2

3 2 2 1 1 5
 for 4

3 4 1

     


    

 − − + + − +
 

− − + −  

Median

Not defined

Mode

()1

1

2

1
 if 1

1

0 otherwise

 




 −


+



PsiPert

PsiPert (a,c,b,...)

PsiPert (a,c,b) is a form of the Beta distribution, often used to estimate project completion times in the

Program Evaluation and Review Technique, where a is the minimum time, b is the maximum time, and

c is the most likely time. These parameters are used to compute the shape parameters α1,α2 used in the

PsiBeta function, as shown below.

Parameters

()

()

1 2

1

2

The shape parameters , can be defined as

5 4

6

5 4

6

a c b

a b c

b a

a b c

b a

 





 

− + +
=

−

− + −
=

−

Range of Function Values

 ,a b

Probability Density Function

()
() ()

()()

()

1 2

1 2

1 1

1

1 2

1 2

,

, is the Beta function

x a b x
f x

B b a

B

 

 
 

 

− −

+ −

− −
=

−

Cumulative Distribution Function

()

()

()

()

()

1 2

1 2

1 2

1 2

,

,

, is the Beta function

, is the Incomplete Beta function

x a

b a

x

B

F x
B

B

B

 

 

 

 

− 
 

− =

Mean

4

6

a b c+ +

Variance

()
2

1 2

252

b a  −

Skewness

() 1 2

4 7a b c

b a  

+ −

−

Kurtosis

() () ()

()()

2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

3 1 2 6

3 2

       

     

 + + + + + −
 

+ + + +

Median

Not defined

Mode

c

PsiRayleigh

PsiRayleigh (β,...)

PsiRayleigh (β) is a distribution with a finite lower bound of 0, a special case of a Weibull distribution. The

Rayleigh distribution can be used to model component lifetimes.

If X is a random variable with Rayleigh distribution with parameter β = 1, then X2 has a Chi Square distribution

with parameter 2 (two degrees of freedom). If X and Y are independent normally distributed random variables
with mean zero and variance σ2, then (X2+Y2)1/2 has a Rayleigh distribution with parameter σ. Thus, a Rayleigh

distribution may be used to model the length of a two-dimensional vector whose components are independent

and normally distributed.

Parameters

0 

Range of Function Values

)0,

285

Probability Density Function

()

2

22

2

x

xe
f x





 −
 
 

=

Cumulative Distribution Function

()
2

22
1

x

F x e


 −
 
 = −

Mean

2




Variance

() 24

2

 −

Skewness

()

()
3

2

2 3

4

 



−

−

Kurtosis

()

2

2

3 32

4





− +

−

Median

()ln 4

Mode



PsiStudent

PsiStudent (df,…)

PsiStudent (df) is an unbounded distribution, symmetric about zero, with a shape similar to that of a Standard

Normal distribution, and it approaches the Standard Normal distribution as the degrees of freedom (parameter

df) increases. It is also known as the t-distribution, or Student’s t-distribution.

The Student or t-distribution frequently arises when estimating the mean of a normally distributed population

when the sample size is small. It is also used when the population variance is unknown, and is estimated from a
small sample.

Parameters

0, integerdf 

Range of Function Values

(),− 

Probability Density Function

()

()

1

2

2

1

2

2

 is the Gamma function

dfdf

df
f x

df x df
df

x



++ 
    =  

+    
 



Cumulative Distribution Function

()

()

2

2

1
1 ,

2 2

2

, is the Incomplete Beta function

x

x df

a

df
B

F x

B x y

 
  + 

 
+  

 
=

Mean

0 if df > 1

undefined if df = 1

Variance

 if 2
2

df
df

df


−

Skewness

0 if 3df 

Kurtosis

3 6
 if 4

- 4

df
df

df

−


Median

0

Mode

0

PsiTriangGen

PsiTriangGen (ap,m,br,p,r…)

PsiTriangGen (ap,m,br,p,r…) is a Triangular distribution where the lower and upper bounds are not given as

fixed values, but are specified using percentiles. This distribution is usually used to create rough models in

situations where little or no data is available. The distribution has a most likely value of m, the p (lower)

percentile value is ap, and the r (upper) percentile value is br. Given these values, a PsiTriangGen (ap,m,br,p,r…)

287

distribution corresponds to a PsiTriangular (a,c,b) distribution with values for the bounds (a and b), and the

most likely value (c) computed as shown below.

Parameters

()

()

()

, 0,1

The parameters of the Triangular distribution are defined as

1

1

1

1
1

1

Here is a solution to the following equation

1
1

1

1

p r

p r

p

r

p

r

p r

p r

a b

a m b

p
a m

q
a

p

q

c m

r
b m

q
b

r

q

q

r
m a

q
q

p
b m m

q







 

−

=

−

=

−
−

−
=

−
−

−

 −
− − 

− =
 

− − + − 
 

()
1

1
1

p

r
a

q

 −
− 

− 

Range of Function Values

 ,a b

Probability Density Function

()

()

()()

()

()()

2
 if

2
 if

x a
a x c

c a b a
f x

b x
c x b

b c b a

 −
 

− −
= 

−  
 − −

Cumulative Distribution Function

()

()

()()

()

()()

2

2

 if

1 if

x a
a x c

c a b a
F x

b x
c x b

b c b a

 −
 

− −
= 

−
−  

− −

Mean

3

a b c+ +

Variance

2 2 2

18

a b c ab ac bc+ + − − −

Skewness

()()()

()
3

2 2 2 2

2 2 2 2

5

a b c a b c a b c

a b c ab ac bc

+ − − − − +

+ + − − −

Kurtosis

12/5

Median

()()

()()

 if
2 2

 otherwise
2

b a c a b a
a c

b a b c
b

 − − −
 + 



− −
−



Mode

c

PsiTriangular

PsiTriangular (a,c,b,...)

PsiTriangular (a,c,b) is a distribution with lower bound a, upper bound b, and most likely value c. This

distribution is usually used to create rough models in situations where little or no data is available. If the
parameter c = b, then the distribution is also known as a Right Triangular distribution. If the parameter c = a,

then the distribution is also known as a Left Triangular distribution. If X1 and X2 are independent Uniform (0,1)

random variables, then (X1+X2)/2 has a Triangular (0,0.5,1) distribution.

Parameters

a c b

a b

 



289

Range of Function Values

 ,a b

Probability Density Function

()

()

()()

()

()()

2
 if

2
 if

x a
a x c

c a b a
f x

b x
c x b

b c b a

 −
 

− −
= 

−  
 − −

Cumulative Distribution Function

()

()

()()

()

()()

2

2

 if

1 if

x a
a x c

c a b a
F x

b x
c x b

b c b a

 −
 

− −
= 

−
−  

− −

Mean

3

a b c+ +

Variance

2 2 2

18

a b c ab ac bc+ + − − −

Skewness

()()()

()
3

2 2 2 2

2 2 2 2

5

a b c a b c a b c

a b c ab ac bc

+ − − − − +

+ + − − −

Kurtosis

12/5

Median

()()

()()

 if
2 2

 otherwise
2

b a c a b a
a c

b a b c
b

 − − −
 + 



− −
−



Mode

c

PsiUniform

PsiUniform (a,b,...)

PsiUniform (a,b) is a flat, bounded distribution with lower bound a and upper bound b. It is used to represent a

random variable that is equally likely to take on any value between a lower and upper bound. A Uniform (0,1)

distribution is also known as a Standard Uniform distribution, and is used to generate many other random

variables. If X is a random variable with a Standard Uniform distribution, then a + (b – a)X has a Uniform (a,b)

distribution, and (1 – X) has a Standard Uniform distribution.

Parameters

a b

Range of Function Values

 ,a b

Probability Density Function

()
1

 if

0 otherwise

a x b
f x b a


 

= −



Cumulative Distribution Function

()

0 if

 if

1 if

x a

x a
F x a x b

b a

x b




−
=  

−


Mean

2

a b+

Variance

()
2

12

b a−

Skewness

0

Kurtosis

9/5

Median

2

a b+

Mode

Any value in [a,b]

291

PsiWeibull

PsiWeibull (,β,...)

PsiWeibull (α,β) is a distribution with a finite lower bound of 0. The Weibull distribution is quite flexible and

can be used to model weather patterns, material strength, processing and delivery times, and in a variety of

reliability engineering applications.

If X is a random variable with Weibull (1,β) distribution, then it also has the Exponential (β) distribution. In

fact, a random variable X ~Weibull (α,β) if and only if Xα ~ Exponential (βα). Also, if X is a random variable

with Weibull (2,β) distribution, then it also has the Rayleigh (β) distribution.

Parameters

, 0  

Range of Function Values

)0,

Probability Density Function

()
()1

x

f x x e



 
−

− −=

Cumulative Distribution Function

()
()

1
x

F x e




−

= −

Mean

()

1

 is the Gamma functionx



 

 
 

 



Variance

2
22 1 1

2


   

    
 −     

    

Skewness

3

2 3

3
2

2

2

3 3 6 2 1 2 1

2 2 1 1

      

   

       
 +   +        

       

    
 −     

    

Kurtosis

2 2

2

2

2

6 1 24 1 2 2 1 3 4
12 12 4

2 1 1
2


        

  

−              
 +   −  −   +              

             

    
 −     

    

Median

()()
1

ln 2 

Mode

1

1
 if 1

0 otherwise


 



− 
 

 

Discrete Analytic Distributions
See below for a list of all supported Discrete Analytic Distributions.

PsiBernoulli

PsiBernoulli (p,...)

PsiBernoulli (p) is a discrete distribution that takes on a value of 1 with probability p, and a value of 0 with

probability (1-p). A Bernoulli random variable is usually considered as an outcome of an experiment with only

two possible outcomes (0 and 1); each experiment is called a ‘Bernoulli Trial’.

Parameters

 0,1p 

Range of Function Values

 0,1

Probability Mass Function

()

1 if 0

 if 1

0 otherwise

p x

p x p x

− =


= =



Cumulative Distribution Function

()

0 if 0

1 if 0 1

1 if x 1

x

F x p x




= −  
 

Mean

p

Variance

()1p p−

293

Skewness

()

1 2

1

p

p p

−

−

Kurtosis

()

26 6 1

1

p p

p p

− +

−

Median

Not defined

Mode

1
0 if

2

1
1 if

2

1
0 and 1 if

2

p

p

p











=


PsiBinomial

PsiBinomial (n,p,...)

PsiBinomial (n,p) is a discrete distribution of the number of successes in n independent ‘Bernoulli Trials’

(experiments with exactly two possible outcomes), where p is the success probability in each trial. The
Binomial distribution can be used to model the number of winning trades in a trading system, or the number of

defective items in a batch.

A random variable X is defined by X ~ PsiBinomial (n,p) if and only if n-X ~ PsiBinomial (n,1-p).

The Poisson distribution with parameter λ is a good approximation of the PsiBinomial (n,p) distribution when

n →  and 0p → , with np = .

Parameters

 

0, integer

0,1

n

p





Range of Function Values

 0,1, ,n

Probability Mass Function

()
()  

()

-
1- if 0,1, ,

0 otherwise

where is the binomial coefficient,

!

! !

n xx
n

p p x n
p x x

n

x

n n

x x n x

 
 

=  



 
 
 

 
= 

− 

Cumulative Distribution Function

() ()
-

0

0 if 0

1- if 0

1 if

x
n ii

i

x

n
F x p p x n

i

x n

  

=




 
=    

 
 



Mean

np

Variance

()1np p−

Skewness

()

1 2

1

p

np p

−

−

Kurtosis

()

26 6 1

1

p p

np p

− +

−

Median

 one of , 1, 1np np np− +          

Mode

() () ()

()

1 and 1 1 if 1 is integer

1 otherwise

p n p n p n

p n

 + + − +


 + 

PsiGeometric

PsiGeometric (p,...)

PsiGeometric (p) is a discrete distribution of the number of failures before the first success in a sequence of
independent ‘Bernoulli Trials’ (experiments with exactly two possible outcomes), where p is the success

295

probability in each trial. The Geometric distribution can be used to model the number of losing trades before the

first winning trade, the number of items passing inspection before the first defective item appears in a batch, etc.

PsiGeometric (p) can be considered as a discrete analog of the (continuous) Exponential distribution. If X1, X2,

…, Xn are independent geometrically distributed random variables with parameters p1, p2, …,pn, then X = min

(X1, X2, …, Xn) is also a Geometrically distributed random variable with parameter p = 1 – [(1-p1)(1-p2)…(1-
pn)]. Additionally, if X1, X2, …, Xn are Geometrically distributed random variables with parameter p, then their

sum is Negative Binomially distributed with parameters n, p.

Parameters

 0,1p 

Range of Function Values

 0,1,

Probability Mass Function

()
()  1- if 0,1,

0 otherwise

x
p p x

p x
 

= 


Cumulative Distribution Function

()
()

1
1 1- if 0

1 otherwise

x
p x

F x

+   − 
= 



Mean

1 p

p

−

Variance

2

1 p

p

−

Skewness

()

2

1

p

p

−

−

Kurtosis

()

2

2

9 17 9

1

p p

p

− +

−

Median

()

()

ln 0.5
1

ln 1 p
−

−

Mode

0

PsiHyperGeo

PsiHyperGeo (n,D,M,...)

PsiHyperGeo (n,D,M) is a discrete distribution of the number of successes in n successive trials drawn without

replacement from a finite population of size M, when it is known that there are exactly D failures in the

population. The Hypergeometric distribution can be used to model ‘good’ and defective parts in a
manufacturing process.

A Hypergeometric distribution can be approximated by a Binomial distribution with parameters n, p = D/M,

when M is very large as compared to n.

Parameters

 

 

0,1,

, 0,1, ,

M

n D M

 



Range of Function Values

() () max 0, , ,min ,n M D D n− +

Probability Mass Function

()

D M D

x n x
p x

M

n

−  
  

−  =
 
 
 

Cumulative Distribution Function

()
1

x

i

D M D

i n i
F x

M

n

=

−  
  

−  =
 
 
 



Mean

nD

M

Variance

()()()1

1

D Dn M n
M M

M

− −

−

297

Skewness

()() ()

()()

2 2 1

2

M D M n M

M nD M D M n

− − −

− − −

Kurtosis

()

()()()

() ()

()

()()2

2

1 1 6 3 6
6

2 3

M M M M M M n n M n N

n M M M n D M D M

   − + − − − +
+ −   

− − − −      

Median

Not defined

Mode

()() ()() ()()

()()

1 1 1 1 1 1
 and 1 if is integral

2 2 2

1 1
 otherwise

2

n D n D n D

M M M

n D

M

+ + + + + +
−

+ + +

 + +
 

+ 

PsiIntUniform

PsiIntUniform (a,b,...)

PsiIntUniform (a,b) is a discrete distribution with equal probability at each integer value between the lower and
upper bounds (a and b). It is used as a rough estimate of the true distribution when the only information we have

is that the random variable takes integer values between a and b, and each of these values are equally likely.

Parameters

, integers

a<b

a b

Range of Function Values

 , 1, , 1,a a b b+ −

Probability Mass Function

()
1

if , and integer
- 1

0 otherwise

a x b x
p x b a


 

= +



Cumulative Distribution Function

()

0 if

1
 if

1

1 if

x a

x a
F x a x b

b a

x b




− +  =  
− +




Mean

2

a b+

Variance

()
2

1 1

12

b a− + −

Skewness

0

Kurtosis

() 
() 

2

2

6 1 1

5 1 1

b a

b a

− + +
−

− + −

Median

2

a b+

Mode

Net defined

PsiLogarithmic

PsiLogarithmic (p,...)

PsiLogarithmic is a discrete distribution with a lower bound of 1. It is used to describe the diversity of a

sample.

Parameters

()0,1p 

Range of Function Values

 1,2,3,

Probability Mass Function

() ()
1

 if 1
ln 1

0 otherwise

xp
x

p xp x

 −


−= 



299

Cumulative Distribution Function

()
()

()
()

() ()
11

0

1,0
1 , , is the incomplete beta function

ln 1

, 1

p

p

p
ba

p

B x
F x B a b

p

B a b t t dt
−−

+
= +

−

= −

Mean

() ()1 ln 1

p

p p

−

− −

Variance

()

() ()
2 2

ln 1

1 ln 1

p p
p

p p

+ −
−

− −

Skewness

Not defined

Kurtosis

Not defined

Median

Not defined

Mode

1

PsiNegBinomial

PsiNegBinomial (s,p,...)

PsiNegBinomial (s,p) is a discrete distribution that describes the number of failures that will occur

before a given number of successes, where each trial is successful with probability p. The Negative

Binomial distribution can be used to describe the number of items that pass inspection before the sth

defective item is found.

If X1, X2,…,Xs are independent Geometrically distributed random variables each with parameter p,

then their sum is Negative Binomially distributed, with parameters s and p. Additionally, the

Geometric distribution with parameter p is the same as a Negative Binomial distribution with

parameters s = 1 and p; hence, the Geometric distribution is a special case of a Negative Binomial
distribution.

Parameters

 0,1

0, integer

p

s





Range of Function Values

 0,1,2,3,

Probability Mass Function

()
()  

1
1 if 0,1,

0 otherwise

xs
s x

p p x
p x x

 + − 
−  

=  



Cumulative Distribution Function

()
()

0

1
1 if 0

0 otherwise

x
is

i

s i
p p x

F x i

  

=

 − + 
−   

=   





Mean

()1s p

p

−

Variance

()
2

1s p

p

−

Skewness

()

2

1

p

s p

−

−

Kurtosis

()

2 6 1
3

1

p p

s p

− +
+

−

Median

Not defined

Mode

() () ()

()

1 1 1 1 1 1
 and 1 if is integer

1 1
1 otherwise

s p s p s p

p p p

s p

p

  − − − − − −
+  

  


 − −
+ 

 

PsiPoisson

PsiPoisson (λ,...)

PsiPoisson (λ) is a discrete distribution of the number of events that occur in an interval of time, when the
events occur at a known average rate, and each occurrence is independent of the time of occurrence of the

previous event.

301

The Poisson distribution with parameter λ can be approximated by a Normal distribution with mean λ and

variance λ, for large values of λ. If X1, X2,…,Xn are independent Poisson random variables with parameters λ1,

λ2,… λn, then their sum is also a Poisson random variable with parameter λ1 +λ2+…+λn.

Parameters

>0

Range of Function Values

 0,1,

Probability Mass Function

()
 if 0,1,

!

0 otherwise

xe
x

p x x

−


= 



Cumulative Distribution Function

() i

0

0 if 0

 if 0
!

x

i

x

F x
e x

i

   
−

=




= 





Mean



Variance



Skewness

1



Kurtosis

1
3


+

Median

Not applicable

Mode

 and 1 if is integer

 otherwise

  



−


  

Custom Distributions

PsiCumul

PsiCumul (a,b, {x1,x2,…,xn}, {p1,p2,…,pn},...)

PsiCumul (a,b, {x1,x2,…,xn},{p1,p2,…,pn},…) is a custom continuous distribution with lower and upper bounds

equal to a and b respectively, and with user specified values , x1,x2,…,xn and corresponding cumulative

probabilities p1,p2,…,pn.

Parameters

1

1

0 1 0 1

1,2, ,

0 1 1,2, ,

1,2, , 1

1,2, , 1

Define the boundary parameters as

, , 0, 1

i

i

i i

i i

n n

a b

a x b i n

p i n

p p i n

x x i n

x a x b p p

+

+

+ +



   =

   =

  = −

  = −

= = = =

Range of Function Values

 ,a b

Probability Density Function

() 1
1

1

 if i i
i i

i i

p p
f x x x x

x x

+
+

+

−
=  

−

Cumulative Distribution Function

() ()1 1

1

 if i
i i i i i

i i

x x
F x p p p x x x

x x
+ +

+

 −
= + −   

− 

Mean

Not defined

Variance

Not defined

Skewness

Not defined

Kurtosis

Not defined

Median

Not defined

Mode

Not defined

303

PsiDiscrete

PsiDiscrete ({x1,x2,…,xn}, {p1,p2,…,pn},…)

PsiDiscrete ({x1,x2,…,xn}, {p1,p2,…,pn},…) is a custom discrete distribution that takes on values {x1,x2,…,xn}

with probabilities {p1,p2,…,pn} respectively.

Parameters

 

 

1 2

1 2

, , ,

, , ,

The probabilities are first normalized so that they sum to one

n

n

i

x x x

p p p

p

Range of Function Values

 1 2, , , nx x x

Probability Density Function

()
 if

0 otherwise

i ip x x
f x

=
= 



Cumulative Distribution Function

()

1

1

1

1

0 if

 if ,

1 otherwise

This assumes that 1,2, , 1

s

i s s

i

i i

x x

F x p x x x s n

x x i n

+

=

+





=   



  = −



Mean

1

n

i i

i

x p 
=

=

Variance

()
2 2

1

n

i i

i

x p 
=

− =

Skewness

()
3

1

3

n

i i

i

x p


=

−

Kurtosis

()
4

1

4

n

i i

i

x p


=

−

Median

1

1

 where min 1,2, , : 0.5

This assumes that 1, 2, , 1

j

s i

i

i i

x s j n p

x x i n

=

+

 
= =  

 

  = −



Mode

()
1,2, ,

argmax i
i n

p
x

=

PsiDisUniform

PsiDisUniform ({x1,x2,…,xn},…)

PsiDisUniform ({x1,x2,…,xn},…) is a custom discrete distribution that takes on values {x1,x2,…,xn} with equal
probability. It is similar to the PsiDiscrete distribution except that no probabilities are specified – instead all x

values are equally likely to occur. (In the equations below, each pi = 1/n.) PsiDisUniform can be used to

resample a set of past observations {x1,x2,…,xn}.

Parameters

 1 2, , ,

These values have the corresponding probabilities as

1
1,2, ,

n

i

x x x

p i n
n

=  =

Range of Function Values

 1 2, , , nx x x

Probability Density Function

()
 if

0 otherwise

i ip x x
f x

=
= 



Cumulative Distribution Function

()

1

1

1

1

0 if

 if ,

1 otherwise

This assumes that 1,2, , 1

s

i s s

i

i i

x x

F x p x x x s n

x x i n

+

=

+





=   



  = −



Mean

1

n

i i

i

x p 
=

=

305

Variance

()
2 2

1

n

i i

i

x p 
=

− =

Skewness

()
3

1

3

n

i i

i

x p


=

−

Kurtosis

()
4

1

4

n

i i

i

x p


=

−

Median

1

1

 where min 1,2, , : 0.5

This assumes that 1, 2, , 1

j

s i

i

i i

x s j n p

x x i n

=

+

 
= =  

 

  = −



Mode

()
1,2, ,

argmax i
i n

p
x

=

PsiGeneral

PsiGeneral (a,b, {x1,x2,…,xn}, {w1,w2,…,wn},…)

PsiGeneral (a,b, {x1,x2,…,xn}, {w1,w2,…,wn},…) is a custom continuous distribution with lower and upper

bounds equal to a and b respectively, and with user specified values x1,x2,…,xn and corresponding weights
w1,w2,…,wn. This is similar to a PsiCumul (a,b, {x1,x2,…,xn},{p1,p2,…,pn},…) distribution, where the

probabilities are calculated using the weights as shown below.

Parameters

1

1

1

1,2, ,

1, 2, , 1

The cumulative probabilities are defined as

i

i i

i
k

i n
k

j

j

a b

a x b i n

x x i n

w
p

w

+

=

=



   =

  = −

= 


Range of Function Values

 ,a b

Probability Density Function

() 1
1

1

 if i i
i i

i i

p p
f x x x x

x x

+
+

+

−
=  

−

Cumulative Distribution Function

() ()1 1

1

 if i
i i i i i

i i

x x
F x p p p x x x

x x
+ +

+

 −
= + −   

− 

Mean

Not defined

Variance

Not defined

Skewness

Not defined

Kurtosis

Not defined

Median

Not defined

Mode

Not defined

PsiHistogram

PsiHistogram (a,b,{w1,w2,…,wn},…)

PsiHistogram (a,b,{w1,w2,…,wn},…) is a custom continuous distribution with lower and upper bounds equal to

a and b respectively, and with user specified weights w1,w2,…,wn corresponding to n subintervals of equal size.

This is similar to a PsiCumul (a,b, {x1,x2,…,xn},{p1,p2,…,pn},…) distribution, where the probabilities are

calculated using the weights as shown below, and the interval defined by the bounds a and b is divided into

subintervals of equal size as described below.

Parameters

 

 1 2

1

1

The interval , is divided into subintervals

of equal size , , ,

The cumulative probabilities are defined as

n

i

i
k

i n
k

j

j

a b

a b n

x x x

b a
x a i

n

w
p

w=

=



− 
= +  

 

= 


307

Range of Function Values

 ,a b

Probability Density Function

() 1
1

1

 if i i
i i

i i

p p
f x x x x

x x

+
+

+

−
=  

−

Cumulative Distribution Function

() ()1 1

1

 if i
i i i i i

i i

x x
F x p p p x x x

x x
+ +

+

 −
= + −   

− 

Mean

Not defined

Variance

Not defined

Skewness

Not defined

Kurtosis

Not defined

Median

Not defined

Mode

Not defined

Special Distributions
The RASON modeling language offers a number of special PSI Distribution functions that do not fit readily

into the classes of continuous, discrete and custom distributions described above. For example, PsiSip() and

PsiSlurp() ensure that Monte Carlo trials are drawn sequentially from SIP or SLURP data. And
PsiMVNormal(), PsiMVLogNormal(), PsiResample() and PsiShuffle() return array results rather than single-

valued results.

Note: PSI Property functions generally may not be passed as arguments to any of the PSI Distribution

functions in this section. The only exception is that the PsiCertify() function may be passed to PsiSip() or

PsiSlurp(), enabling the SIP or SLURP-based distribution to be named and published as a Certified Distribution.

Functions PsiMVLogNormal(), PsiMVNormal(), PsiResample() and PsiShuffle() are included to provide an

upgrade path for users of AnalyCorp’s XLSim software. Note that PsiMVLogNormal() and PsiMVNormal()

require a covariance matrix (not a rank correlation matrix) as an argument; they cannot be correlated with

dissimilar distributions specified via other PSI Distribution functions.

PsiFit

PsiFit (data)

PsiFit dynamically fits a probability distribution to sample data, and creates an uncertain variable linked to the

sample data. This dynamically fitted uncertain variable can then be used in the model as an uncertain input

variable. The "data" argument is a list of sample data. The examples below illustrates how to use PsiFit in two

different ways: PsiFit({list, of , values}) or PsiFit(cell_range).

Example 1:
"uncertainFunctions": {

 "testFit": {

 "formula": "PsiFit({1,2,3,4,5,6,7,8,9,10})",

 "mean": [],

 "percentiles": [],

 "trials": []

 }

}

Example 2:
"data": {

"A1:A10": {

 "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

 }

 },

"uncertainFunctions": {

 "testFit": {

 "formula": "PsiFit(A1:A10)",

 "mean": [],

 "percentiles": [],

 "trials": []

 }

}

PsiMVLogNormal

PsiMVLogNormal (µ,∑)

PsiMVLogNormal (µ,∑) is a multivariate distribution that returns a vector of random variables that are

lognormally distributed, with mean values specified by the vector µ, and covariance values specified by the
matrix ∑. This is a generalization of the PsiLogNorm2 distribution to higher dimensions. A variable vector y =

[y1,…,yn] has a multivariate LogNormal distribution if and only if the variable vector [ln(y1),…,ln(yn)] has a

multivariate Normal distribution.

PsiMVLogNormal returns an array of sample data. On each Monte Carlo trial, the function will return 5

sample values.

Parameters

2

, a real vector

A positive semidefinite matrix

We define parameters i ii







= 

Range of Function Values

)0, for an -dimensional vector
n

n

309

Probability Density Function

() () ()
()() ()()1

11
2 2

ln ln
2 exp

2

T

n y y
f y y

 


−
− − −

 − −  −
 = 
 
 

Cumulative Distribution Function

No closed form

Mean

22
1

1 2 2, ,
n

ne e


 + + 
 
 

Variance

() ()
2 22 2

1 1 1 221 , , 1n n ne e e e
     ++ − −

 

Skewness

()
2 2

1

i

[, ,]

where

s 2 1i i

ns s

e e
 

= + −

Kurtosis

2 2 2

1

4 3 2

[, ,]

where

2 3 3i i i

n

i

k k

k e e e
  

= + + −

Median

1 , , ne e
 

 

Mode

22
1 1 , , n ne e

   −− 
 

PsiMVNormal

PsiMVNormal (µ,∑)

PsiMVNormal (µ,∑) is a multivariate distribution that returns a vector of random variables that are normally

distributed, with mean values specified by the vector µ, and covariance values specified by the matrix ∑. This is

a generalization of the PsiNormal distribution to higher dimensions.

PsiMVNormal returns an array of sample data. On each Monte Carlo trial, the function will return 5 sample

values.

Parameters

2

, a real vector

A positive definite matrix

We define parameters i ii







= 

Range of Function Values

(), for an -dimensional vector
n

n− 

Probability Density Function

() ()
() ()1

1
2 22 exp

2

T
n y y

f y
 


−

− −
 − −  −

=   
  

Cumulative Distribution Function

No closed form

Mean

 1, , n 

Variance

2 2

1 , , n   

Skewness

[0] for an -dimensional vectorn n

Kurtosis

[0] for an -dimensional vectorn n

Median

 1, , n 

Mode

 1, , n 

PsiResample

formula: "PsiResample(data)"

PsiResample returns an array of sample data. On each Monte Carlo trial, the function will return 5 sample

values.

PsiResample returns a random sample (with replacement) of the trial values in array specified by the data

argument.

311

PsiMVResample

formula: "PsiMVResample(data)"

PsiMVResample is a multivariate distribution that returns a vector of sample data. PsiMVResample returns a

random sample of the trial values specified by the data argument. On each Monte Carlo trial, PsiMVResample

will return a uniformly selected column from the argument.

PsiShuffle

formula: "PsiShuffle(data)"

PsiShuffle returns an array of sample data. On each Monte Carlo trial, the function will return 10 sample

values. PsiShuffle returns a random permutation of all the trial values specified by the data argument. In the

sample drawn on each Monte Carlo trial, each value in the data range is selected only once; values are repeated

in a single sample only if they are repeated in data.

PsiMVShuffle

formula: "PsiMVShuffle(data)"

PsiMVShuffle is a multivariate distribution that returns a vector of sample data. On each Monte Carlo trial, the

function will return 10 sample vectors. PsiMVShuffle returns a random permutation of all the trial values in the

cell range specified by the data argument. In the sample drawn on each Monte Carlo trial, each vector in the

data range is selected only once; values are repeated in a single sample only if they are repeated in data.

PsiSip

formula: "PsiSip(sip)"

PsiSip returns trials for an uncertain variable from a list or vector of sample data, called a Stochastic

Information Packet (SIP). The sip argument is an Excel cell range containing the list of sample data. The value
returned by PsiSip() on the ith trial is the ith value in the list.

PsiSlurp

formula: "PsiSlurp(slurp,j)"

PsiSlurp returns trials for an uncertain variable from a table of correlated sample data, called a Stochastic

Library Unit, Relationships Preserved (SLURP), in the sequence specified in the table. The slurp argument is

an array containing the SLURP data; the j argument is the index of the desired SIP (column) of the SLURP,

starting from 1. The value returned by PsiSlurp() on the ith trial is taken from the ith row and the jth column of

the table.

PSI Property Functions

Using PSI Property Functions

PSI Property functions should be entered only as additional arguments of analytic and custom PSI Distribution

functions. They modify the behavior of the PSI Distribution function in which they appear.

For example, formula: "PsiNormal (0, 1)" specifies a Normal distribution with mean 0 and standard

deviation 1: Sample values drawn from this distribution could be any number from ‘minus infinity’ to ‘plus

infinity’ (though sample values near 0 are more likely to be drawn). If you write formula: "PsiNormal

(0, 1, PsiTruncate (-10, 10))" the distribution is ‘truncated’ so that sample values always lie

within the range from -10 to +10.

You can specify more than one PSI Property function as an argument to a PSI Distribution function, and they

can appear in any order after the required arguments. For example, formula: "PsiBeta (1, 2,

PsiTruncate (-10, 10), PsiShift(3), PsiCorrDepen("MyCorr", 0.5))" specifies a

Beta distribution with shape parameters 1 and 2, truncated to a range from -10 to +10, shifted right by 3, and

correlated with the uncertain variable whose definition contains PsiCorrIndep ("MyCorr"), with rank correlation

coefficient 0.5.

PsiBaseCase

formula: "PsiBaseCase(value)"

Use this property to specify a Base Case value for an Uncertain Variable. This is the single value that you’d

want the uncertain variable to be if you were not an Uncertain Variable (i.e. if it did not have a PSI Distribution

function).

PsiCertify

PsiCertify (name, default_value, short_description, full_description,

version, author, copyright, trademark, history)

PsiCertify is used to name, certify and ‘publish’ a PSI Distribution function as a Certified Distribution. The

default_value argument should be a number; all other arguments should be character strings. Only the name
argument is required; the others are optional.

PsiCensor

PsiCensor(min, max)

PsiCensor is used to pile the values of samples from the uncertain variable’s distribution as follows: if the

uncertain variable’s value is less than the Min value, then the sample value will be piled at the Min, if the

uncertain variable’s value is larger than the Max value, then the sample value will be piled at the Max. This

argument results in a “build up” of values around the Min and Max values in the distribution.

PsiCorrMatrix

PsiCorrMatrix (matrix array, position, instance)

PsiCorrMatrix is used to specify that a uncertain variable is correlated with a group of other uncertain variables,

through a matrix of rank-order correlation coefficients. The first argument, matrix array, is a 2-dimensional

array containing the correlation matrix. Position specifies the uncertain variable index in the correlation matrix.

Instance is the string name given to the correlation matrix.

You pass "PsiCorrMatrix (matrix cell range, position)" as an argument to the formula in the uncertain variable

PSI Distribution function, for example:

data: {

 corrmatrix: {

 dimensions: [3,3], value: [[1, 0.8, 0.5],[0.8, 1, 0.2],[0.5, 0.2,

1]]

 }

 },

uncertainVariables: {

313

 uncVar1: {

 formula: "=PsiUniform(0,100,PsiCorrMatrix(corrmatrix, 1))",

 mean: []

 },

 uncVar2: {

 formula: "=PsiNormal(10,5,PsiCorrMatrix(corrmatrix, 2))",

 mean: []

 },

 uncVar3: {

 formula: "=PsiNormal(10, 2,PsiCorrMatrix(corrmatrix, 3))",

 mean: []

 }

 },

Note that corrmatrix is a 2-dimensional array. PsiCorrMatrix() within the uncertain variable formulas

specify that the first variable has a rank correlation coefficient of 0.8 with the second variable, and 0.5 with the

third variable. The second and third variables are correlated with each other, with a rank correlation coefficient

of 0.2. Note that a correlation matrix must always have 1’s on the diagonal, because an uncertain variable is

always perfectly correlated with itself. Also, the matrix must be symmetric: If row 2, column 1 contains 0.8,

then row 1, column 2 must also contain 0.8. Finally, the correlation coefficients must be consistent with each

other: For example, if uncertain variable 1 is strongly positively correlated with variable 2, and variable 2 is

strongly positively correlated with variable 3, then variable 1 cannot be negatively correlated with variable 3.

Formally, the matrix must be positive semidefinite – it cannot have any negative eigenvalues.

PsiCorrDepen / PsiCorrIndep

PsiCorrDepen

PsiCorrDepen(corrname,coefficient)

PsiCorrDepen is used to specify that this uncertain variable is correlated with one other uncertain variable, with

the specified rank-order correlation coefficient. The corrname argument is a text string that must match the

corrname argument of the ‘independent variable,’ a cell containing a PSI distribution with the PsiCorrIndep()

property function call. See below for an example.

PsiCorrIndep

PsiCorrIndep(corrname)

PsiCorrIndep is used to specify that this uncertain variable acts as an independent variable correlated with one

other uncertain variable, the dependent variable. The corrname argument is a text string that must match the

corrname argument of the related PsiCorrDepen() call.

Example

Note the use of single quotes around the MyCoor argument inside of the PsiCorrIndep()/PsiCorrDepen()

functions.

uncertainVariables: {

uncVar1: {

 formula: "=PsiUniform(0,100,PsiCorrDepen('MyCorr',0.9))",

 mean: []

 },

 uncVar2: {

 formula: "=PsiNormal(100,10,PsiCorrIndep('MyCorr'))",

 mean: []

 }

 },

PsiLock

PsiLock(value)

PsiLock is used to (temporarily) make an uncertain variable “constant,” so it returns the specified value for all

trials in a simulation, regardless of the distribution function used.

PsiSeed

PsiSeed(value)

PsiSeed is used to set a random number seed for Monte Carlo samples generated for this distribution function,

that will override any general seed value specified for the simulation model. It is most often used in an analytic

distribution that is being published as a Certified Distribution.

PsiShift

PsiShift (shift)

PsiShift is used to shift the domain of this uncertain variable’s distribution by the specified amount.

PsiTruncate

PsiTruncate (min,max)

PsiTruncate is used to restrict the values of samples from this uncertain variable’s distribution to lie within the
range from min to max.

Psi Data Mining/Forecasting Function Signatures

Signatures for PsiForecast(), PsiPredict(), PsiTransform() and PsiPosteriors() when utilizing a PMML model in

RASON. See the Decisions Table chapter for a complete walk though of how to use one of these four functions

to load a data mining or forecasting model, saved in PMML format, into RASON.

PsiForecast()

PsiForecast(Model, Input_Data, [Simulate], [Num_forecasts], [Header])

Computes the forecasts for Input_Data using a Time Series model stored in PMML format.

315

Model: Range containing the stored Times Series model in PMML format. Note: Argument will always start

with cell B12 and end with the cell address containing </PMML>.

Input_Data: Range containing the new Time Series data for computing the forecasts. Range must contain a

header with the time series name and a sufficient number of records for the forecasting with a given model.

Simulate: If True, the forecasts are adjusted with random normally distributed errors. If False or omitted, the

forecasts will be deterministic.

Num_forecasts: If True, the forecasts are adjusted with radom normally distributed errors. If False or

omitted, the forecasts will be deterministic.

Header: If True, the forecasts are adjusted with random normally distributed errors. If False or omitted, the

forecasts will be deterministic.

Output: A single column containing the header and forecasts for input time series. The number of produced

forecasts is determined by the number of selected cells in the array-formula entry.

Supported Models:

• Arima

• Exponential Smoothing

• Double Exponential Smoothing

• Holt Winters Smoothing

PsiPredict()

PsiPredict(Model, Input_Data, [Header])

Predicts the response, target, output or dependent variable for Input_Data whether it is continuous

(Regression) or categorical (Classification) when the model is stored in PMML format. In addition, this

function also computes the fitted values for a Time Series model when the model is stored in PMML format.

Model: Range containing the stored Classification, Regression or TimeSeries model in PMML format.

Input_Data: Range containing the new data for computing predictions. Range must contain a header row

with column names and at least one row of data containing the exact same features (or columns) as the data

used to create the model.

Header: If True, the forecasts are adjusted with random normally distributed errors. If False or omitted, the

forecasts will be deterministic.

Output: A vector array containing the header and predicted/fitted values for each record in Input_Data.

To know if the result of the prediction is continuous or categorical, you must know what kind of model you are

passing as an argument to the scoring function – if you previously fitted the classification model and are now

predicting the new feature vectors, you should expect to get the compatible categorical response. On the other

hand, you should expect the continuous response from the new data prediction when using a fitted regression

model. Note: If the user intends to use an “unknown” model for scoring, the stored worksheets contain the
complete information about the model including several clear indications of the model type and data

dictionaries with the types of features and response.

PsiPredict() can compute the fitted values for the new time series based on the provided Time Series model.

Unlike future-looking forecasting, provided by PsiForecast(), PsiPredict() computes a model prediction for each

observation in the provided new time series.

Supported Models:

• Classification:

▪ Discriminant Analysis

▪ Logistic Regression

▪ K-Nearest Neighbors
▪ Classification Tree

▪ Naïve Bayes

▪ Neural Network

▪ Random Trees

▪ Bagging (with any supported weak learner)

▪ Boosting (with any supported weak learner)

• Regression:

▪ Logistic Regression

▪ K-Nearest Neighbors

▪ Neural Network

▪ Bagging (with any supported weak learner)

▪ Boosting (with any supported weak learner)

• Time Series (fitted values)

▪ ARIMA

▪ Exponential Smoothing

▪ Double Exponential Smoothing

▪ Holt-Winters Smoothing
PsiPosteriors()

PsiPosteriors(Model, Input_Data, [Header])

Computes the posterior probabilities for Input_Data using a Classification model stored in PMML format.

Model: Range containing the stored Classification model in PMML format. Note: Argument will always start

with cell B12 and end with the cell address containing </PMML>.

Input_Data: Range containing the new data for computing posterior probabilities. Range must contain a

header with column names and at least one row of data containing the exact same features (or columns) as the

data used to create the model.

Header: If True, the forecasts are adjusted with random normally distributed errors. If False or omitted, the

forecasts will be deterministic.

Output: Multiple columns containing a header with class labels and estimated posterior probabilities for each

class label for all records in Input_Data.

Supported Models:

• Classification:

▪ Discriminant Analysis

▪ Logistic Regression

▪ K-Nearest Neighbors

▪ Classification Tree

▪ Naïve Bayes

▪ Neural Network
▪ Random Trees

▪ Bagging (with any supported weak learner)

▪ Boosting (with any supported weak learner)

PsiTransform()

PsiTransform(Model, Input_Data, [Header])

Transforms the Input_Data using a Transformation model stored in PMML format.

Model: Range containing the stored Transformation model in PMML format. Note: Argument will always

start with cell B12 and end with the cell address containing </PMML>.

Input_Data: Range containing the new data for transformation. Range must contain a header with column

names and at least one row of data containing the exact same features (or columns) as the data used to create the

model.

317

Header: If True, the forecasts are adjusted with random normally distributed errors. If False or omitted, the

forecasts will be deterministic.

Output: One or multiple columns containing a header and transformed data.

Supported Models:

• Transformation:

▪ Rescaling

• Text Mining

▪ TF-IDF Vectorization (input data – text variable with the corpus of documents)

▪ LSA Concept Extraction (input data – term-document matrix, where columns represent terms
and rows represent documents)

Appendix II RASON Error Codes

Introduction
This chapter documents the RASON Error messages that can be returned when you
optimize a model, run a simulation or perform a data mining function

Error Messages

General JSON Error Indicates that an unexpected internal error has occurred.

Missing model file or string Indicates that an internal error has occurred by can appear

when a user attempts to solve an empty model string.

Model type (Simulation, optimization,

data mining) mismatch

Indicates that the User has used the wrong RASON end

point to solve the current model. For example, clicking

Simulate in the RASON IDE rather than Solve when

solving an optimization model, or calling Get/POST

rason.net/api/model/id/optimize when

running a simulation model.

Improper engine selected for the
particular model

Indicates that an appropriate engine has not been selected to
solve the model.

Invalid Json token Not in use in RASON 2.0 and later versions.

Unrecognized Json identifier Indicates that a name of a section or a property has been

used which is not part of the RASON syntax. For example,

if a user misspells a section heading such as

“modelSetings” or a non-existent property name is passed.

Invalid Json data type Indicates that the user has entered a different type than

expected. For example, if a number is required, but a string

is passed, or if an array is required, but a scaler has been

passed. This error message may also be returned when an

Excel type not presented in RASON is attempted in

conversion (for example, Excel errors #N/A, #NUM, etc.).

Missing name definition in Json object All objects must be named. If the “name” property is

missing, this error will appear.

When using the syntax:

Variables:{

 x:{value:0}

 }

the variable is implicitly named “x”.

319

However, when using the syntax below, you must specify

the name of the object by using the name property.

Variables:[

 { name: “x”, value: 0}

]

Expecting ':' Missing “:”

Expecting '{' or '['

Missing an expected opening bracket

Expecting '}' or ']' Missing an expected closing bracket

Incompatible Json assignment In RASON models containing a property or object with the

‘:’ operator, examples may include, the dimensions of the

right hand side of an optimization constraint not matching

the dimensions of the left hand side of the constraint.

Duplicated Json assignment Indicates that an object has been defined twice.

The identifier, to which a value is

assigned, must be a scalar.

The variable/parameter should be a scalr (not arry). Setting

"value:[]" is not supported.

Incorrect Json array dimensions Indicates that the definition of dimensions: [r,c] is not

correct. Note: Although [r][c] is correct C++ syntax, it is

not correct RASON syntax.

Incorrect Json data array Indicates a mistake in any array definition through the []

operator, for example, [1, 2]].

Mismatching sizes of JSON arrays For example: value:[] has different dimensions then lower:

[] or upper: []

Less elements assigned to a JSON array If a variable is defined explicitly as array through

dimensions: [] and less elements were assigned through

value: [].

More elements assigned to a JSON array If a variable is defined explicitly as array through

dimensions: [] and more elements were assigned through

value: [].

Incorrect assignment to a Json ‘type’

identifier

Indicates that “type:” property has been assigned an invalid

value. For example, “type: “bynari”” rather than “type:

binary”” when applied to a decision variable or passing
“type: “maximum”” to a variable or constraint instead of

the objective function.

Missing Json Variable Definition Indicates that in a conic constraint definition, an identifier

has been used, which is not a decision variable.

Index [] misused or out of range Indicates that the application of the range operator [] to an

array is invalid. For example, x[6] while x has length 5.

Wrong Simulation Index in modelSettings When running a specific simulation, out of multiple

simulations, but simulationIndex property is set to <1 or >

numSimulations.

Incompatible model block definition Could indicate that a two sided constraint has been passed.

For example, a constraint block with a lower bound of 1

and an upper bound of 10.

Invalid binding definition or incompatible

dimensions

Indicates an error in a data source definition or the related

index sets. If using PsiDataSrc() fumction in an Excel

model, confirm that there are no trailing or leading spaces

in any of the argument definitions in either the excel cells

or the function definition.

Missing binding value column valueCol: "" property is required when binding to data

Formulas not allowed in this definition Indicates that a formula has been entered for an object that
should not have a formula, for example, a decision variable

object.

Invalid parameter definition Indicates that PsiOptParam() or PsiSimParam() has been

misspelled or entered improperly

Inconsistent Table Indicates that an invalid table definition has been used in

the functions SELECT or PIVOT; the index operator [] has

been applied to the identifier, which is an invalid table; or

something is wrong in the table definition either inline (in

the table) or through binding.

Inconsistent Data source definition Indicates an error in the PsiDataSrc() function in Excel

during the RASON conversion. If not using Excel, then

this error indicates that a data source definition and /or the

datasets associated with the data source definition are
invalid.

Empty data-source The data source is empty.

Do not mix {indexCols, valueCols} and

{colIndex, rowIndex} indexing systems

Two sets may not be mixed when describing a table. For

example, indexCols and rowIndex where indexCols creates

a table like data-source while indexCols creates a

dataframe.

direction: 'export' is required in a

datasource definition for saving

If exporting results, such as final variable values, the data-

source must contain the property "direction": "export" in

order to prevent overwriting of a data-source used only for

reading.

Inconsistent arguments to SELECT

function

Indicates that the is an error in the syntax for the SELECT

function.

Inconsistent arguments to PIVOT
function

Indicates that the is an error in the syntax for the PIVOT
function.

Misused equal/valueof property If the “equal:” property is used outside of the Constraints

section.

Inconsistent index set, index column, or

mismatching index set and column

Indicates an invalid index set definition or the usage of an

index set in a table.

Index column values does not match the

designated index set. Try the datasource

property sortIndexCols:true"

One and the same element reappears in an index set; or the

index column does not match a predefined index set, in the

indexSets section.

Incorrect loop definition Indicates a syntax mistake in a loop/for definition.

Array bounds not allowed in a table

assignment

Not in use in RASON 2.0 and later versions.

Loop table/array definition mismatch A for/loop may define an array or table implicitly though

the assigned expressions. If there is a mismatch in shape,

indices or index sets which prevents the creation of

321

structural arrays on the left hand side of expressions, this

error will appear.

Duplicate sets or indices in JSON loop If a loop contains multiple indices, the indices must be

different, i.e. for i in 'parts', j in 'prods')

Loop defined in a wrong section Loop defined in a wrong section. Loops may only appear

in the formulas and preprocessor sections.

Unsupported nesting of loops Nesting of loops is not allowed or is not allowed in this

section.

Incompatible worksheet definitions;

check your worksheets:[] and activeSheet:

"" properties

The two properties "worksheets" and "activeSheet" are

optional properties. However, if one exists, so must the

other. The activeSheet: name should be among the names

listed in worksheets:[].

RASON can’t handle worksheets in

names

RASON does not support the use of worksheet names. For

example,

Con: {formula: “2 * SUM(sheet1!A1:A5)”, equal: 2}

The use of “sheet1!” is not supported.

RASON can’t handle dimensions/cubes RASON does not support the use of dimensions or cubes.

RASON can’t handle Excel TABLE &

structured references

RASON does not support the use of Excel tables and Excel

structured references. (A combination of table and column

names is referred to as a structured reference in Excel, i.e.
=SUM(Products[Parts].)

RASON can’t handle OFFSET,

INDIRECT, VBA functions etc. that

required Excel at run-time

RASON does not support the use of the Excel functions

OFFSET and INDIRECT or any VBA functions designed

by the user.

Invalid parent stage When the stage-binding value references a non-existing

stage. For example,

"optStage.number_to_build.finalValue", where "optStage"

does not exist.

Circular reference of a parent stage Similar to circular references with formulas in Excel. If a

dependency chain of stages is started, a given stage may not

be dependent on a stage that already exists in the chain.

Only one formula def is allowed within an

aggregation loop when the loop is part of
a sequential code.

If contained within a loop, the operators "sum", "min" and

"max" may only contain one formula definition.

More than one formula assigned to an

identifier

Only one formula may be attached to a parameter or

variable name. For example: A1: {formula: "a formula"}

may only be defined once within a RASON model.

Missing constraint/objective type

definition

Your RASON optimization model must contain at least one

constraint or an objective.

Error in indentParams: [] model definition Only one formula marked by indentParams:[] is allowed for

this type of analysis.

Error in plotParams: [] model definition A model setting pertaining to sensitivity analysis is not

correct, i.e. the property 'sensitivityPoints' should not be < 2

or the property 'sensitivityPoints2' should not be < 0 or = 1.

Invalid Statement Definition Syntax error in statement definition in { If-then-else, while,

Loop, For, sum, min, max }

Statement defined in a wrong setting Statements may not be defined in all sections, i.e. Loop

may not appear in objective/constraints sections.

Error in if-then-else definition Syntax error in definition of If-then-else statement.

Operation available only with assigned

formulas

Operations such as +, - within a formula will execute only

when the formula is assigned to a cell. For example, if we

sum two arrays in a non-array formula, the result depends

on the formula cell address. Only applies when a formula
is attached to a variable which is an array or contains a

reference to another variable or cell.

Missing workflow (DAG) property A decision flow must be named using the properties flow,

flowName, workflow or workflowName. Naming property

MUST appear on the first line of the workflow.

Input sources/parameters in models/stages

must be unique

Input parameters/data-sources must be unique. This error is

returned when two input sources/parameters are given the

same name.

Invalid output/result in stage binding Result entered for input param value or data-source

selection does not exist.

Invalid input parameter binding Input parameter value is set to a mismatched type or

dimensions.

Invalid or unsupported model section for
the current solving action

Inappropriate section is present in a given model type. For
example, the datasets section should not exist in an

optimization or simulation model.

The error messages below are specific to RASON Data Mining.

Invalid datasource type. Supported types:

csv, xml

Indicates data source is an unsupported type. Currently,

RASON Data Mining supports the following file types:
"csv", "json", "xml", "excel", "odbc", "access", "msaccess",
"mssql", "oracle", "odata".

Invalid estimator/transformer type Indicates an error in the estimator or transformer type.

Currently, RASON Data Mining supports the following

estimator/transformer types: "affinityAnalysis",

"bigData", "classification", "clustering",

"featureSelection",
 "regression", "textMining", "timeSeries",

"transformation".

Invalid algorithm name
The supported names for each algorithm are listed

below.

"affinityAnalysis"-- "associationRules"

"bigData" -- "sampling"or "summarization"

"classification" -- "bagging", "boosting",

"decisionTree", "nearestNeighbors",
"DiscriminantAnalysis",

323

"logisticRegression", "naiveBayes", "neuralNetwork",

or "randomTrees"

"clustering" --"hierarchical" or "kMeans"

"featureSelection" -- "linearWrapping",
"logisticWrapping", or "univariate"

"regression" -- "bagging", "boosting", "decisionTree",

"linearRegression", "nearestNeighbors",

"neuralNetwork", or "randomTrees"

"textMining" -- "latentSemanticAnalysis" or "tfIdf"

"timeSeries" -- "addHoltWinters", "autocorrelation",

"autocovariance", "difference", "lagAnalysis",

"partialAutocorrelation", "arima", "doubleExponential",

"exponential", "movingAverage", "mulHoltWinters", or
"noTrendHoltWinters"

"transformation" -- "binning", "intervalBinning",

"CountBinning", "canonicalVariateAnalysis",

"categoryReduction", "factorization", "imputation",

"oneHotEncoding", "oversamplePartitioning",

"partitioning", "principalComponentAnalysis",

"rescaling", "sampling", or "stratifiedSampling"

Invalid use of trainData or validData This error appears when the trainData and validData

properties are used incorrectly. Contact Frontline

Solvers Support for more information related to your

specific model at support@solver.com.

Invalid or missing action property This error appears when an invalid action property is

passed or when an action property is missing. Contact

Frontline Solvers Support for more information related

to your specific model at support@solver.com.

Invalid enumeration value assigned to

parameter or property

If an invalid enumeration value is assigned to a

parameter or property, this error will appear.

The following properties/parameters accept only the

values in their sets. If a user enters something different,

this error message will appear.

"aggregationType" has values { "avg", "max", "min",

"stddev", "sum" }

"binningTypeFeatures" and "binningTypeTarget” have

values { "equal_count", "equal_interval", "none" }

"dataForErrorComputation" has values { "only_train",

"only_valid", "train_and_valid" }

"dataFormat" has values { "csv", "parquet" }

"dissimilarity" has values { "euclidean", "jaccard",

"matching" }

"hiddenLayerActivation" and “outputLayerActivation"

have values { "logistic_sigmoid", "softmax", "tanh" }

"imputationStrategy" has values { "delete_record",

"mean", "median", "mode", "value" }

"inputDataType" has values { "distance_matrix",

"raw_data" }

"learningOrder" has values { "original", "random" }

"linkage" has values { "centroid", "complete_linkage",

"group_average", "mcquitty", "median",

"single_linkage", "ward" }

"matrixMethod" has values { "correlation", "covariance"

}

"metric" has values { "chi2", "cramersv", "fisher",

"ftest", "gainratio", "gini", "kendall", "mutualinfo",

"pearson", "spearman", "welch" }

"normType" has values { "l1", "l2" }

"partitionMethod" has values { "manual", "random",

"sequential" }

"priorProbMethod" has values { "empirical", "manual",

"uniform" }

"prunedTreeType" has values { "full_grown",

"best_pruned", "min_error", "manual" }

"samplingType" has values { "approximate", "exact" }

"sortOrder" has values { "descending", "ascending" }

"stratificationMethod" has values { "equal_size",

"proportional" }

"technique" has values { "adjusted_normalization",

"normalization", "standardization",

"unit_normalization" }

"weightingScheme" has values { "equal",

"inverse_distance" }

"weightingSchemeDocument" has values { "binary",

"entropy", "gf_idf", "inverse", "normal", "prob_idf" }

"weightingSchemeNormalization" has values {

"cosine", "none" }

"weightingSchemeTerm" has values { "augnorm",

"boolean", "logarithmic", "raw_frequency" }

325

Invalid use of selectedCols or excludedCols This error appears when the trainData and validData

properties are used incorrectly. Contact Frontline

Solvers Support for more information related to your

specific model.

Invalid evaluation property An invalid evaluation property has been input for the

specified action. Only string values are supported
among the set of all data mining evaluation properties.

Decision Table FEEL Errors

License limit for numbers of rules in decision

table has been reached.

Decision table general error Internal error – please contact Technical Support.

Duplicate/missing name of a decision table "Duplicate" indicates that multiple decision tables have

identical names. "Missing" indicates that the table name

is missing in the upper left hand corner of the decision

table.

Unrecognized hit policy User has entered an unrecognized hit policy for

"hitPolicy" property.

Missing or wrong decision table inputs Decision tables must have at least one input entered as

an array [] with either missing type, standard FEEL type

or a set of allowed values.

Missing or wrong decision table outputs Decision tables must have at least one output entered as

an array[] with either missing type, standard FEEL type

or a set of allowed values.

Num refTypes must = num inputs + num

outputs

The number of elements in refTypes must be equal to

numInputs + numOutputs.

Unknown ref type. Valid ref types are:

Boolean, number, text, date, time and

duration.

An unsupported reference type has been passed for

retype:[]. Current supported reference types are:

Boolean, number, text, date, time and duration.

Decision table column data type mismatch Indicates there is a value in the input/output column that
has a "type" different from the listed "type" specified for

the refTypes property, i.e. if an input of type "string" is

entered for an input of type ">10".

Inconsistent decision table input values The array for inputValues: [] must have the same

columns as the array for inputs: []

Inconsistent decision table output values The array for outputValues: [] must have the same

columns as the array for inputs: []

Inconsistent decision table output defaults The array for defaults: [] must have the same columns

as the array for outputs:[].

Missing or wrong decision table rules A decision table must have at least one rule row.

Inconsistent decision table rules dimensions The array for rules:[] must hae the same number of

columns as inputs + outputs.

Input value not covered by the input entries All values specified for inputValues must be referenced

at least once in the rules. For example, if a decision

table exists with the property inputValues:['apples',

'pears'] and no input entry mentions "pears", this error

will be returned.

mailto:support@solver.com?subject=Decision%20Table%20General%20Error

Output entry must be a string or number

matching the output type

The output entry must have the same type as the

corresponding output listed in refTypes.

FEEL string type is required

FEEL number type is expected

FEEL any ' – ' in unary test is expected

FEEL NOT(value) unexpected value

FEEL expected range operator [..]

FEEL invalid path '.' operator

FEEL invalid unary test

Unary test must be a string expression Each unary test specified for the "rules" property must
be a string expression.

Output entry not covered by output values All values specified for outputValues must be

referenced at least once in the rules. For example, if a

decision table exists with the property

outputValues:['apples', 'pears'] and no output entry

mentions "pears", this error will be returned.

Decision table arguments mismatched Number of arguments to PsiDecTable() is incorrect.

Decision table input argument is array, must

be scalar

An input argument must be a scalar.

No hit found in decision table No rule evaluated successfully in the decision table.

Multiple hits not allowed with hit policy

'unique'.

A "unique" hit policy must "hit" evaluating to a unique

result. If multiple rules are "hit", an error will be

returned.

Different hits must have the same values with

hit policy 'any'.

With a hit policy of "any", if any rules overlap, but point

to the same result, that unique result is returned.

Hit policy with aggregation requires numerical

outputs.

If a hit policy with aggregation is used, such as C+, C#,

C< or C>, numerical outputs (rather than strings) must

be returned in the result.

Output entry not found in the output domain This error is returned when an output entry is not

included in the outputValues domain. For example, if

the property outputValues:['apples', 'pears'] exists in a

decision table, but a rule output returns 'cherry'.

Composing Data/Time/Duration in decision
table result failed

If using data/time/duration strings in an expression, the
relevant function must be used, i.e. the expression

'PT2h' + 'PT3h' is invalid. This expression must be

rewritten as: duration('PT2h') + duration('PT3h').

Boxed function definition mismatch. Check

its syntax. It must be part of a non-array

formula.

PsiDecTable() must be entered in a single cell as a non-

array formula. To extract an array result in Excel, use

the SPILL feature in Microsoft Excel or use Frontline's

PsiCalcValue() formula to retrieve the results. For more

information on PsiCalcValue see the Analytic Solver

Reference Guide.

327

Unable to locate parent stage data Pertains to decision flows. This error

occurs when a child stage is unable to

locate the result of the parent stage.

Unsupported data format

Unknown failure has occurred while

solving RASON model.

An unknown error has occurred. Please

contact Frontline Systems Technical

Support for help (support@solver.com).

Terminated by user request The data mining process has been stopped

by the user.

Unsupported action This error occurs when user types action

or estimator are unknown for RASON

DM.

Unsupported estimator This error occurs when user types action

or estimator are unknown for RASON

DM.

Unsupported transformer This error occurs when user types action

or estimator are unknown for RASON

DM.

Unsupported forecaster This error occurs when user types action

or estimator are unknown for RASON
DM.

Unsupported predictor This error occurs when user types action

or estimator are unknown for RASON

DM.

NoDataProvided No data provided for action.

Unable to retrieve dataset RASON DM is not able to locate the

specified dataset.

Please parse the DAG model first. ????

Stage XX does not exist The specified stage is missing from the

decision flow.

Pipeline for stage X is empty. RASON DM is unable to locate the

contents for stage X.

Failed to locate or load result RASON DM is unable to locate the result.

Invalid Response Format.

STANDALONE cannot be used
with workflow models

Response-format=STANDALONE is not

supported when solving a decision flow.
Use Response-format=WORKFLOW

Please specify non-empty stage

name

Each stage must contain a stageName.

Invalid or unknown model type RASON DM is unable to determine the

model type. Use

"modelType"="datamining" to specify

that the model is a datamining model.

Reusable model X not found RASON DM is not able to locate the

specified reusable model.

mailto:support@solver.com

